

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	49
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx450f256ht-120-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1

TABLE 4: PIN NAMES FOR 100-PIN DEVICES

100-PIN TQFP (TOP VIEW)^(1,2,3)

PIC32MX330F064L PIC32MX350F128L PIC32MX350F256L PIC32MX370F512L

100

Pin # Full Pin Name Pin # Full Pin Name **RG15** Vss 1 36 2 VDD 37 VDD AN22/RPE5/PMD5/RE5 TCK/CTED2/RA1 3 38 AN23/PMD6/RE6 **RPF13/RF13** 4 39 AN27/PMD7/RE7 RPF12/RF12 5 40 RPC1/RC1 6 41 AN12/PMA11/RB12 RPC2/RC2 AN13/PMA10/RB13 7 42 8 RPC3/RC3 43 AN14/RPB14/CTED5/PMA1/RB14 RPC4/CTED7/RC4 44 AN15/RPB15/OCFB/CTED6/PMA0/RB15 9 10 AN16/C1IND/RPG6/SCK2/PMA5/RG6 45 Vss AN17/C1INC/RPG7/PMA4/RG7 11 46 Voo AN18/C2IND/RPG8/PMA3/RG8 47 RPD14/RD14 12 MCLR 48 RPD15/RD15 13 AN19/C2INC/RPG9/PMA2/RG9 49 RPF4/PMA9/RF4 14 RPF5/PMA8/RF5 15 Vss 50 VDD RPF3/RF3 16 51 TMS/CTED1/RA0 RPF2/RF2 17 52 RPE8/RE8 RPF8/RF8 18 53 RPE9/RE9 RPF7/RF7 54 19 AN5/C1INA/RPB5/RB5 RPF6/SCK1/INT0/RF6 20 55 AN4/C1INB/RB4 SDA1/RG3 21 56 22 PGED3/AN3/C2INA/RPB3/RB3 57 SCL1/RG2 PGEC3/AN2/C2INB/RPB2/CTED13/RB2 SCL2/RA2 58 23 24 PGEC1/AN1/RPB1/CTED12/RB1 59 SDA2/RA3 PGED1/AN0/RPB0/RB0 TDI/CTED9/RA4 25 60 PGEC2/AN6/RPB6/RB6 TDO/RA5 26 61 PGED2/AN7/RPB7/CTED3/RB7 62 VDD 27 VREF-/CVREF-/PMA7/RA9 63 OSC1/CLKI/RC12 28 VREF+/CVREF+/PMA6/RA10 OSC2/CLKO/RC15 29 64 30 AVDD 65 Vss 31 AVss 66 RPA14/RA14 AN8/RPB8/CTED10/RB8 32 67 **RPA15/RA15** AN9/RPB9/CTED4/RB9 RPD8/RTCC/RD8 33 68 CVREFOUT/AN10/RPB10/CTED11PMA13/RB10 RPD9/RD9 69 34 35 AN11/PMA12/RB11 70 RPD10/PMCS2/RD10

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "VO Ports" for more information.

3: RPF6 (pin 55) and RPF7 (pin 54) are only remappable for input functions.

		Pin Numb	er			
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description
RB0	16	25	B14	I/O	ST	
RB1	15	24	A15	I/O	ST	7
RB2	14	23	B13	I/O	ST	
RB3	13	22	A13	I/O	ST	
RB4	12	21	B11	I/O	ST	
RB5	11	20	A12	I/O	ST	
RB6	17	26	A20	I/O	ST	
RB7	18	27	B16	I/O	ST	PORTB is a bidirectional I/O port
RB8	21	32	A23	I/O	ST	
RB9	22	33	B19	I/O	ST	
RB10	23	34	A24	I/O	ST	
RB11	24	35	B20	I/O	ST	
RB12	27	41	B23	I/O	ST	
RB13	28	42	A28	I/O	ST	7
RB14	29	43	B24	I/O	ST	7
RB15	30	44	A29	I/O	ST	7
RC1	—	6	A5	I/O	ST	
RC2	—	7	B4	I/O	ST	7
RC3	—	8	A6	I/O	ST	7
RC4	—	9	B5	I/O	ST	
RC12	39	63	B34	I/O	ST	PORTC is a bidirectional I/O port
RC13	47	73	A47	I/O	ST	7
RC14	48	74	B40	I/O	ST	7
RC15	40	64	A42	I/O	ST	7
RD0	46	72	B39	I/O	ST	
RD1	49	76	A52	I/O	ST	7
RD2	50	77	B42	I/O	ST	
RD3	51	78	A53	I/O	ST	7
RD4	52	81	B44	I/O	ST	7
RD5	53	82	A55	I/O	ST	
RD6	54	83	B45	I/O	ST	
RD7	55	84	A56	I/O	ST	POPTD is a hidiractional UC sort
RD8	42	68	B37	I/O	ST	PORTD is a bidirectional I/O port
RD9	43	69	A45	I/O	ST	
RD10	44	70	B38	I/O	ST	1
RD11	45	71	A46	I/O	ST	1
RD12	—	79	B43	I/O	ST	1
RD13	—	80	A54	I/O	ST	1
RD14	—	47	B26	I/O	ST	1
RD15	—	48	A31	I/O	ST	1
-		itt Trigger inp	ible input or o out with CMOS			alog = Analog input P = Power = Output I = Input

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

		Pin Numb	er					
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description		
CTED4	22	33	B19	I	ST	CTMU External Edge Input 4		
CTED5	29	43	B24	I	ST	CTMU External Edge Input 5		
CTED6	30	44	A29	I	ST	CTMU External Edge Input 6		
CTED7	—	9	B5	I	ST	CTMU External Edge Input 7		
CTED8	—	92	A62	I	ST	CTMU External Edge Input 8		
CTED9	—	60	A40	Ι	ST	CTMU External Edge Input 9		
CTED10	21	32	A23	Ι	ST	CTMU External Edge Input 10		
CTED11	23	34	A24	Ι	ST	CTMU External Edge Input 11		
CTED12	15	24	A15	I	ST	CTMU External Edge Input 12		
CTED13	14	23	B13	I	ST	CTMU External Edge Input 13		
MCLR	7	13	B7	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.		
AVdd	19	30	A22	Р	Р	Positive supply for analog modules. This pin must be connected at all times.		
AVss	20	31	B18	Р	Р	Ground reference for analog modules		
Vdd	10, 26, 38, 57	2, 16, 37, 46, 62, 86	B1, A10, A14, B21, A30, A41, A48, A59, B53	Ρ	_	Positive supply for peripheral logic and I/O pins		
Vcap	56	85	B48	Р	—	Capacitor for Internal Voltage Regulator		
Vss	9, 25, 41	15, 36, 45, 65, 75	A3, B8, B12, A25, B25, A43, B41, A63	Р	_	Ground reference for logic and I/O pins		
VREF+	16	29	B17	I	Analog	Analog Voltage Reference (High) Input		
Vref-	15	28	A21	I	Analog	Analog Voltage Reference (Low) Input		

TARI E 1-1. PINOLIT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

Analog = Analog input O = Output

I = Input

Note 1: This pin is only available on devices without a USB module.

This pin is only available on devices with a USB module. 2:

3: This pin is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
	U-0	U-0	U-0	U-0	U-0	R/W-1	U-0	U-0	
31:24	_	—	—	—	—	BMX CHEDMA	—	—	
	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
23:16	_	—	—	BMX ERRIXI	BMX ERRICD	BMX ERRDMA	BMX ERRDS	BMX ERRIS	
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	—	—	—	_	_	—	—	—	
	U-0	R/W-1	U-0	U-0	U-0	R/W-0	R/W-0	R/W-1	
7:0	_	BMX WSDRM	—	—	—	E	3MXARB<2:0	>	

REGISTER 4-1: BMXCON: BUS MATRIX CONFIGURATION REGISTER

Legend:

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared

bit 31-27 Unimplemented: Read as '0'

- bit 26 BMXCHEDMA: BMX PFM Cacheability for DMA Accesses bit
 - 1 = Enable program Flash memory (data) cacheability for DMA accesses (requires cache to have data caching enabled)
 - 0 = Disable program Flash memory (data) cacheability for DMA accesses (hits are still read from the cache, but misses do not update the cache)

bit 25-21 Unimplemented: Read as '0'

bit 20 BMXERRIXI: Enable Bus Error from IXI bit

- 1 = Enable bus error exceptions for unmapped address accesses initiated from IXI shared bus
- 0 = Disable bus error exceptions for unmapped address accesses initiated from IXI shared bus

bit 19 **BMXERRICD:** Enable Bus Error from ICD Debug Unit bit

- 1 = Enable bus error exceptions for unmapped address accesses initiated from ICD
- 0 = Disable bus error exceptions for unmapped address accesses initiated from ICD

bit 18 BMXERRDMA: Bus Error from DMA bit

- 1 = Enable bus error exceptions for unmapped address accesses initiated from DMA
- 0 = Disable bus error exceptions for unmapped address accesses initiated from DMA
- bit 17 BMXERRDS: Bus Error from CPU Data Access bit (disabled in Debug mode)
 - 1 = Enable bus error exceptions for unmapped address accesses initiated from CPU data access
 - 0 = Disable bus error exceptions for unmapped address accesses initiated from CPU data access
- bit 16 BMXERRIS: Bus Error from CPU Instruction Access bit (disabled in Debug mode)
 - 1 = Enable bus error exceptions for unmapped address accesses initiated from CPU instruction access
 - 0 = Disable bus error exceptions for unmapped address accesses initiated from CPU instruction access

bit 15-7 Unimplemented: Read as '0'

- bit 6 BMXWSDRM: CPU Instruction or Data Access from Data RAM Wait State bit
 - $\ensuremath{\mathtt{1}}$ = Data RAM accesses from CPU have one wait state for address setup

0 = Data RAM accesses from CPU have zero wait states for address setup

bit 5-3 Unimplemented: Read as '0'

- bit 2-0 BMXARB<2:0>: Bus Matrix Arbitration Mode bits
 - 111 = Reserved (using these configuration modes will produce undefined behavior)
 - :

011 = Reserved (using these configuration modes will produce undefined behavior)

- 010 = Arbitration Mode 2
- 001 = Arbitration Mode 1 (default)
- 000 = Arbitration Mode 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
31:24				NVMKE	Y<31:24>					
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
23:16	NVMKEY<23:16>									
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
15:8	NVMKEY<15:8>									
7.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0		
7:0				NVMK	EY<7:0>			•		

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24				NVMADI	DR<31:24>						
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	NVMADDR<23:16>										
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8		NVMADDR<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				NVMAE)DR<7:0>						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **NVMADDR<31:0>:** Flash Address bits Bulk/Chip/PFM Erase: Address is ignored Page Erase: Address identifies the page to erase Row Program: Address identifies the row to program Word Program: Address identifies the word to program

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04-04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24				NVMDA	TA<31:24>					
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	NVMDATA<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	NVMDATA<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				NVMD	ATA<7:0>					

REGISTER 5-4: NVMDATA: FLASH PROGRAM DATA REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Programming Data bits

Note: The bits in this register are only reset by a Power-on Reset (POR).

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24				NVMSRCA	DDR<31:24>	>				
00.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	NVMSRCADDR<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8				NVMSRC/	ADDR<15:8>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				NVMSRC	ADDR<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

INE OIDTE	CEGISTER 10-6. DERRECON. DINA CHANNEL & EVENT CONTROL REGISTER											
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31.24		—	_	—	—		—	—				
22:16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
23:16	CHAIRQ<7:0> ⁽¹⁾											
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
15:8				CHSIRQ•	<7:0>(1)							
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN							

REGISTER 10-8 DCHxECON: DMA CHANNEL 'x' EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 31-24	Unimplemented: Read as '0'
bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag
	00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer
h:4 7	
bit 7	CFORCE: DMA Forced Transfer bit
	1 = A DMA transfer is forced to begin when this bit is written to a '1'
	0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	1 = A DMA transfer is aborted when this bit is written to a '1'
	0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	1 = Abort transfer and clear CHEN on pattern match
	0 = Pattern match is disabled
bit 4	SIRQEN: Channel Start IRQ Enable bit
	1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs

- Start channel cell transfer if an interrupt matching CHSIRQ occurs 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
- bit 3 AIRQEN: Channel Abort IRQ Enable bit
 - 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
 - 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 7-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

	-							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		—				
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	-	-	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	_	—	—	-	—	—
7:0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
7:0	UTEYE	UOEMON		USBSIDL	_		_	UASUSPND

REGISTER 11-20: U1CNFG1: USB CONFIGURATION 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 UTEYE: USB Eye-Pattern Test Enable bit

- 1 = Eye-Pattern Test is enabled
- 0 = Eye-Pattern Test is disabled

bit 6 **UOEMON:** USB OE Monitor Enable bit

1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving
 0 = OE signal is inactive

bit 5 Unimplemented: Read as '0'

- bit 4 USBSIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode

bit 3-1 Unimplemented: Read as '0'

bit 0 UASUSPND: Automatic Suspend Enable bit

- 1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (U1PWRC<1>) in Register 11-5.
- 0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock

	PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY														ES ONL	.Y			
ess										Bits	6								
Virtual Address (BF88_#)		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6300	ANSELD	31:16		—	—	—	—		—	—	—		—	—	—		—		0000
		15:0	_	—	—	_	—	—	—	—	—	_	—	—	ANSELD3	ANSELD2	ANSELD1	_	000E
6310	TRISD	31:16	_	—	—	—	—	—	—	—	—		—	_	_	—	—	_	0000
	_	15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	xxxx
5320	PORTD	31:16	_	—	_	—	—	—	—	—	—		—	—		—	—	_	0000
	_	15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
6330	LATD	31:16		—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
		15:0	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	XXXX
6340	ODCD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
		15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	xxxx
6350	CNPUD	31:16	-	—	—	—	—	-	—	—	—	—	—	—	—	—	—	-	0000
		15:0	CNPUD15	CNPUD14	CNPUD13	CNPUD12	CNPUD11	CNPUD10		CNPUD8	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	xxxx
6360	CNPDD	31:16	-	—	—	—	—	-	—	—	—	—	_	—	—	—	—	_	0000
			CNPDD15	-	CNPDD13	CNPDD12	CNPDD11	CNPDD10		CNPDD8	-	CNPDD6		CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	XXXX
6370	CNCOND	31:16	_		-											_			0000
		15:0	ON		SIDL											_			0000
6380	CNEND	31:16	-	-	-	-			-	-	-		-	-	-	-			0000
		15:0	CNIED15	CNIED14	CNIED13	CNIED12	CNIED11	CNIED10	CNIED9	CNIED8	CNIED7	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	XXXX
6200		31:16	-	-	—	—	—	-	-	-	-	-	—	-	—	—	—	-	0000
6390	CNSTATD	15:0	CNS TATD15	CN STATD14	CN STATD13	CN STATD12	CN STATD11	CN STATD10	CN STATD9	CN STATD8	CN STATD7	CN STATD6	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	xxxx

TABLE 12-7: PORTD REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

	PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, PIC32MX470F512L DEVICES ONLY																		
sse										E	Bits								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6400	ANSELE	31:16	_	_	_	—	_	_	—	—	—	—	—	—	-	—	-	_	0000
		15:0	_	—	—	—	—	—	—	—	ANSELE7	ANSELE6	ANSELE5	ANSELE4	_	ANSELE2	_	—	00F4
6410	TRISE	31:16	—	—	—	—	—	—	—		—	—	—	—	—	—	—	—	0000
		15:0	—	—	—	—	_	_	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	XXXX
6420	PORTE	31:16	—	—	—	—	_	_	_	_	_	_	_	_	_	_	_	_	0000
		15:0	—	—	_	_	_	_	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	XXXX
6440	LATE	31:16	—	—	_	_	_	_	—	-		—	—	—	—	—	—	—	0000
		15:0	—			_	_		LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	XXXX
6440	ODCE	31:16				—	_		-	-	-	-	-	-	-	-	-	-	0000
		15:0				—	_		ODCE9	ODCE8	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	XXXX
6450	CNPUE	31:16		—	—	_	_												0000
		15:0		_	—	_	_		CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPDE3	CNPUE2	CNPUE1	CNPUE0	
6460	CNPDE	31:16 15:0				—	_	—	— CNPDE9		— CNPDE7	— CNPDE6	— CNPDE5	— CNPDE4	— CNPDE3	— CNPDE2			0000
		31:16		—	—	—	_	_			-			-		-			
6470	CNCONE	15:0	ON	_			_	_	_						_	_			0000
		31:16			-				—										0000
6480	CNENE	15:0					_			CNIEE8	CNIEE7	CNIEE6	CNIEE5	CNIEE4	CNIEE3	CNIEE2	CNIEE1	CNIEE0	xxxx
		31:16	_		_														0000
6490	CNSTATE	15:0	_	_	_	_	-	_	CN STATE9	CN STATE8	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	xxxx

TABLE 12-9: PORTE REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGISTER 19-2: I2CxSTAT: I²C STATUS REGISTER (CONTINUED)

 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. 5: Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. bit 2 R_W: Read/Write Information bit (when operating as I²C slave) 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 	bit 4	P: Stop bit
 Hardware set or clear when Start, Repeated Start or Stop detected. bit 3 S: Start bit = Indicates that a Start (or Repeated Start) bit has been detected last = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. bit 2 R_W: Read/Write Information bit (when operating as I²C slave) = Read – indicates data transfer is output from slave Write – indicates data transfer is input to slave Write – indicates data transfer is of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit = Receive not complete, I2CxRCV is full = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 		
bit 3 S: Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. bit 2 R_W: Read/Write Information bit (when operating as I ² C slave) 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I ² C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit		•
 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. bit 2 R_W: Read/Write Information bit (when operating as I²C slave) 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 		Hardware set or clear when Start, Repeated Start or Stop detected.
 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected. bit 2 R_W: Read/Write Information bit (when operating as I²C slave) 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit = Receive complete, I2CxRCV is full = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 	bit 3	S: Start bit
bit 2 R_W: Read/Write Information bit (when operating as I²C slave)1 = Read – indicates data transfer is output from slave0 = Write – indicates data transfer is input to slaveHardware set or clear after reception of I²C device address byte.bit 1 RBF: Receive Buffer Full Status bit1 = Receive complete, I2CxRCV is full0 = Receive not complete, I2CxRCV is emptyHardware set when I2CxRCV is written with received byte. Hardware clear when softwarebit 0 TBF: Transmit Buffer Full Status bit		
 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 		Hardware set or clear when Start, Repeated Start or Stop detected.
 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 	bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
 Hardware set or clear after reception of I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 		1 = Read – indicates data transfer is output from slave
bit 1 RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit		
 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 		Hardware set or clear after reception of I ² C device address byte.
 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 	bit 1	RBF: Receive Buffer Full Status bit
Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit		1 = Receive complete, I2CxRCV is full
reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit		0 = Receive not complete, I2CxRCV is empty
1 = Transmit in progress, I2CxTRN is full	bit 0	TBF: Transmit Buffer Full Status bit
		1 = Transmit in progress, I2CxTRN is full
0 = Transmit complete, I2CxTRN is empty		0 = Transmit complete, I2CxTRN is empty

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
31:24	_	—	_	_	_	_	_	ADM_EN		
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	ADDR<7:0>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1		
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT		
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0		
7:0	URXISE	:L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA		

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled
- bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits

- 11 = Reserved, do not use
- 10 = Interrupt is generated and asserted while the transmit buffer is empty
- 01 = Interrupt is generated and asserted when all characters have been transmitted
- 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space

bit 13 UTXINV: Transmit Polarity Inversion bit

If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):

- 1 = UxTX Idle state is '0'
- 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'

bit 12 URXEN: Receiver Enable bit

- 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
- 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by the port.

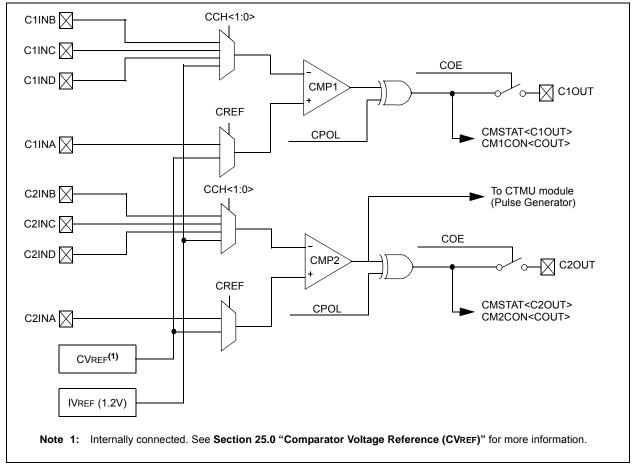
bit 11 UTXBRK: Transmit Break bit

- 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
- 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is controlled by the port.

bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)

- 1 = Transmit buffer is full
- 0 = Transmit buffer is not full, at least one more character can be written

24.0 COMPARATOR


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer Section 19. to "Comparator" (DS60001110), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Analog Comparator module contains two comparators that can be configured in a variety of ways.

The following are key features of this module:

- · Selectable inputs available include:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference (IVREF)
 - Comparator voltage reference (CVREF)
- · Outputs can be Inverted
- Selectable interrupt generation

A block diagram of the comparator module is provided in Figure 24-1.

FIGURE 24-1: COMPARATOR BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	r-1	r-1	r-1	r-1	r-1	r-1	R/P	R/P
31:24		_	_	-	—	_	FWDTWI	NSZ<1:0>
00.40	R/P	R/P	r-1	R/P	R/P	R/P	R/P	R/P
23:16	FWDTEN	WINDIS				WDTPS<4:0>		
45.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P
15:8	FCKSM	1<1:0>	FPBDI	V<1:0>	—	OSCIOFNC	POSCM	OD<1:0>
7.0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P
7:0	IESO	_	FSOSCEN	_	—	F	NOSC<2:0>	

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

Legend:	r = Reserved bit	P = Programmable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-26 Reserved: Write '1'

bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

bit 23 FWDTEN: Watchdog Timer Enable bit

- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software

bit 22 WINDIS: Watchdog Timer Window Enable bit

- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode

bit 21 Reserved: Write '1'

bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

10100 = 1:1048576
10011 = 1:524288
10010 = 1:262144
10001 = 1:131072
10000 = 1:65536
01111 = 1:32768
01110 = 1:16384
01101 = 1:8192
01100 = 1:4096
01011 = 1:2048
01010 = 1:1024
01001 = 1:512
01000 = 1:256
00111 = 1:128
00110 = 1:64
00101 = 1:32
00100 = 1:16
00011 = 1:8
00010 = 1 :4
00001 = 1:2
00000 = 1:1
All other combinations not shown result in operation = 10100
···· · ··· · ··· · ··· · ··· · ···

Note 1: Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

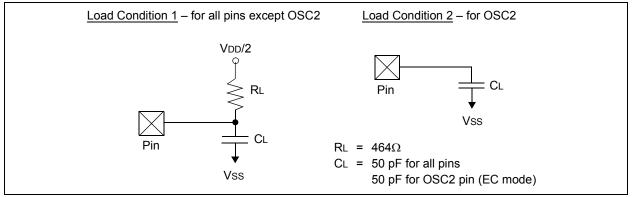
NOTES:

TABLE 31-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		Standard Operating Co (unless otherwise state Operating temperature					
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾	Typical	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low	2.0	—	2.3	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 31-11: ELECTRICAL CHARACTERISTICS: HVD


DC CHARACTERISTICS		Standard Operating Co (unless otherwise state Operating temperature					
Param. No. ⁽¹⁾	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
HV10	Vhvd	High Voltage Detect on VCAP pin	—	2.5		V	—

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

31.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX330/350/370/430/450/470 AC characteristics and timing parameters.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

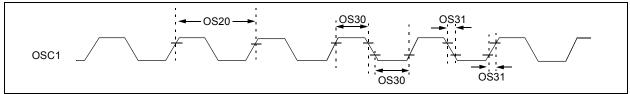


TABLE 31-17: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

AC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \\ \end{array} $					
Param. No.	Symbol	Characteristics	Min.	n. Typical ⁽¹⁾ Max. Units			Conditions	
DO50	Cosco	OSC2 pin	_	_	15		In XT and HS modes when an external crystal is used to drive OSC1	
DO56	Сю	All I/O pins and OSC2	_		50	pF	EC mode	
DO58	Св	SCLx, SDAx		_	400	pF	In I ² C mode	

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 31-2: EXTERNAL CLOCK TIMING

TABLE 31-32: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)

AC CHARACTERISTICS			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$				70°C for Commercial ≤ +85°C for Industrial
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175			ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 4)	5		25	ns	_
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	Тscк + 20	_	_	ns	_
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge			25	ns	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
USB313	VUSB3V3	USB Voltage	3.0		3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation
USB315	VILUSB	Input Low Voltage for USB Buffer	—	_	0.8	V	—
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0	—	_	V	—
USB318	VDIFS	Differential Input Sensitivity	—		0.2	V	The difference between D+ and D- must exceed this value while VCM is met
USB319	VCM	Differential Common Mode Range	0.8	_	2.5	V	—
USB320	Zout	Driver Output Impedance	28.0	—	44.0	Ω	—
USB321	Vol	Voltage Output Low	0.0	_	0.3	V	1.425 kΩ load connected to VUSB3V3
USB322	Vон	Voltage Output High	2.8	—	3.6	V	14.25 k Ω load connected to ground

TABLE 31-41: OTG ELECTRICAL SPECIFICATIONS

Note 1: These parameters are characterized, but not tested in manufacturing.

Revision D (March 2015)

This revision includes the following updates, as listed in Table A-3.

TABLE A-3: MAJOR SECTION UPDATES

Section	Update Description
"32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/ Touch (HMI), USB, and Advanced Analog"	100 MHz and 120 MHz operation information was added. Pins 59 through 63 of the 64-pin QFN and TQFP pin diagrams were updated.
2.0 "Guidelines for Getting Started with 32-bit MCUs"	Added 2.8.1 "Crystal Oscillator Design Consideration".
12.0 "I/O Ports"	The Block Diagram of a Typical Multiplexed Port Structure was updated (see Figure 12-1).
21.0 "Parallel Master Port (PMP)"	The PMADDR: Parallel Port Address Register was updated (see Register 21-3).
31.0 "Electrical Characteristics"	 Specifications for 120 MHz operation were added to the following tables: Table 31-1: "Operating MIPS vs. Voltage" Table 31-5: "DC Characteristics: Operating Current (IDD)" Table 31-6: "DC Characteristics: Idle Current (IDLE)" Table 31-7: "DC Characteristics: Idle Current (IPD)" Table 31-13: "DC Characteristics: Program Flash Memory Wait State" Table 31-18: "External Clock Timing Requirements" The unit of measure for IIDLE Current parameters DC37a, DC37b, and DC37c were updated (see Table 31-6). Parameter D312 (TSET) was removed from the Comparator Specifications (see Table 31-14). Comparator Voltage Reference Specifications were added (see Table 31-15). Parameter USB321 (VOL) in the OTG Electrical Specifications was updated (see Table 31-41).
32.0 "Packaging Information"	The 64-lead QFN package marking information was updated. The 124-lead VTLA package land pattern information was added.
"Product Identification System"	The Speed category was removed. The Example was updated. The MR package was updated. The RG package was added.