

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Becano	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	49
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx450f256h-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Pin Tables

64-	-PIN QFN ^(1,2,3,4) AND TQFP ^(1,2,3,4) (TOP VII	EW)	
Pl Pl	C32MX330F064H C32MX350F128H C32MX350F256H C32MX370F512H		
	64	1	64
	QF	N ⁽⁴⁾	TQFP
Pin #	Full Pin Name	Pin #	Full Pin Name
1	AN22/RPE5/PMD5/RE5	33	RPF3/RF3
2	AN23/PMD6/RE6	34	RPF2/RF2
3	AN27/PMD7/RE7	35	RPF6/SCK1/INT0/RF6
4	AN16/C1IND/RPG6/SCK2/PMA5/RG6	36	SDA1/RG3
5	AN17/C1INC/RPG7/PMA4/RG7	37	SCL1/RG2
6	AN18/C2IND/RPG8/PMA3/RG8	38	VDD
7	MCLR	39	OSC1/CLKI/RC12
8	AN19/C2INC/RPG9/PMA2/RG9	40	OSC2/CLKO/RC15
9	Vss	41	Vss
10	Vdd	42	RPD8/RTCC/RD8
11	AN5/C1INA/RPB5/RB5	43	RPD9/RD9
12	AN4/C1INB/RB4	44	RPD10/PMCS2/RD10
13	PGED3/AN3/C2INA/RPB3/RB3	45	RPD11/PMCS1/RD11
14	PGEC3/AN2/C2INB/RPB2/CTED13/RB2	46	RPD0/RD0
15	PGEC1/VREF-/CVREF-/AN1/RPB1/CTED12/RB1	47	SOSCI/RPC13/RC13
16	PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0	48	SOSCO/RPC14/T1CK/RC14
17	PGEC2/AN6/RPB6/RB6	49	AN24/RPD1/RD1
18	PGED2/AN7/RPB7/CTED3//RB7	50	AN25/RPD2/RD2
19	AVDD	51	AN26/RPD3/RD3
20	AVss	52	RPD4/PMWR/RD4
21	AN8/RPB8/CTED10//RB8	53	RPD5/PMRD/RD5
22	AN9/RPB9/CTED4/PMA7/RB9	54	RD6
23	TMS/Cvrefout/AN10/RPB10/CTED11//PMA13/RB10	55	RD7
24	TDO/AN11/PMA12/RB11	56	VCAP
25	Vss	57	VDD
26	Vdd	58	RPF0/RF0
27	TCK/AN12/PMA11/RB12	59	RPF1/RF1
28	TDI/AN13/PMA10/RB13	60	PMD0/RE0
29	AN14/RPB14/CTED5/PMA1/RB14	61	PMD1/RE1
30	AN15/RPB15/OCFB/CTED6/PMA0/RB15	62	AN20/PMD2/RE2
31	RPF4/SDA2/PMA9/RF4	63	RPE3/CTPLS/PMD3/RE3
32	RPF5/SCL2/PMA8/RF5	64	AN21/PMD4/RE4

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

Every I/O port pin (RBx-RGx), with the exception of RF6, can be used as a change notification pin (CNBx-CNGx). See Section 12.0 "I/O 2: Ports" for more information.

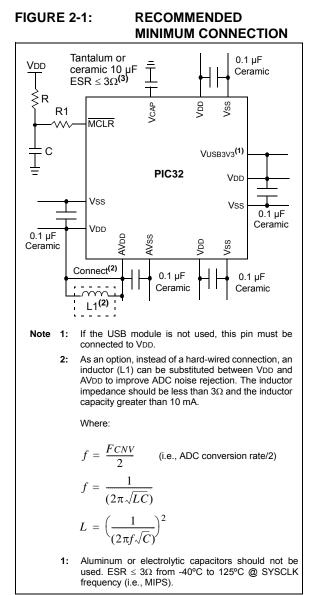
3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

RPF6 (pin 35) is only available for output functions. 4:

		Pin Numb	er			
CTED5 CTED6 CTED7 CTED8 CTED9 CTED10 CTED11 CTED12 CTED13 MCLR AVDD AVSS	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description
CTED4	22	33	B19	1	ST	CTMU External Edge Input 4
CTED5	29	43	B24	I	ST	CTMU External Edge Input 5
CTED6	30	44	A29	I	ST	CTMU External Edge Input 6
CTED7	—	9	B5	I	ST	CTMU External Edge Input 7
CTED8	—	92	A62	I	ST	CTMU External Edge Input 8
CTED9	—	60	A40	Ι	ST	CTMU External Edge Input 9
CTED10	21	32	A23	Ι	ST	CTMU External Edge Input 10
CTED11	23	34	A24	Ι	ST	CTMU External Edge Input 11
CTED12	15	24	A15	I	ST	CTMU External Edge Input 12
CTED13	14	23	B13	I	ST	CTMU External Edge Input 13
MCLR	7	13	B7	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVdd	19	30	A22	Р	Р	Positive supply for analog modules. This pin must be connected at all times.
AVss	20	31	B18	Р	Р	Ground reference for analog modules
Vdd	10, 26, 38, 57	2, 16, 37, 46, 62, 86	B1, A10, A14, B21, A30, A41, A48, A59, B53	Ρ	_	Positive supply for peripheral logic and I/O pins
Vcap	56	85	B48	Р	—	Capacitor for Internal Voltage Regulator
Vss	9, 25, 41	15, 36, 45, 65, 75	A3, B8, B12, A25, B25, A43, B41, A63	Ρ	_	Ground reference for logic and I/O pins
VREF+	16	29	B17	I	Analog	Analog Voltage Reference (High) Input
Vref-	15	28	A21	Ι	Analog	Analog Voltage Reference (Low) Input

TARI E 1-1. PINOLIT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer


Analog = Analog input O = Output

I = Input

Note 1: This pin is only available on devices without a USB module.

This pin is only available on devices with a USB module. 2:

3: This pin is not available on 64-pin devices.

2.2.1 BULK CAPACITORS

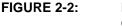
The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Capacitor on Internal Voltage Regulator (VCAP)

2.3.1 INTERNAL REGULATOR MODE

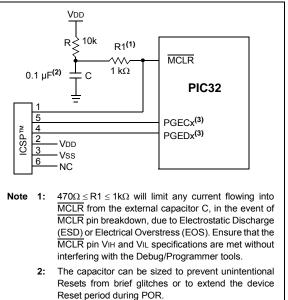
A low-ESR (3 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **Section 31.0 "Electrical Characteristics"** for additional information on CEFC specifications.

2.4 Master Clear (MCLR) Pin

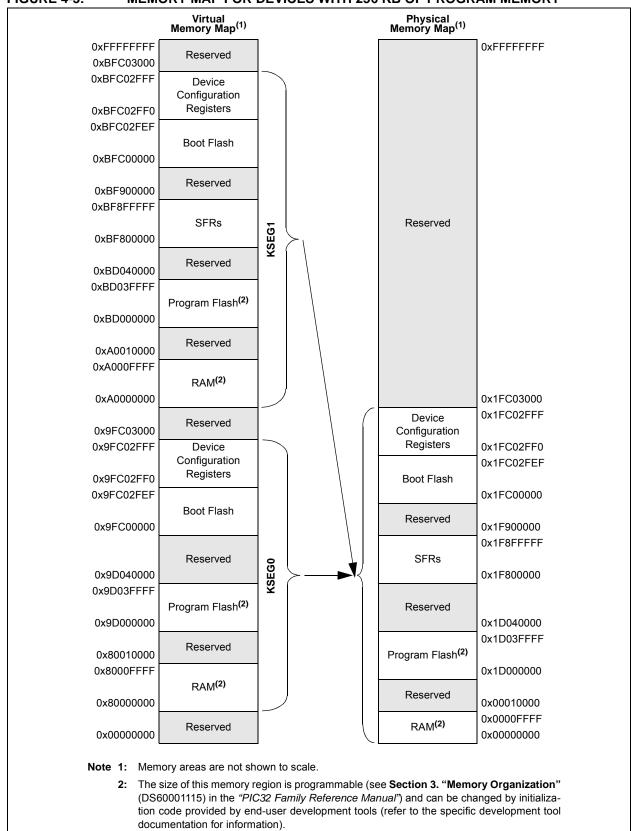

The $\overline{\text{MCLR}}$ pin provides two specific device functions:

- Device Reset
- · Device programming and debugging

Pulling The $\overline{\text{MCLR}}$ pin low generates a device Reset. Figure 2-2 illustrates a typical $\overline{\text{MCLR}}$ circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.


For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.


3:

EXAMPLE OF MCLR PIN CONNECTIONS

No pull-ups or bypass capacitors are allowed on

active debug/program PGECx/PGEDx pins.

11.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32 USB module includes the following features:

- USB full-speed support for host and device
- Low-speed host support
- USB OTG support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- · Transaction handshaking performed by hardware
- · Endpoint buffering anywhere in system RAM
- · Integrated DMA to access system RAM and Flash
- The implementation and use of the USB Note: specifications, and other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24 - 23:16 -		_				—		—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	_			-	—		—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	-	_			-	—		—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
Range 3 31:24 -	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE		VBUSVDIE

REGISTER 11-2: U10TGIE: USB OTG INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIE:** ID Interrupt Enable bit
 - 1 = ID interrupt is enabled
 - 0 = ID interrupt is disabled
- bit 6 T1MSECIE: 1 Millisecond Timer Interrupt Enable bit
 - 1 = 1 millisecond timer interrupt is enabled
 - 0 = 1 millisecond timer interrupt is disabled
- bit 5 LSTATEIE: Line State Interrupt Enable bit
 - 1 = Line state interrupt is enabled
 - 0 = Line state interrupt is disabled
- bit 4 ACTVIE: Bus Activity Interrupt Enable bit
 - 1 = ACTIVITY interrupt is enabled
 - 0 = ACTIVITY interrupt is disabled
- bit 3 SESVDIE: Session Valid Interrupt Enable bit
 - 1 = Session valid interrupt is enabled
 - 0 = Session valid interrupt is disabled
- bit 2 SESENDIE: B-Session End Interrupt Enable bit
 - 1 = B-session end interrupt is enabled
 - 0 = B-session end interrupt is disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIE: A-VBUS Valid Interrupt Enable bit
 - 1 = A-VBUS valid interrupt is enabled
 - 0 = A-VBUS valid interrupt is disabled

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24 23:16						—	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
						—	_	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	-	-	—	—	-	—	—	_
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Range 3 31:24 - 23:16 - 15:8 - 7:0 -	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 11-4: U10TGCON: USB OTG CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	DPPULUP: D+ Pull-Up Enable bit

- 1 = D+ data line pull-up resistor is enabled
- 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- 1 = D- data line pull-up resistor is enabled
- 0 = D- data line pull-up resistor is disabled

bit 5 **DPPULDWN:** D+ Pull-Down Enable bit

- 1 = D+ data line pull-down resistor is enabled
- 0 = D+ data line pull-down resistor is disabled

bit 4 DMPULDWN: D- Pull-Down Enable bit

- 1 = D- data line pull-down resistor is enabled
- 0 = D- data line pull-down resistor is disabled
- bit 3 **VBUSON:** VBUS Power-on bit
 - 1 = VBUS line is powered
 - 0 = VBUS line is not powered
- bit 2 OTGEN: OTG Functionality Enable bit
 - 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
 - 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control

bit 1 VBUSCHG: VBUS Charge Enable bit

- 1 = VBUS line is charged through a pull-up resistor
- 0 = VBUS line is not charged through a resistor

bit 0 VBUSDIS: VBUS Discharge Enable bit

- 1 = VBUS line is discharged through a pull-down resistor
- 0 = VBUS line is not discharged through a resistor

12.1 Parallel I/O (PIO) Ports

All port pins have ten registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

12.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the presence of outputs higher than VDD (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Device Pin Tables"** section for the available pins and their functionality.

12.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

12.1.3 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP.

12.1.4 INPUT CHANGE NOTIFICATION

The input change notification function of the I/O ports allows the PIC32MX330/350/370/430/450/470 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.

Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit.

Each I/O pin also has a weak pull-up and every I/O pin has a weak pull-down connected to it. The pullups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on change notifi- cation pins should always be disabled when the port pin is configured as a digital
	output. They should also be disabled on
	5V tolerant pins when the pin voltage can
	exceed VDD.

An additional control register (CNCONx) is shown in Register 12-3.

12.2 CLR, SET, and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

TABLE 12-6: PORTC REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H, PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY

ess										Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6210	TRISC	31:16	_	_		—		—	—	—	—	-	—	—			—	—	0000
0210	TRIBC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	—	_	—	_	_	_	_	_	—	—	_	xxxx
6220	PORTC	31:16	_	_		_	_	—	_	—	_	_	—	—	—	—		—	0000
0220	TOINIC	15:0	RC15	RC14	RC13	RC12	_	—	_	—	—	_	—	—	—	—		—	xxxx
6230	LATC	31:16	_			_	_	—	—	—	—				—	—		—	0000
0200	2/10	15:0	LATC15	LATC14	LATC13	LATC12	—	—	—	—	—	_			—	—	—	—	xxxx
6240	ODCC	31:16	_	—		—	_	—	—	—	—	—	—	—	—	—	—	—	0000
02.0		15:0	ODCC15	ODCC14	ODCC13	ODCC12	-	—	—	—	—	—	—	—	—	—	—	—	xxxx
6250	CNPUC	31:16	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	0000
0200		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	-	—	—	—	—	—	—	—	—	—	—	—	xxxx
6260	CNPDC	31:16	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	—	_	—	—	—	_	_	_	—	-	—	xxxx
6270	CNCONC	31:16	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	0000
02.0		15:0	ON	—	SIDL	—	-	—	—	—	—	—	—	—	—	—	—	—	0000
6280	CNENC	31:16	_	—		—	_	—	_	—	_	_	_	_	_	—		_	0000
		15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	—	—	_	—	—	—	_	_	_	—	-	—	xxxx
6290	CNSTATC	31:16	_	—		—	_	—	—	—	—	—	—	—	—	—	—	—	0000
0200	0.10 // 10	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	—	—	—	—	—	—				—	—		xxxx

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

2012-2016	
Microchip	
Technology	
Inc	

0

SS										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FC14	RPE5R	31:16		—	—	—	—	_	—		_	_	—		_	_	—	_	0000
		15:0	—	—	—	—	—	_	—	—	—	_	—	_		RPE5	<3:0>		0000
FC20	RPE8R ⁽¹⁾	31:16	_	—	_			_	—		_			_	_	-	-	—	0000
		15:0 31:16														RPE8	<3:0>	_	0000
FC24	RPE9R ⁽¹⁾	15:0	_	_	_		_					_	_	_	_		9<3:0>	_	0000
		31:16		_	_		_	_	_			_	_	_	_		_	_	0000
FC40	RPF0R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF0	<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FC44	RPF1R	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF1	<3:0>		0000
FC48	RPF2R ⁽³⁾	31:16	—	—	—	—	_	_	—	_		_	—	—		—	_	_	0000
FC40	RPF2R**	15:0	_	_	_	-	-	-	_	—	_		-	_		RPF2	<3:0>		0000
FC4C	RPF3R ⁽²⁾	31:16	—	—	—			_	—	_	—		—	0000					
1 040		15:0	—	—	—	—	—	—	—	—	—	—	—	—		RPF3	<3:0>		0000
FC50	RPF4R	31:16	—	—	—	—	—	_	—	-	—	_	—	—	—	—	—	—	0000
1000		15:0	-	—	—	—	—	_	—	_	—		—	_		RPF4	<3:0>		0000
FC54	RPF5R	31:16	—	_	_	—		_	_	—	—		—	_	—			—	0000
		15:0	-	_	-	—	—	_	_	_	-	-	—	_		RPF5	<3:0>		0000
FC58	RPF6R ⁽²⁾	31:16	_	_	_	_		_	_			_	_	_			-		0000
		15:0 31:16	_							_				_		RPF6			0000
FC60	RPF8R ⁽¹⁾	15:0														 RPF8		—	0000
		31:16															< <u></u>		0000
FC70	RPF12R ⁽¹⁾	15:0	_	_	_	_	_		_	_			_	_		RPF12	2<3:0>		0000
	(4)	31:16	_					_		_	_	_		_		_	_	_	0000
FC74	RPF13R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF1	3<3:0>		0000
	55665(1)	31:16	_	_			_	_	_	_	_	_	_	_		_		_	0000
FC80	RPG0R ⁽¹⁾	15:0	_	—	_	—	—	_	—	_	_	_	—	_		RPG0	<3:0>		0000
FC84	RPG1R ⁽¹⁾	31:16		—		_	_		—				_	-				_	0000
FU04	RPGIR''	15:0		_	—	_	_	_	_			-	_	_		RPG1	<3:0>		0000
FC98	RPG6R	31:16	—	—	_	—	—	_	—	—	_	-	—	—	_	—			0000
1090		15:0		—	_	_	_	_	—		_	_	—	—		RPG6	<3:0>		0000
FC9C	RPG7R	31:16	_	—	—	_	—	_	—	_	—		—	_	_	_	—	—	0000
		15:0	—	 set; = ur	—	—	—	—	—	_	_	_	_	—		RPG7	<3:0>		0000

Note 1: This register is not available on 64-pin devices.

2: This register is only available on devices without a USB module.

3: This register is not available on 64-pin devices with a USB module.

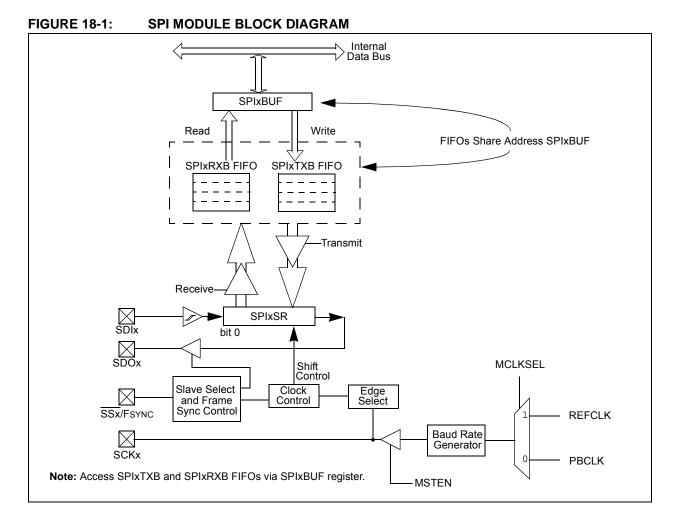
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—	-	-	_	_	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_	_	_	_	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	SIDL	_	_	_	—	—
7:0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		—	OC32	OCFLT ⁽²⁾	OCTSEL		OCM<2:0>	

REGISTER 17-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, i	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'


- bit 15 **ON:** Output Compare Peripheral On bit⁽¹⁾
 - 1 = Output Compare peripheral is enabled
 - 0 = Output Compare peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters Idle mode
 - 0 = Continue operation in Idle mode
- bit 12-6 Unimplemented: Read as '0'
- bit 5 OC32: 32-bit Compare Mode bit
 - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisions to the 32-bit timer source 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 OCFLT: PWM Fault Condition Status bit⁽²⁾
 - 1 = PWM Fault condition has occurred (cleared in HW only)
 - 0 = No PWM Fault condition has occurred
- bit 3 OCTSEL: Output Compare Timer Select bit
 - 1 = Timer3 is the clock source for this Output Compare module
 - 0 = Timer2 is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = PWM mode on OCx; Fault pin is enabled
 - 110 = PWM mode on OCx; Fault pin is disabled
 - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high; compare event forces OCx pin low
 - 001 = Initialize OCx pin low; compare event forces OCx pin high
 - 000 = Output compare peripheral is disabled but continues to draw current
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit is only used when OCM<2:0> = '111'. It is read as '0' in all other modes.

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The SPI module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc. The PIC32 SPI module is compatible with Motorola[®] SPI and SIOP interfaces. Some of the key features of the SPI module are:

- · Master and Slave modes support
- · Four different clock formats
- Enhanced Framed SPI protocol support
- User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- Operation during CPU Sleep and Idle mode
- Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

NOTES:

'0' = Bit is cleared

x = Bit is unknown

Bit Range	Bit Bit 31/23/15/7 30/22/1		Bit B 4/6 29/21/13/5 28/20		Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
31:24		HR10•	<3:0>			HR01	25/17/9/1 24/1 R/W-x R/ 1<3:0> R/W-x R/W-x R/ 01<3:0> R/W-x U 01 U 01 U 01				
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23:16		MIN10	<3:0>		MIN01<3:0>						
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15:8		SEC10	<3:0>			SEC01	R/W-x R/W- 01<3:0>				
7.0	U-0	U-0	U-0	U-0	U-0	HR01<3 R/W-x MIN01<3	U-0	U-0			
7:0	—	—	_	_	_	—	—	_			
Legend:											
R = Read	able bit		W = Writable	e bit	U = Unimple	emented bit, re	ead as '0'				

REGISTER 22-3: RTCTIME: RTC TIME VALUE REGISTER

bit 31-28 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10s place digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1s place digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10s place digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1s place digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10s place digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1s place digit; contains a value from 0 to 9
bit 7-0 Unimplemented: Read as '0'

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

'1' = Bit is set

-n = Value at POR

TABLE 23-1: ADC REGISTER MAP (CONTINUED)

ess		0		Bits											ŝ				
Virtual Address (BF80_#)	Register R	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9110	ADC1BUFA	ADC Result Word A (ADC1BUFA<31:0>)										0000							
9120	ADC1BUFB	31:16 15:0	ADC Result Word B (ADC1BUFB<31:0>)										0000						
9130	ADC1BUFC	31:16 15:0	ADC Result Word C (ADC1BUFC<31:0>)										0000						
9140	ADC1BUFD	31:16 15:0	ADC Result Word D (ADC1BUFD<31:0>)										0000						
9150	ADC1BUFE	31:16 15:0		ADC Result Word E (ADC1BUFE<31:0>)									0000						
9160	ADC1BUFF	31:16 15:0							ADC Res	ult Word F	(ADC1BUF	F<31:0>)							0000

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for details.

30.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

30.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- · Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

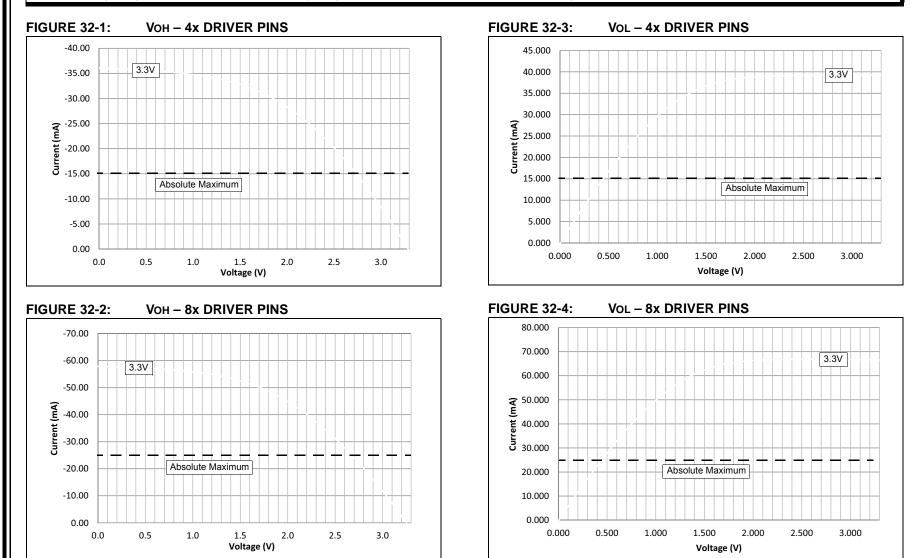
- · Local file history feature
- Built-in support for Bugzilla issue tracker

			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)							
DC CHA	RACTER	ISTICS	Operatin	ig tempe	erature	$\begin{array}{l} 0^{\circ}C \leq TA \leq +70^{\circ}C \text{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \text{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \text{ for V-temp} \end{array}$				
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions			
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - All I/O output pins not defined as 8x Sink Driver pins	_	_	0.4	V	IOL \leq 9 mA, VDD = 3.3V			
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RC15, RD2, RD10, RF6, RG6	_	_	0.4	v	$\text{IOL} \leq 15 \text{ mA}, \text{ VDD} = 3.3 \text{V}$			
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - All I/O output pins not defined as 8x Source Driver pins	2.4	_	_	v	IOH ≥ -10 mA, VDD = 3.3V			
		Output High Voltage I/O Pins: 8x Source Driver Pins - RC15, RD2, RD10, RF6, RG6	2.4	_	_	V	Ioh \ge -15 mA, Vdd = 3.3V			
		Output High Voltage	1.5 ⁽¹⁾	_			IOH \geq -14 mA, VDD = 3.3V			
		4x Source Driver Pins - All I/O	2.0 ⁽¹⁾	_	_	V	IOH \ge -12 mA, VDD = 3.3V			
DO20A	Vou1	output pins not defined as 8x Sink Driver pins	3.0 ⁽¹⁾	_			IOH \ge -7 mA, VDD = 3.3V			
DOZUA	VOHT	Output High Voltage	1.5 ⁽¹⁾	_	_		IOH \ge -22 mA, VDD = 3.3V			
		8x Source Driver Pins - RC15,	2.0 ⁽¹⁾	_	_	V	Ioh \geq -18 mA, Vdd = 3.3V			
		RD2, RD10, RF6, RG6	3.0 ⁽¹⁾	_	_		IOH \ge -10 mA, VDD = 3.3V			

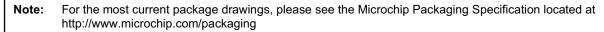
TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

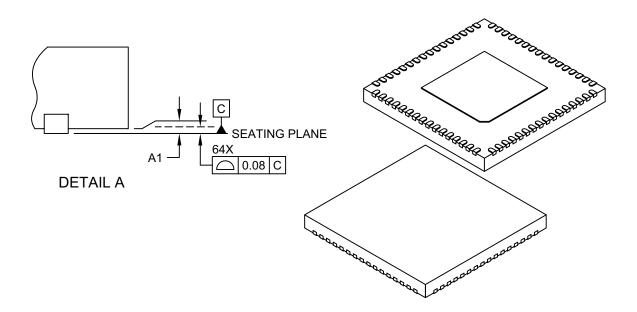
Note 1: Parameters are characterized, but not tested.

A	C CHARACTERI	STICS ⁽²)	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
ADC Input	ADC Speed	TAD Min.	Sampling Time Min.	Rs Max.	Vdd	ADC Channels Configuration			
AN0-AN14	1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX ADC			
	Up to 400 ksps	200 ns	200 ns	5.0 kΩ	2.5V to 3.6V	ANX CHX ANX OF VREF-			
AN15-AN27	400 ksps ⁽¹⁾	154 ns	1000 ns	500Ω	3.0V to 3.6V	ANX CHX ANX ADC			


TABLE 31-36: 10-BIT CONVERSION RATE PARAMETERS ſ

Note 1: External VREF- and VREF+ pins must be used for correct operation.


2: These parameters are characterized, but not tested in manufacturing.


32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

64-Terminal Plastic Quad Flat Pack, No Lead (RG) 9x9x0.9 mm Body [QFN] Saw Singulated

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Terminals	Ν		64				
Pitch	е		0.50 BSC				
Overall Height	Α	0.80	0.85	0.90			
Standoff	A1	0.00	0.02	0.05			
Standoff	A3	0.20 REF					
Overall Width	E		9.00 BSC				
Exposed Pad Width	E2	4.60	4.70	4.80			
Overall Length	D	9.00 BSC					
Exposed Pad Length	D2	4.60	4.70	4.80			
Terminal Width	b	0.15	0.20	0.25			
Terminal Length	L	0.30	0.40	0.50			
Terminal-to-Exposed-Pad	К	1.755 REF					

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-260A Sheet 2 of 2