

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	49
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx450f256ht-120-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX330/350/370/430/450/470

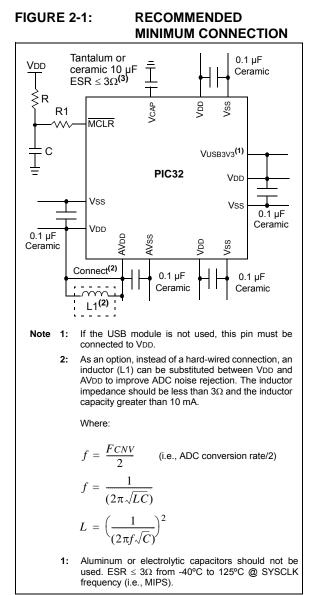

		Pin Numb	er							
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description				
RE0	60	93	B52	I/O	ST					
RE1	61	94	A64	I/O	ST					
RE2	62	98	A66	I/O	ST					
RE3	63	99	B56	I/O	ST					
RE4	64	100	A67	I/O	ST	DODIE is a hidiractional I/O part				
RE5	1	3	B2	I/O	ST	PORTE is a bidirectional I/O port				
RE6	2	4	A4	I/O	ST					
RE7	3	5	B3	I/O	ST					
RE8	—	18	A11	I/O	ST]				
RE9	—	19	B10	I/O	ST	1				
RF0	58	87	B49	I/O	ST					
RF1	59	88	A60	I/O	ST	1				
RF2	34(1)	52	A36	I/O	ST	1				
RF3	33	51	A35	I/O	ST					
RF4	31	49	B27	I/O	ST					
RF5	32	50	A32	I/O	ST	PORTF is a bidirectional I/O port				
RF6	35(1)	55(1)	B30 ⁽¹⁾	I/O	ST					
RF7	—	54(1)	A37 ⁽¹⁾	I/O	ST					
RF8	—	53	B29	I/O	ST					
RF12	—	40	A27	I/O	ST					
RF13	—	39	B22	I/O	ST					
RG0		90	A61	I/O	ST					
RG1		89	B50	I/O	ST					
RG2	37(1)	57(1)	B31	I/O	ST					
RG3	36 ⁽¹⁾	56 ⁽¹⁾	A38	I/O	ST					
RG6	4	10	A7	I/O	ST					
RG7	5	11	B6	I/O	ST	POPTC is a hidiractional 1/0 part				
RG8	6	12	A8	I/O	ST	PORTG is a bidirectional I/O port				
RG9	8	14	A9	I/O	ST					
RG12	—	96	A65	I/O	ST]				
RG13	—	97	B55	I/O	ST]				
RG14	—	95	B54	I/O	ST]				
RG15	_	1	A2	I/O	ST					
T1CK	48	74	B40	I	ST	Timer1 External Clock Input				
T2CK	PPS	PPS	PPS	I	ST	Timer2 External Clock Input				
ТЗСК	PPS	PPS	PPS	I	ST	Timer3 External Clock Input				
T4CK	PPS	PPS	PPS	I	ST	Timer4 External Clock Input				
T5CK	PPS	PPS	PPS	1	ST	Timer5 External Clock Input				

TABLE 1-1-PINOLIT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module. 2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

2.2.1 BULK CAPACITORS

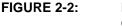
The use of a bulk capacitor is recommended to improve power supply stability. Typical values range from 4.7 μ F to 47 μ F. This capacitor should be located as close to the device as possible.

2.3 Capacitor on Internal Voltage Regulator (VCAP)

2.3.1 INTERNAL REGULATOR MODE

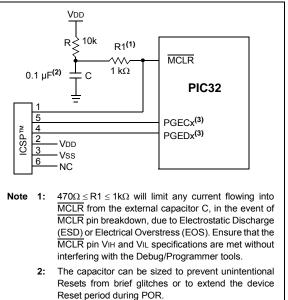
A low-ESR (3 ohm) capacitor is required on the VCAP pin, which is used to stabilize the internal voltage regulator output. The VCAP pin must not be connected to VDD, and must have a CEFC capacitor, with at least a 6V rating, connected to ground. The type can be ceramic or tantalum. Refer to **Section 31.0 "Electrical Characteristics"** for additional information on CEFC specifications.

2.4 Master Clear (MCLR) Pin

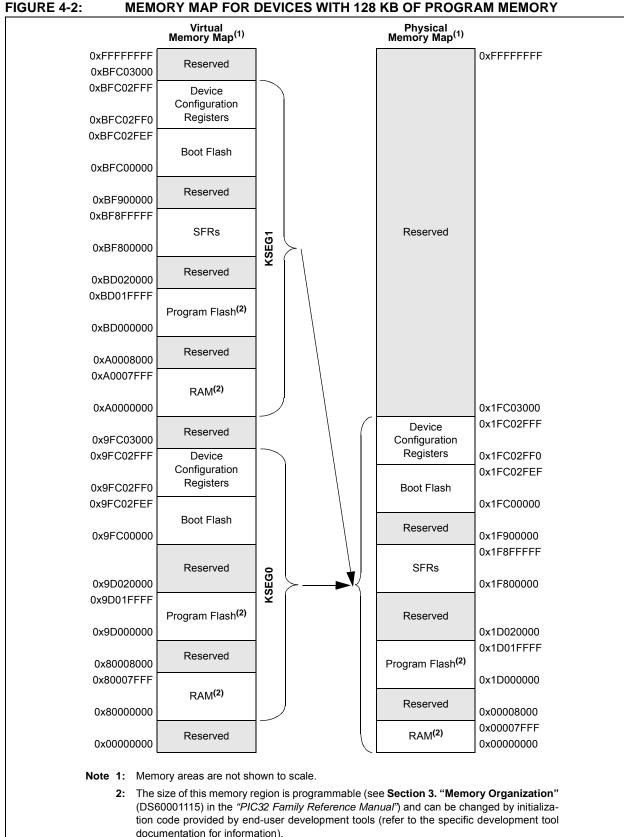

The $\overline{\text{MCLR}}$ pin provides two specific device functions:

- Device Reset
- · Device programming and debugging

Pulling The $\overline{\text{MCLR}}$ pin low generates a device Reset. Figure 2-2 illustrates a typical $\overline{\text{MCLR}}$ circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.


For example, as illustrated in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.


3:

EXAMPLE OF MCLR PIN CONNECTIONS

No pull-ups or bypass capacitors are allowed on

active debug/program PGECx/PGEDx pins.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 2 UFRCEN: USB FRC Clock Enable bit⁽¹⁾
 - 1 = Enable FRC as the clock source for the USB clock source
 - 0 = Use the Primary Oscillator or USB PLL as the USB clock source
- bit 1 SOSCEN: Secondary Oscillator (Sosc) Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 0 **OSWEN:** Oscillator Switch Enable bit
 - 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: This bit is available on PIC32MX4XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	ROTRIM<8:1>										
00.40	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	ROTRIM<0>	_	—	_	—	—	-	—			
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	—	_	—	_	—	—	_	—			
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
7:0	_	_	_	_	_	_	_	_			

REGISTER 8-4: REFOTRIM: REFERENCE OSCILLATOR TRIM REGISTER

Legend:	y = Value set from Configuration bits on POR					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits

Note: While the ON bit (REFOCON<15>) is '1', writes to this register do not take effect until the DIVSWEN bit is also set to '1'.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31:24		—	—	—		—	—	—
00.16	U-0	U-0						
23:16			_	_	_	_	_	—
15:8	U-0	U-0						
10.0	_	_	_	_		_	_	—
	R/W-0	R/W-0						
7:0	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE ⁽¹⁾ EOFEE ⁽²⁾	PIDEE

REGISTER 11-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

bit 7	BTSEE: Bit Stuff Error Interrupt Enable bit

- 1 = BTSEF interrupt is enabled
- 0 = BTSEF interrupt is disabled
- bit 6 BMXEE: Bus Matrix Error Interrupt Enable bit
 - 1 = BMXEF interrupt is enabled
 - 0 = BMXEF interrupt is disabled
- bit 5 **DMAEE:** DMA Error Interrupt Enable bit
 - 1 = DMAEF interrupt is enabled
 - 0 = DMAEF interrupt is disabled
- bit 4 BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
 - 1 = BTOEF interrupt is enabled
 - 0 = BTOEF interrupt is disabled
- bit 3 **DFN8EE:** Data Field Size Error Interrupt Enable bit
 - 1 = DFN8EF interrupt is enabled
 - 0 = DFN8EF interrupt is disabled
- bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
 - 1 = CRC16EF interrupt is enabled
 - 0 = CRC16EF interrupt is disabled
- bit 1 CRC5EE: CRC5 Host Error Interrupt Enable bit⁽¹⁾
 - 1 = CRC5EF interrupt is enabled
 - 0 = CRC5EF interrupt is disabled
 - EOFEE: EOF Error Interrupt Enable bit⁽²⁾
 - 1 = EOF interrupt is enabled
 - 0 = EOF interrupt is disabled
- bit 0 PIDEE: PID Check Failure Interrupt Enable bit
 - 1 = PIDEF interrupt is enabled
 - 0 = PIDEF interrupt is disabled

Note 1: Device mode.

2: Host mode.

Note: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—		—						
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	_	—	-	-	—	—		
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15.0	—	—	_	—	—	-	—	—		
7:0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0		
7:0	UTEYE	UOEMON		USBSIDL	_		_	UASUSPND		

REGISTER 11-20: U1CNFG1: USB CONFIGURATION 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-8 Unimplemented: Read as '0'

bit 7 UTEYE: USB Eye-Pattern Test Enable bit

- 1 = Eye-Pattern Test is enabled
- 0 = Eye-Pattern Test is disabled

bit 6 **UOEMON:** USB OE Monitor Enable bit

1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving
0 = OE signal is inactive

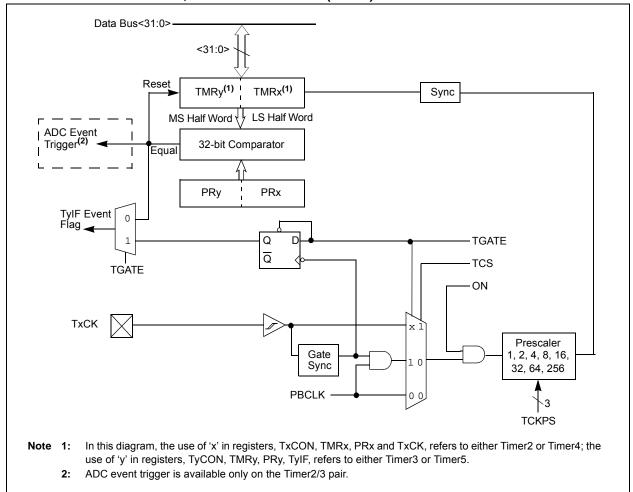
bit 5 Unimplemented: Read as '0'

- bit 4 USBSIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode

bit 3-1 Unimplemented: Read as '0'

bit 0 UASUSPND: Automatic Suspend Enable bit

- 1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (U1PWRC<1>) in Register 11-5.
- 0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock


12.4 Control Registers

	PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY																		
ess (Ð								Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	ANSELA	31:16	—	—	_	—	_	—	—	_	—	—	—	_	—	—	—	_	0000
0000	ANOLLA	15:0	—	—	_	—	_	ANSELA10	ANSELA9	_	_		_	_			—	_	0060
6010	TRISA	31:16	—	—	-	—	_	—	—		_	—	_		—	—	_		0000
		15:0	TRISA15	TRISA14	_	—	_	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	xxxx
6020	PORTA	31:16	—	—	_	—		—	_		_		_	—			—	—	0000
	-	15:0	RA15	RA14	_	—	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
6030	LATA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	LATA15	LATA14	—	—	—	LATA10	LATA9	—	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
6040	ODCA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	ODCA15	ODCA14	—	—	—	ODCA10	ODCA9	—	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	xxxx
6050	CNPUA	31:16			_	—	_	_			—		_	_				_	0000
			CNPUA15	CNPUA14	_	—	_	CNPUA10	CNPUA9	_	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	_
6060	CNPDA	31:16	—	—	_	—	_	—	—	_	—	—	—	—	—	—	—	—	0000
			CNPDA15	CNPDA14	—		_	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	
6070	CNCONA	31:16				—	_	_			_								0000
		15:0	ON		SIDL	—	_	_			_								0000
6080	CNENA	31:16	-	-	_	—	_	-	-	_	-	-	-	—	—	—	—	—	0000
		15:0	CNIEA15		_	—	_	CNIEA10	CNIEA9	—	CNIEA7	CNIEA6	CNIEA5	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	XXXX
6000	CNSTATA	31:16	-	-	_	—	_	-	-	—	-	-	-	—	-	-	-	—	0000
0090	CINGTATA	15:0	CN STATA15	CN STATA14	_	—	_	CN STATA10	CN STATA9	—	CN STATA7	CN STATA6	CN STATA5	CN STATA4	CN STATA3	CN STATA2	CN STATA1	CN STATA0	xxxx

TABLE 12-3:PORTA REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,
PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

FIGURE 14-2: TIMER2/3, 4/5 BLOCK DIAGRAM (32-BIT)⁽¹⁾

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER (CONTINUED)

- bit 3 T32: 32-Bit Timer Mode Select bit⁽²⁾
 - 1 = Odd numbered and even numbered timers form a 32-bit timer
 - 0 = Odd numbered and even numbered timers form a separate 16-bit timer
- bit 2 Unimplemented: Read as '0'
- bit 1 **TCS:** Timer Clock Source Select bit⁽³⁾
 - 1 = External clock from TxCK pin
 - 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit is available only on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
31:24	_	—	_	_	_	_	_	ADM_EN			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	ADDR<7:0>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1			
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT			
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0			
7:0	URXISE	:L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA			

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

Logonal						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled
- bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits

- 11 = Reserved, do not use
- 10 = Interrupt is generated and asserted while the transmit buffer is empty
- 01 = Interrupt is generated and asserted when all characters have been transmitted
- 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space

bit 13 UTXINV: Transmit Polarity Inversion bit

If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):

- 1 = UxTX Idle state is '0'
- 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'

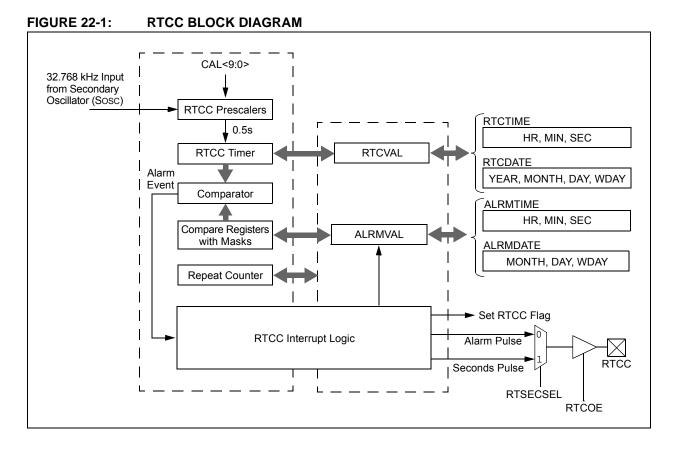
bit 12 URXEN: Receiver Enable bit

- 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
- 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by the port.

bit 11 UTXBRK: Transmit Break bit

- 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
- 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is controlled by the port.

bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)


- 1 = Transmit buffer is full
- 0 = Transmit buffer is not full, at least one more character can be written

22.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32 RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time. The following are key features of this module:

- · Time: hours, minutes and seconds
- 24-hour format (military time)
- · Visibility of one-half second period
- Provides calendar: Weekday, date, month and year
- Alarm intervals are configurable for half of a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month and one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat: Chime
- Year range: 2000 to 2099
- · Leap year correction
- · BCD format for smaller firmware overhead
- Optimized for long-term battery operation
- · Fractional second synchronization
- User calibration of the clock crystal frequency with auto-adjust
- Calibration range: ±0.66 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

© 2012-2016 Microchip Technology Inc.

REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

- bit 11-5 **Reserved:** Write '1'
- bit 4-3 ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits
 - 11 = PGEC1/PGED1 pair is used
 - 10 = PGEC2/PGED2 pair is used
 - 01 = PGEC3/PGED3 pair is used
 - 00 = Reserved
- bit 2 JTAGEN: JTAG Enable bit⁽¹⁾ 1 = JTAG is enabled 0 = JTAG is disabled
- bit 1-0 **DEBUG<1:0>:** Background Debugger Enable bits (forced to '11' if code-protect is enabled)
 - 1x = Debugger is disabled0x = Debugger is enabled
- Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

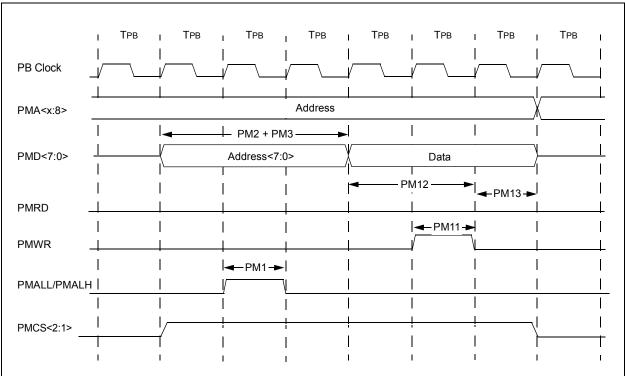
- bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits
 - 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
 - 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
 - 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
- bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
 - 11 = PBCLK is SYSCLK divided by 8
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output is disabled
 - 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)
- bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Primary Oscillator is disabled
 - 10 = HS Oscillator mode is selected
 - 01 = XT Oscillator mode is selected
 - 00 = External Clock mode is selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6 **Reserved:** Write '1'
- bit 5 **FSOSCEN:** Secondary Oscillator Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Parameter No.	Typical ⁽²⁾	Maximum	Units	Conditions				
Idle Current (I	IDLE): Core Of	f, Clock on E	Base Curre	nt (Note 1)				
DC30a	1	2.2	mA	4 MHz				
DC31a	3	5	mA	10 MHz (Note 3)				
DC32a	5	7	mA	20 MHz (Note 3)				
DC33a	8	13	mA	40 MHz (Note 3)				
DC34a	11	18	mA	60 MHz (Note 3)				
DC34b	15	24	mA	80 MHz				
DC34c	19	29	mA	100 MHz, -40°C \leq TA \leq +85°C				
DC34d	25	34	mA	120 MHz, $0^{\circ}C \le TA \le +70^{\circ}C$				
DC37a	100	—	μA	-40°C				
DC37b	250	_	μA	+25°C	3.3V	LPRC (31 kHz) (Note 3)		
DC37c	380	_	μA	+85°C		(11010-5)		

TABLE 31-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: The test conditions for IIDLE measurements are as follows:

 Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)


- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Idle mode (CPU core is halted), program Flash memory Wait states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- 2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.

					-DOWN CURRENT (IPD) nditions: 2.3V to 3.6V (unless otherwise stated)					
DC CHARACTERISTICS		Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial								
		$-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial								
			-40°C \leq TA \leq +105°C for V-temp							
Param. No.	Typ. ⁽²⁾	Max.	Units	Units Conditions						
PIC32MX330) Device	s Only								
Power-Down	n Curren	it (IPD) (N	lote 1)							
DC40k	20	55	μΑ	-40°C						
DC40I	38	55	μΑ	+25°C	Base Power-Down Current					
DC40n	128	167	μΑ	+85°C	Base Power-Down Current					
DC40m	261	419	μA	+105°C						
PIC32MX430) Device	s Only								
Power-Down	n Curren	it (IPD) (N	lote 1)							
DC40k	12	28	μΑ	-40°C						
DC40I	21	28	μΑ	+25°C	Base Power-Down Current					
DC40n	128	167	μΑ	+85°C						
DC40m	261	419	μA	+105°C						
PIC32MX350)F128 De	evices O	nly							
Power-Down	n Curren	t (IPD) (N	lote 1)							
DC40k	31	70	μΑ	-40°C						
DC40I	45	70	μΑ	+25°C	Base Power-Down Current					
DC40n	175	280	μΑ	+85°C						
DC40m	415	600	μA	+105°C						
PIC32MX450)F128 De	evices O	nly							
Power-Down	n Curren	t (IPD) (N	lote 1)							
DC40k	19	35	μA	-40°C						
DC40I	28	35	μA	+25°C	Base Power-Down Current					
DC40n	175	280	μΑ	+85°C						
DC40m	415	600	μA	+105°C						
Note 1: Th	ne test co	onditions	for IPD m	easurements are	as follows:					

TABLE 31-7. DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, program Flash memory Wait states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- · WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- · RTCC and JTAG are disabled
- Voltage regulator is off during Sleep mode (VREGS bit in the RCON register = 0)
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- 5: 120 MHz commercial devices only (0°C to +70°C).

PIC32MX330/350/370/430/450/470

FIGURE 31-22: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 31-40: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
PM11	Twr	PMWR Pulse Width	_	1 Трв	_	_	_
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	2 Трв	—	—	_
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 Трв	_	—	—

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 31-42: CTMU CURRENT SOURCE SPECIFICATIONS

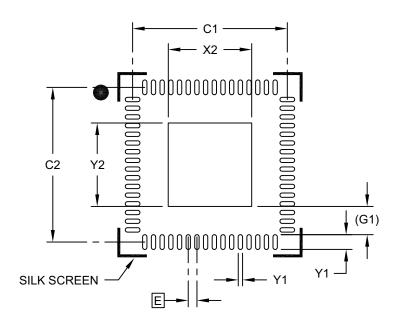
DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param No.	Symbol Characteristic		Min.	Тур.	Max.	Units	Conditions		
CTMU CUR	CTMU CURRENT SOURCE								
CTMUI1	Ιουτ1	Base Range ⁽¹⁾		0.55	_	μA	CTMUICON<9:8> = 01		
CTMUI2	IOUT2	10x Range ⁽¹⁾	_	5.5	_	μA	CTMUICON<9:8> = 10		
CTMUI3	Ιουτ3	100x Range ⁽¹⁾	_	55	_	μA	CTMUICON<9:8> = 11		
CTMUI4	IOUT4	1000x Range ⁽¹⁾	_	550	_	μA	CTMUICON<9:8> = 00		
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)	_	0.598	_	V	TA = +25°C, CTMUICON<9:8> = 01		
			_	0.658	_	V	TA = +25°C, CTMUICON<9:8> = 10		
			—	0.721	_	V	TA = +25°C, CTMUICON<9:8> = 11		
CTMUFV2	VFVR	Temperature Diode Rate of		-1.92	_	mV/ºC	CTMUICON<9:8> = 01		
		Change ^(1,2)	_	-1.74	_	mV/ºC	CTMUICON<9:8> = 10		
			_	-1.56	_	mV/ºC	CTMUICON<9:8> = 11		

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing. Measurements taken with the following conditions:

• VREF+ = AVDD = 3.3V

ADC module configured for conversion speed of 500 ksps


• All PMD bits are cleared (PMDx = 0)

• Executing a while(1) statement

• Device operating from the FRC with no PLL

64-Lead Very Thin Plastic Quad Flat, No Lead Package (RG) - 9x9x1.0 mm Body [QFN] 4.7x4.7 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch	E		0.50 BSC			
Optional Center Pad Width	X2			4.80		
Optional Center Pad Length	Y2			4.80		
Contact Pad Spacing	C1		8.90			
Contact Pad Spacing	C2		8.90			
Contact Pad Width (X64)	X1			0.25		
Contact Pad Length (X64)	Y1			0.85		
Contact Pad to Center Pad (X64)	G1		1.625 REF			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2260A

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support