

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

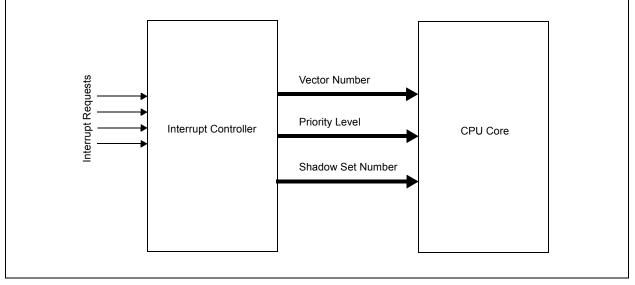
E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	49
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx450f256ht-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.0 INTERRUPT CONTROLLER


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX330/350/370/430/450/470 devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU.

The PIC32MX330/350/370/430/450/470 interrupt module includes the following features:

- Up to 76 interrupt sources
- · Up to 46 interrupt vectors
- · Single and multi-vector mode operations
- Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- Dedicated shadow set configurable for any priority level (see the FSRSSEL<2:0> bits (DEVCFG3<18:16>) in 28.0 "Special Features" for more information)
- Software can generate any interrupt
- User-configurable interrupt vector table location
- User-configurable interrupt vector spacing

FIGURE 7-1: INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

TABLE 7-2: IN	ITERRUPT REGISTER	MAP (CONTINUED)
---------------	-------------------	-----------------

ess		⁰								Bits									
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
10F0	IPC6	31:16	_	_	—	(CMP1IP<2:0	>	CMP1IS	S<1:0>	_	_	—	F	CEIP<2:0>		FCEIS	S<1:0>	0000
101.0	IF CO	15:0	—	_	—		RTCCIP<2:0>		RTCCIS	S<1:0>	_	_	—	FSCMIP<2:0>		>	FSCMI	S<1:0>	0000
1100	1100 IPC7 31:			_	_		U1IP<2:0>		U1IS<	<1:0>	_	_	_	SPI1IP<2:0>		SPI1IS	6<1:0>	0000	
1100	IPC7	15:0		_	_	ι	USBIP<2:0>(2)		USBIS<	:1:0> (2)	_	_	_	CMP2IP<2:0>		CMP2	S<1:0>	0000	
1110	IPC8	31:16	_	—	—		SPI2IP<2:0>		SPI2IS	<1:0>	_	_	—	PMPIP<2:0>		PMPIS	6<1:0>	0000	
1110	IPCo	15:0	_	—	—		CNIP<2:0>		CNIS	<1:0>	_	_	—	I2C1IP<2:0>		12C115	6<1:0>	0000	
1100	IPC9	31:16	_	_	_		U4IP<2:0>		U4IS<1:0> — — U3IP<2:0>			U3IS-	<1:0>	0000					
1120	IPC9	15:0		_	_		I2C2IP<2:0>		I2C2IS	<1:0>	_	_	_	l	J2IP<2:0>		U2IS-	<1:0>	0000
1120	IPC10	31:16	_	—	—	I	DMA1IP<2:0	>	DMA1IS	S<1:0>	_	_	—	DI	MA0IP<2:0	>	DMA0	S<1:0>	0000
1130	IPCIU	15:0	_	_	_	(CTMUIP<2:0	>	CTMU	S<1:0>	_	_	—	l	J5IP<2:0>		U5IS-	<1:0>	0000
11.10	IPC11	31:16	_	—	—	—	—	—	—	—	_	_	—	—	—	—	_	_	0000
1140 I	IPUTT	15:0	_	-			DMA3IP<2:0	>	DMA3IS	S<1:0>	_	_	_	DI	MA2IP<2:0	>	DMA2I	S<1:0>	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on 100-pin devices.

2: This bit is only implemented on devices with a USB module.

8.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the features					
	of the PIC32MX330/350/370/430/450/					
	470 family of devices. It is not intended to					
	be a comprehensive reference source. To					
	complement the information in this data					
	sheet, refer to Section 6. "Oscillator					
	Configuration" (DS60001112), which is					
	available from the Documentation >					
	Reference Manual section of the					
	Microchip PIC32 web site					
	(www.microchip.com/pic32).					

The PIC32MX330/350/370/430/450/470 oscillator system has the following modules and features:

- A Total of four external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Dedicated On-Chip PLL for USB peripheral

A block diagram of the oscillator system is provided in Figure 8-1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	DCRCDATA<31:24>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	DCRCDATA<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	DCRCDATA<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				DCRCDA	TA<7:0>					

REGISTER 10-5: DCRCDATA: DMA CRC DATA REGISTER

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCDATA<31:0>: CRC Data Register bits

Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return '0' on any read.

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always '0'. Data written to this register is converted and read back in 1's complement form (i.e., current IP header checksum value).

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Bits greater than PLEN will return '0' on any read.

REGISTER 10-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24		DCRCXOR<31:24>									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	DCRCXOR<23:16>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	DCRCXOR<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	DCRCXOR<7:0>										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	it, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): This register is unused.

When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode):

- 1 = Enable the XOR input to the Shift register
- 0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register

PIC32MX330/350/370/430/450/470

REGISTER 10-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	—	—	—	—	-	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	_	—	_	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	CHCSIZ<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0		CHCSIZ<7:0>								

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits

1111111111111111 = 65,535 bytes transferred on an event

REGISTER 10-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	-	—	—	-	—			—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	_	—		
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	CHCPTR<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0		CHCPTR<7:0>								

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

PIC32MX330/350/370/430/450/470

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	-	_				-
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		_	-	_				—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		_	-	_				—
7:0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	LSPD	RETRYDIS		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK

REGISTER 11-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)
 - 1 = Direct connection to a low-speed device is enabled
 - 0 = Direct connection to a low-speed device is disabled; hub required with PRE_PID
- bit 6 **RETRYDIS:** Retry Disable bit (Host mode and U1EP0 only)
 - 1 = Retry NAKed transactions is disabled
 - 0 = Retry NAKed transactions is enabled; retry done in hardware

bit 5 Unimplemented: Read as '0'

bit 4 **EPCONDIS:** Bidirectional Endpoint Control bit

If EPTXEN = 1 and EPRXEN = 1:

1 = Disable Endpoint n from Control transfers; only TX and RX transfers allowed

0 = Enable Endpoint n for Control (SETUP) transfers; TX and RX transfers also allowed Otherwise, this bit is ignored.

- bit 3 **EPRXEN:** Endpoint Receive Enable bit
 - 1 = Endpoint n receive is enabled
 - 0 = Endpoint n receive is disabled
- bit 2 EPTXEN: Endpoint Transmit Enable bit
 - 1 = Endpoint n transmit is enabled
 - 0 = Endpoint n transmit is disabled
- bit 1 EPSTALL: Endpoint Stall Status bit
 - 1 = Endpoint n was stalled
 - 0 = Endpoint n was not stalled
- bit 0 EPHSHK: Endpoint Handshake Enable bit
 - 1 = Endpoint Handshake is enabled
 - 0 = Endpoint Handshake is disabled (typically used for isochronous endpoints)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_		_	_	_	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_			_	_	—	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	_	SIDL	TWDIS	TWIP	_	_	—
7.0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
7:0	TGATE		TCKPS	S<1:0>	_	TSYNC	TCS	_

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

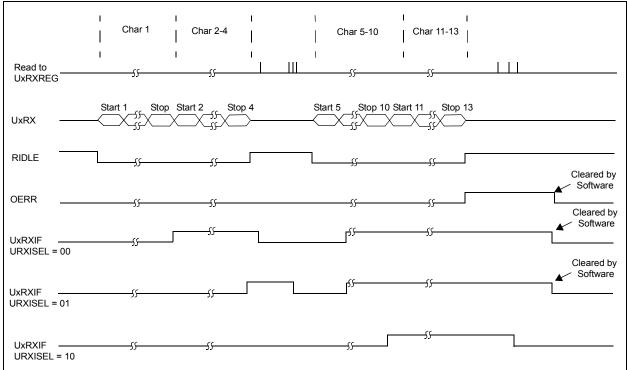
DIL 31-10	ommplemented: Read as 0
bit 15	ON: Timer On bit ⁽¹⁾
	1 = Timer is enabled
	0 = Timer is disabled
bit 14	Unimplemented: Read as '0'
bit 13	SIDL: Stop in Idle Mode bit
	1 = Discontinue operation when device enters Idle mode0 = Continue operation even in Idle mode
bit 12	TWDIS: Asynchronous Timer Write Disable bit
	1 = Writes to TMR1 are ignored until pending write operation completes0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)
bit 11	TWIP: Asynchronous Timer Write in Progress bit
	In Asynchronous Timer mode:
	1 = Asynchronous write to TMR1 register in progress
	0 = Asynchronous write to TMR1 register complete
	In Synchronous Timer mode: This bit is read as '0'.
bit 10-8	Unimplemented: Read as '0'
bit 7	TGATE: Timer Gated Time Accumulation Enable bit
	When TCS = 1:
	This bit is ignored.
	When TCS = 0: 1 = Gated time accumulation is enabled
	0 = Gated time accumulation is disabled
bit 6	Unimplemented: Read as '0'
bit 5-4	TCKPS<1:0>: Timer Input Clock Prescale Select bits
	11 = 1:256 prescale value
	10 = 1:64 prescale value
	01 = 1:8 prescale value 00 = 1:1 prescale value
bit 3	
DILO	Unimplemented: Read as '0'

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

18.1 Control Registers

TABLE 18-1: SPI2 AND SPI2 REGISTER MAP

ess		6								Bit	s								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5800	SPI1CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:0)>	MCLKSEL	—				_	SPIFE	ENHBUF	0000
3800	SFILCON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	EL<1:0>	SRXISE	EL<1:0>	0000
5910	SPI1STAT	31:16	_	_	_		RXE	BUFELM<4:	0>			_			TXI	BUFELM<4	:0>		0000
5610	SFIISTAI	15:0	_	_	_	FRMERR	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE		SPITBE	_	SPITBF	SPIRBF	19EB
5820	SPI1BUF	31:16	DATA<31:0>									0000							
5620		15:0								DAIA	51.02								0000
5830	SPI1BRG	31:16	_	—	—		—	—	—		—	—	—	—	—	—	—	—	0000
5650		15:0	—	—	—	_	—	—	_					BRG<8:0>					0000
		31:16	—	—	—	_	—	—	_	_	_	—	—	_	—	—	—	-	0000
5840	SPI1CON2	15:0	SPI SGNEXT	-	—	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	—	—	—	AUD MONO	—	AUDMC)D<1:0>	0000
5400	SPI2CON	31:16	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	FF	RMCNT<2:0)>	MCLKSEL	_	_	—	_	_	SPIFE	ENHBUF	0000
5A00	SPIZCON	15:0	ON	_	SIDL	DISSDO	MODE32	MODE16	SMP	CKE	SSEN	CKP	MSTEN	DISSDI	STXISE	EL<1:0>	SRXISE	EL<1:0>	0000
5440	SPI2STAT	31:16	—	—	_		RXE	BUFELM<4:	0>			_			TXI	BUFELM<4	:0>		0000
SATU	3F1231AI	15:0	_		—	FRMERR	SPIBUSY	_	_	SPITUR	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF	19EB
5A20	SPI2BUF	31:16								DATA<	31.05								0000
5A20	3FI2D0I	15:0								DAIAS	51.02								0000
5A30	SPI2BRG	31:16	—	—	—	_	—	—	_	_	_	—	-	_	—	—	—	-	0000
5A30		15:0	_	—	-		_	_	_					BRG<8:0>					0000
		31:16	_	—	—	_	—	—	_	_	_	—	—	—	_	—	—	—	0000
5A40	SPI2CON2	15:0	SPI SGNEXT	_	_	FRM ERREN	SPI ROVEN	SPI TUREN	IGNROV	IGNTUR	AUDEN	_	_		AUD MONO	_	AUDMC)D<1:0>	0000


Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

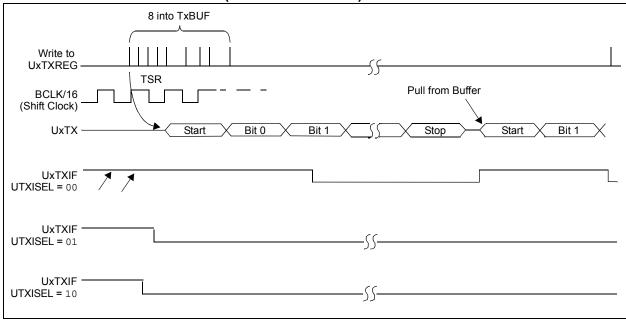

20.2 Timing Diagrams

Figure 20-2 and Figure 20-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 20-2: UART RECEPTION

FIGURE 20-3: TRANSMISSION (8-BIT OR 9-BIT DATA)

PIC32MX330/350/370/430/450/470

REGISTER 23-3: AD1CON3: ADC CONTROL REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	_	—	—	—	—	—				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16	_	—	_	_	_	—	_	_				
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8	ADRC	—	_	SAMC<4:0> ⁽¹⁾								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	R/W-0				
7:0			ADCS<7:0> ⁽²⁾									

Legend:

=ogona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ADRC:** ADC Conversion Clock Source bit
 - 1 = Clock derived from FRC
 - 0 = Clock derived from Peripheral Bus Clock (PBCLK)
- bit 14-13 Unimplemented: Read as '0'
- - 00000001 =TPB • 2 • (ADCS<7:0> + 1) = 4 • TPB = TAD 00000000 =TPB • 2 • (ADCS<7:0> + 1) = 2 • TPB = TAD
- **Note 1:** This bit is only used if the SSRC<2:0> bits (AD1CON1<7:5>) = 111.
 - 2: This bit is not used if the ADRC bit (AD1CON3<15>) = 1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	EDG1MOD	EDG1POL		EDG1S	EDG2STAT	EDG1STAT		
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
23.10	EDG2MOD	EDG2POL		EDG2S	_	_		
15:0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0			IRNG	<1:0>				

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 EDG1MOD: Edge 1 Edge Sampling Select bit

1 = Input is edge-sensitive

0 = Input is level-sensitive

bit 30 EDG1POL: Edge 1 Polarity Select bit

1 = Edge 1 programmed for a positive edge response

0 = Edge 1 programmed for a negative edge response

bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits

1111 = Reserved

1110 = C2OUT pin is selected

- 1101 = C1OUT pin is selected
- 1100 = IC3 Capture Event is selected
- 1011 = IC2 Capture Event is selected
- 1010 = IC1 Capture Event is selected
- 1001 = CTED8 pin is selected
- 1000 = CTED7 pin is selected
- 0111 = CTED6 pin is selected
- 0110 = CTED5 pin is selected
- 0101 = CTED4 pin is selected
- 0100 = CTED3 pin is selected
- 0011 = CTED1 pin is selected
- 0010 = CTED2 pin is selected
- 0001 = OC1 Compare Event is selected

0000 = Timer1 Event is selected

bit 25 EDG2STAT: Edge 2 Status bit

Indicates the status of Edge 2 and can be written to control edge source

- 1 = Edge 2 has occurred
- 0 = Edge 2 has not occurred
- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

REGIST	ER 26-1: CIMUCON: CIMU CONTROL REGISTER (CONTINUE
bit 24	EDG1STAT: Edge 1 Status bit
	Indicates the status of Edge 1 and can be written to control edge source
	1 = Edge 1 has occurred
	0 = Edge 1 has not occurred
bit 23	EDG2MOD: Edge 2 Edge Sampling Select bit
	1 = Input is edge-sensitive
	0 = Input is level-sensitive
bit 22	EDG2POL: Edge 2 Polarity Select bit
	1 = Edge 2 programmed for a positive edge response
	0 = Edge 2 programmed for a negative edge response
bit 21-18	EDG2SEL<3:0>: Edge 2 Source Select bits
	1111 = Reserved
	1110 = C2OUT pin is selected 1101 = C1OUT pin is selected
	1100 = PBCLK clock is selected
	1011 = IC3 Capture Event is selected
	1010 = IC2 Capture Event is selected
	1001 = IC1 Capture Event is selected
	1000 = CTED13 pin is selected
	0111 = CTED12 pin is selected 0110 = CTED11 pin is selected
	0101 = CTED10 pin is selected
	0100 = CTED9 pin is selected
	0011 = CTED1 pin is selected
	0010 = CTED2 pin is selected
	0001 = OC1 Compare Event is selected
	0000 = Timer1 Event is selected
	Unimplemented: Read as '0'
bit 15	ON: ON Enable bit
	1 = Module is enabled
	0 = Module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	CTMUSIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode
bit 12	 0 = Continue module operation in Idle mode TGEN: Time Generation Enable bit⁽¹⁾
DIL 12	
	1 = Enables edge delay generation0 = Disables edge delay generation
bit 11	EDGEN: Edge Enable bit
	1 = Edges are not blocked
	1 = Edges are hot blocked0 = Edges are blocked

- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
R	R	R	R	R	R	R	R			
	VER<	:3:0> ⁽¹⁾		DEVID<27:24> ⁽¹⁾						
R	R	R	R	R	R	R	R			
DEVID<23:16> ⁽¹⁾										
R	R	R	R	R	R	R	R			
DEVID<15:8> ⁽¹⁾										
R	R	R	R	R	R	R	R			
DEVID<7:0> ⁽¹⁾										
	31/23/15/7 R R R	31/23/15/7 30/22/14/6 R R R R R R R R	31/23/15/7 30/22/14/6 29/21/13/5 R R R VER<3:0>(1) R R R R R R R	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 R R R R R R R R R R R R R R R R R R R R R R R R R R R DEVID<2	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 R R R R R VER<3:0> ⁽¹⁾ VER<2:0> ⁽¹⁾ VER<2:0	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 R	31/23/15/7 30/22/14/6 29/21/13/5 28/20/12/4 27/19/11/3 26/18/10/2 25/17/9/1 R R R R R R R R VER<3:0> ⁽¹⁾ VER<3:0> ⁽¹⁾ DEVID<27:24> ⁽¹⁾ R R R R R R R R R R R R DEVID<23:16> ⁽¹⁾ DEVID<23:16> ⁽¹⁾ DEVID<15:8> ⁽¹⁾ R R R R R R R R R R R R R R R R R R R			

REGISTER 28-6: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

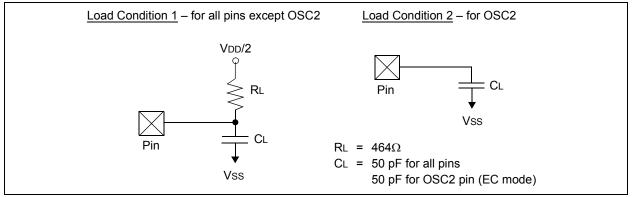
bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 **DEVID<27:0>:** Device ID⁽¹⁾

Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

DC CHA	RACTE	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No. Symb. Characteris		Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
DI10	VIL	Input Low Voltage I/O Pins with PMP I/O Pins	Vss Vss	_	0.15 VDD 0.2 VDD	V V			
DI18		SDAx, SCLx	Vss	—	0.3 Vdd	V	SMBus disabled (Note 4)		
DI19		SDAx, SCLx	Vss	_	0.8	V	SMBus enabled (Note 4)		
DI20	Vih	Input High Voltage I/O Pins not 5V-tolerant ⁽⁵⁾ I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.65 Vdd 0.25 Vdd + 0.8V	_	Vdd 5.5	V V	(Note 4,6) (Note 4,6)		
DI28		I/O Pins 5V-tolerant ⁽⁵⁾ SDAx, SCLx	0.65 VDD 0.65 VDD	_	5.5 5.5	V V	SMBus disabled (Note 4,6)		
DI29		SDAx, SCLx	2.1	—	5.5	V	SMBus enabled, 2.3V ≤ VPIN ≤ 5.5 (Note 4,6)		
DI30	ICNPU	Change Notification Pull-up Current	—	—	-50	μA	VDD = 3.3V, VPIN = VSS (Note 3,6)		
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	—	50	—	μA	VDD = 3.3V, VPIN = VDD		

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS


Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V tolerant pins.
- 6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.
- 7: VIL source < (Vss 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- **10:** Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS 0.3)).
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

31.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MX330/350/370/430/450/470 AC characteristics and timing parameters.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

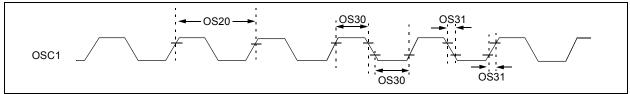
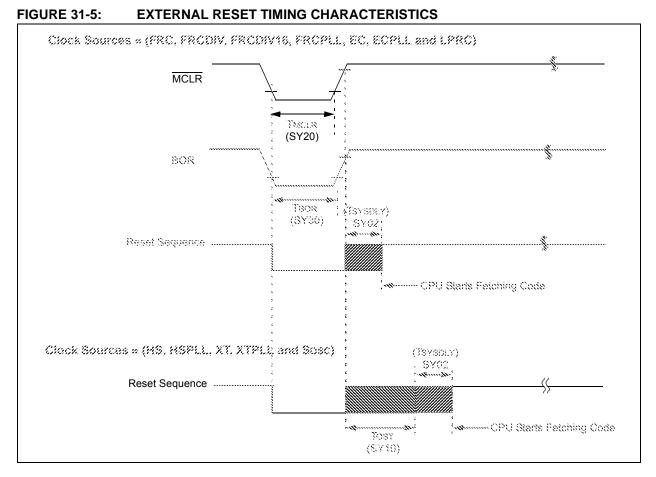


TABLE 31-17: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS


			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	¹⁾ Max. Units		Conditions	
DO50	Cosco	OSC2 pin	_	_	15		In XT and HS modes when an external crystal is used to drive OSC1	
DO56	Сю	All I/O pins and OSC2	_	-	50	pF	EC mode	
DO58	Св	SCLx, SDAx		_	400	pF	In I ² C mode	

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 31-2: EXTERNAL CLOCK TIMING

PIC32MX330/350/370/430/450/470

			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^\circ C \leq TA \leq +70^\circ C \mbox{ for Commercial} \\ -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions		
SY00	Τρυ	Power-up Period Internal Voltage Regulator Enabled		400	600	μS	_		
SY02	TSYSDLY	System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.		1 μs + 8 SYSCLK cycles	_	_	_		
SY20	TMCLR	MCLR Pulse Width (low)	2	—		μS	_		
SY30	TBOR	BOR Pulse Width (low)	_	1	_	μS	_		

TABLE 31-23: RESETS TIMING

Note 1: These parameters are characterized, but not tested in manufacturing.

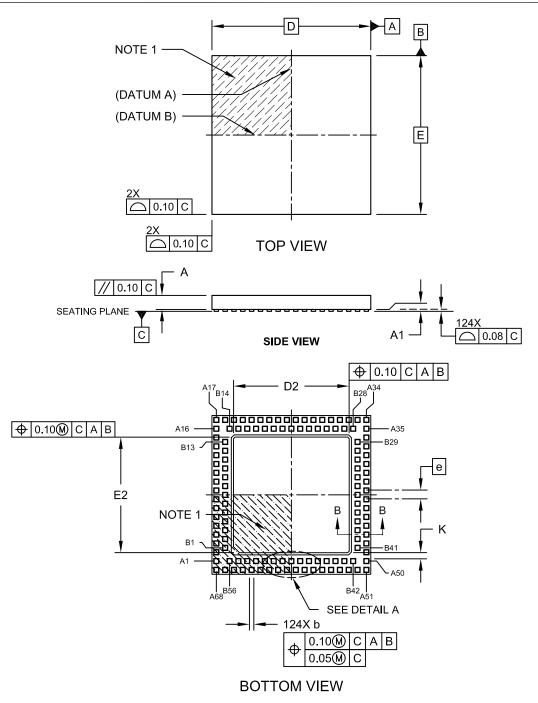
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.

AC CHA	ARACTERIS	STICS ⁽⁵⁾	$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol Characteristics		Min.	Typical	Max.	Units	Conditions		
ADC Ac	curacy – N	leasurements with Inter	nal VREF+/VR	EF-					
AD20d	Nr	Resolution		10 data bits		bits	(Note 3)		
AD21d	INL	Integral Nonlinearity	> -1	_	< 1	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)		
AD22d	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)		
AD23d	Gerr	Gain Error	> -4	_	< 4	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)		
AD24d	Eoff	Offset Error	> -2	_	< 2	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)		
AD25d	_	Monotonicity	—	—	_	—	Guaranteed		
Dynami	c Performa	ince	•	•		•	•		
AD31b	SINAD	Signal to Noise and Distortion	55	58	—	dB	(Notes 3,4)		
AD34b	ENOB	Effective Number of Bits	9	9.5	_	bits	(Notes 3,4)		

TABLE 31-35: ADC MODULE SPECIFICATIONS (CONTINUED)

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.


3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for VBORMIN values.

124-Terminal Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-193A Sheet 1 of 2

Revision C (October 2013)

This revision includes the following updates, as listed in Table A-2.

TABLE A-2: MAJOR SECTION UPDATES

Section	Update Description				
"32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with	The Operating Conditions and Core sections were updated in support of 100 MHz (-40°C to +85°C) devices.				
Audio/Graphics/Touch (HMI), USB, and Advanced Analog"	Added Notes 2 and 3 regarding the conductive thermal pad to the 124-pin VTLA pin diagrams.				
2.0 "Guidelines for Getting Started	Updated the recommended minimum connection (see Figure 2-1).				
with 32-bit MCUs"	Added 2.10 "Sosc Design Recommendation".				
20.0 "Parallel Master Port (PMP)"	Updated the Parallel Port Control register, PMCON (see Register 20-1).				
	Updated the Parallel Port Mode register, PMMODE (see Register 20-2).				
	Updated the Parallel Port Pin Enable register, PMAEN (see Register 20-4).				
30.0 "Electrical Characteristics"	Removed Note 4 from the Absolute Maximum Ratings.				
	The maximum frequency for parameter DC5 In Operating MIPS vs. Voltage was changed to 100 MHz (see Table 30-1).				
	Parameter DC25a was added to DC Characteristics: Operating Current (IDD) (see Table 30-5).				
	Parameter DC34c was added to DC Characteristics: Idle Current (IIDLE) (see Table 30-5).				
	Added parameters for PIC32MX370/470 devices and removed Note 5 from DC Characteristics: Power-Down Current (IPD) (see Table 30-7).				
	Updated the Minimum, Typical, and Maximum values and added a reference to Note 3 for parameter DI30 (ICNPU) in DC Characteristics: I/O Pin Input Specifications (see Table 30-8).				
	The SYSCLK values for all required Flash Wait states were updated (see Table 30-13).				
	Added parameter DO50A (Csosc) to the Capacitive Loading Requirements on Output Pins (see Table 30-16).				
	Updated the maximum values for parameter OS10, and the Characteristics definition of parameter OS42 (GM) in the External Clock Timing Characteristics (see Table 30-17).				
31.0 "DC and AC Device Characteristics Graphs"	Updated the IPD, IIDLE, and IDD graphs, and added new graphs for the PIC32MX370/470 devices (see Figure 31-5 through Figure 31-13).				

Revision D (March 2015)

This revision includes the following updates, as listed in Table A-3.

TABLE A-3: MAJOR SECTION UPDATES

Section	Update Description				
"32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with Audio/Graphics/ Touch (HMI), USB, and Advanced Analog"	100 MHz and 120 MHz operation information was added. Pins 59 through 63 of the 64-pin QFN and TQFP pin diagrams were updated.				
2.0 "Guidelines for Getting Started with 32-bit MCUs"	Added 2.8.1 "Crystal Oscillator Design Consideration".				
12.0 "I/O Ports"	The Block Diagram of a Typical Multiplexed Port Structure was updated (see Figure 12-1).				
21.0 "Parallel Master Port (PMP)"	The PMADDR: Parallel Port Address Register was updated (see Register 21-3).				
31.0 "Electrical Characteristics"	 Specifications for 120 MHz operation were added to the following tables: Table 31-1: "Operating MIPS vs. Voltage" Table 31-5: "DC Characteristics: Operating Current (IDD)" Table 31-6: "DC Characteristics: Idle Current (IDLE)" Table 31-7: "DC Characteristics: Idle Current (IPD)" Table 31-13: "DC Characteristics: Program Flash Memory Wait State" Table 31-18: "External Clock Timing Requirements" The unit of measure for IIDLE Current parameters DC37a, DC37b, and DC37c were updated (see Table 31-6). Parameter D312 (TSET) was removed from the Comparator Specifications (see Table 31-14). Comparator Voltage Reference Specifications were added (see Table 31-15). Parameter USB321 (VOL) in the OTG Electrical Specifications was updated (see Table 31-41). 				
32.0 "Packaging Information"	The 64-lead QFN package marking information was updated. The 124-lead VTLA package land pattern information was added.				
"Product Identification System"	The Speed category was removed. The Example was updated. The MR package was updated. The RG package was added.				