

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	81
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx450f256l-120-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 6: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

124	-PIN VTLA (BOTTOM VIEW) ^(1,2,3,4,5) A17			A34
	AT/		B13 B29	Conductive Thermal Pad
	PIC32MX330F064L PIC32MX350F128L PIC32MX350F256L PIC32MX370F512L		B1 E B56	341 A51
	Polarity I	A1 tor	A68	
Package Bump #	Full Pin Name	Package Bump #		Full Pin Name
B7	MCLR	B32	SDA2/RA3	
B8	Vss	B33	TDO/RA5	
B9	TMS/CTED1/RA0	B34	OSC1/CLKI/RC12	
B10	RPE9/RE9	B35	No Connect	
B11	AN4/C1INB/RB4	B36	RPA14/RA14	
B12	Vss	B37	RPD8/RTCC/RD8	
B13	PGEC3/AN2/C2INB/RPB2/CTED13/RB2	B38	RPD10/PMCS2/RD10)
B14	PGED1/AN0/RPB0/RB0	B39	RPD0/RD0	
B15	No Connect	B40	SOSCO/RPC14/T1Ck	
B16	PGED2/AN7/RPB7/CTED3/RB7	B41	Vss	
B17	VREF+/CVREF+/PMA6/RA10	B42	AN25/RPD2/RD2	
B18	AVss	B43	RPD12/PMD12/RD12	
B19	AN9/RPB9/CTED4/RB9	B44	RPD4/PMWR/RD4	
B20	AN11/PMA12/RB11	B45	PMD14/RD6	
B21	VDD	B46	No Connect	
B22	RPF13/RF13	B47	No Connect	
B23	AN12/PMA11/RB12	B48	VCAP	
B24	AN14/RPB14/CTED5/PMA1/RB14	B49	RPF0/PMD11/RF0	
B25	Vss	B50	RPG1/PMD9/RG1	
B26	RPD14/RD14	B51	TRCLK/RA6	
B27	RPF4/PMA9/RF4	B52	PMD0/RE0	
B28	No Connect	B53	Vdd	
B29	RPF8/RF8	B54	TRD2/RG14	
B30	RPF6/SCKI/INT0/RF6	B55	TRD0/RG13	
B31	SCL1/RG2	B56	RPE3/CTPLS/PMD3/	RE3

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx), with the exception of RF6, can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: RPF6 (bump B30) and RPF7 (bump A37) are only remappable for input functions.

4: Shaded package bumps are 5V tolerant.

5: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUS

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

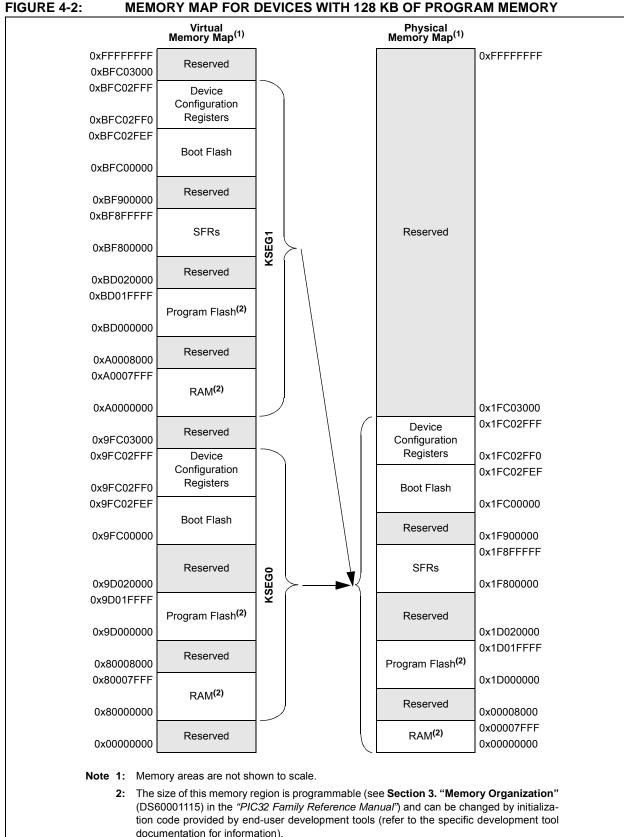
2.1 Basic Connection Requirements

Getting started with the PIC32MX330/350/370/430/ 450/470 family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming (ICSP[™]) and debugging purposes (see **2.5** "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.8 "External Oscillator Pins")

The following pins may be required:

VREF+/VREF- pins, used when external voltage reference for the ADC module is implemented.


Note: The AVDD and AVSS pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

Bit Range	Bit Bit 31/23/15/7 30/22/14/6		Bit Bit 29/21/13/5 28/20/12/4		Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
04.04	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0						
31:24	NVMKEY<31:24>													
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0						
23:16	NVMKEY<23:16>													
45.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0						
15:8	NVMKEY<15:8>													
7.0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0						
7:0				NVMK	EY<7:0>			•						

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7			Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
31:24	NVMADDR<31:24>													
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16	NVMADDR<23:16>													
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
15:8	NVMADDR<15:8>													
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
7:0				NVMAE)DR<7:0>									

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-0 **NVMADDR<31:0>:** Flash Address bits Bulk/Chip/PFM Erase: Address is ignored Page Erase: Address identifies the page to erase Row Program: Address identifies the row to program Word Program: Address identifies the word to program

Bit Range			Bit 29/21/13/5	Bit Bit 5 28/20/12/4 27/19/11/		Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24		—	_	_		_	-	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	_	-	_	—	_	—	
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
15:8	CHBUSY	—	_	_	_	_	_	CHCHNS ⁽¹⁾	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0	
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	_	CHEDET	CHPF	RI<1:0>	

REGISTER 10-7: DCHxCON: DMA CHANNEL 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled
- bit 14-9 Unimplemented: Read as '0'
- bit 8 CHCHNS: Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)

bit 7 CHEN: Channel Enable bit⁽²⁾

- 1 = Channel is enabled
- 0 = Channel is disabled

bit 6 CHAED: Channel Allow Events If Disabled bit

- 1 = Channel start/abort events will be registered, even if the channel is disabled
- 0 = Channel start/abort events will be ignored if the channel is disabled

bit CHCHN: Channel Chain Enable bit

- 1 = Allow channel to be chained
- 0 = Do not allow channel to be chained
- bit 4 CHAEN: Channel Automatic Enable bit
 - 1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete
 0 = Channel is disabled on block transfer complete

bit 3 Unimplemented: Read as '0'

- bit 2 CHEDET: Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected
- bit 1-0 CHPRI<1:0>: Channel Priority bits
 - 11 = Channel has priority 3 (highest)
 - 10 = Channel has priority 2
 - 01 = Channel has priority 1
 - 00 = Channel has priority 0
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

		•••••			-				
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	-	-	—	—			—	—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	-			—			—	—	
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16 15:8	_	_	—	—	—	—	—	—	
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	JSTATE	SE0	PKTDIS ⁽⁴⁾	USBRST	HOSTEN ⁽²⁾	RESUME ⁽³⁾	PPBRST	USBEN ⁽⁴⁾	
	JOIAIE	3E0	TOKBUSY ^(1,5)	USBRSI	HUSTEN-	RESUME	FFBR51	SOFEN ⁽⁵⁾	

REGISTER 11-11: U1CON: USB CONTROL REGISTER

Legend:

Logona		U = Unimplemented bit, '0' = Bit is cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

- bit 7 **JSTATE:** Live Differential Receiver JSTATE flag bit 1 = JSTATE detected on the USB
 - 0 = No JSTATE detected
- bit 6 SE0: Live Single-Ended Zero flag bit
 1 = Single Ended Zero detected on the USB
 0 = No Single Ended Zero detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing disabled (set upon SETUP token received)
 - 0 = Token and packet processing enabled
 - TOKBUSY: Token Busy Indicator bit^(1,5)
 - 1 = Token being executed by the USB module
 - 0 = No token being executed

bit 4 USBRST: Module Reset bit⁽⁵⁾

- 1 = USB reset is generated
- 0 = USB reset is terminated

bit 3 HOSTEN: Host Mode Enable bit⁽²⁾

- 1 = USB host capability is enabled
- 0 = USB host capability is disabled

bit 2 RESUME: RESUME Signaling Enable bit⁽³⁾

- 1 = RESUME signaling is activated
- 0 = RESUME signaling is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 11-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - **3:** Software must set the RESUME bit for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a low-speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

TABLE 12-1: INPUT PIN SELECTION

Peripheral Pin	[pin name]R SFR	[pin name]R bits	[<i>pin name</i>]R Value to RPn Pin Selection				
INT3	INT3R	INT3R<3:0>	0000 = RPD2 0001 = RPG8				
T2CK	T2CKR	T2CKR<3:0>	0010 = RPF4 0011 = RPD10				
IC3	IC3R	IC3R<3:0>	0100 = RPF1 0101 = RPB9				
U1RX	U1RXR	U1RXR<3:0>					
U2RX	U2RXR	U2RXR<3:0>	1000 - RFB3 1001 = Reserved 1010 = RPC1 ⁽³⁾				
U5CTS	U5CTSR ⁽³⁾	U5CTSR<3:0>	$\frac{1011}{1011} = \text{RPD14(3)}$ 1100 = RPG1(3)				
REFCLKI	REFCLKIR	REFCLKIR<3:0>	1101 = RPA14 ⁽³⁾ 1110 = Reserved 1111 = RPF2 ⁽¹⁾				
INT4	INT4R	INT4R<3:0>	0000 = RPD3 0001 = RPG7				
T5CK	T5CKR	T5CKR<3:0>	0010 = RPF5 0011 = RPD11				
IC4	IC4R	IC4R<3:0>	0100 = RPF0 0101 = RPB1				
U3RX	U3RXR	U3RXR<3:0>					
U4CTS	U4CTSR	U4CTSR<3:0>	1000 = Ri B3 1001 = Reserved 1010 = RPC4 ⁽³⁾				
SDI1	SDI1R	SDI1R<3:0>	1011 = RPD15 ⁽³⁾ 1100 = RPG0 ⁽³⁾				
SDI2	SDI2R	SDI2R<3:0>	1101 = RPA15 ⁽³⁾ 1110 = RPF2 ⁽¹⁾ 1111 = RPF7 ⁽²⁾				
INT2	INT2R	INT2R<3:0>	0000 = RPD9 0001 = RPG6				
T4CK	T4CKR	T4CKR<3:0>	0010 = RPB8 0011 = RPB15				
IC2	IC2R	IC2R<3:0>	0100 = RPD4 0101 = RPB0				
IC5	IC5R	IC5R<3:0>					
U1CTS	U1CTSR	U1CTSR<3:0>	1000 = Reserved 1001 = RPF12 ⁽³⁾ 1010 = RPD12 ⁽³⁾				
U2CTS	U2CTSR	U2CTSR<3:0>	1010 = RPD12 ⁽³⁾ 1011 = RPF8 ⁽³⁾ 1100 = RPC3 ⁽³⁾				
SS1	SS1R	SS1R<3:0>	1101 = RPE9 ⁽³⁾ 1110 = Reserved				
			1111 = RPB2				

Note 1: This selection is not available on 64-pin USB devices.

2: This selection is only available on 100-pin General Purpose devices.

3: This selection is not available on 64-pin USB and General Purpose devices.

4: This selection is only available on General Purpose devices.

TABLE 12-6: PORTC REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H, PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY

ess										Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6210	TRISC	31:16	_	_		—		—	—	—	—	-	—	—			—	—	0000
0210	TRIBC	15:0	TRISC15	TRISC14	TRISC13	TRISC12	_	—	_	—	_	_	_	_	_	—	—	_	xxxx
6220	PORTC	31:16	_	_		_	_	—	_	—	_	_	—	—	—	—		—	0000
0220	TOINIC	15:0	RC15	RC14	RC13	RC12	_	—	_	—	—	_	—	—	—	—		—	xxxx
6230	LATC	31:16	_			_	_	—	—	—	—				—	—		—	0000
0200		15:0	LATC15	LATC14	LATC13	LATC12	—	—	—	—	—	_			—	—	—	—	xxxx
6240	ODCC	31:16	_	—		—	_	—	—	—	—	—	—	—	—	—	—	—	0000
02.0		15:0	ODCC15	ODCC14	ODCC13	ODCC12	-	—	—	—	—	—	—	—	—	—	—	—	xxxx
6250	CNPUC	31:16	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	0000
0200		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	-	—	—	—	—	—	—	—	—	—	—	—	xxxx
6260	CNPDC	31:16	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	—	_	—	—	—	_	_	_	—		—	xxxx
6270	CNCONC	31:16	—	—	—	—	-	—	—	—	—	—	—	—	—	—	—	—	0000
02.0		15:0	ON	—	SIDL	—	-	—	—	—	—	—	—	—	—	—	—	—	0000
6280	CNENC	31:16	_	—		—	_	—	_	—	_	_	_	_	_	—		_	0000
		15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	—	—	_	—	—	—	_	_	_	—	-	—	xxxx
6290	CNSTATC	31:16	_	—		—	_	—	—	—	—	—	—	—	—	—	—	—	0000
0200	290 CNSTATC —	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	—	—	—	—	—	—				—	—		xxxx

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

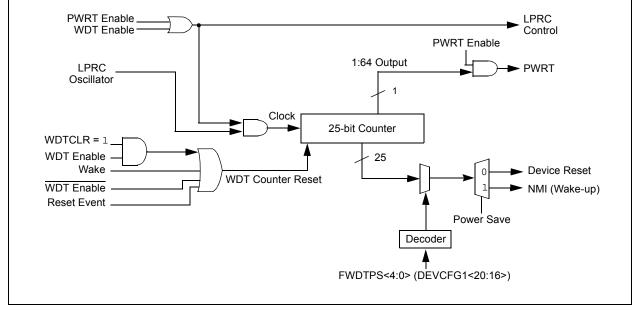
											-								
ŝ										В	its								
Virtual Addre (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
50.10		31:16	_	-		_	_	_	_	_	_	-	_	_	-	_	_	_	0000
FCA0	RPG8R	15:0	_	_	_	_	—		_	_	_	_	_	_		RPG8	<3:0>		0000
5044	DDOOD	31:16	_	_	_	_	_	_	—	_	_	_	_	_	_	—	—	—	0000
FCA4	RPG9R	15:0		—	—	-	—	_	—	_	_					RPG9	<3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

2: This register is only available on devices without a USB module.

3: This register is not available on 64-pin devices with a USB module.


15.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

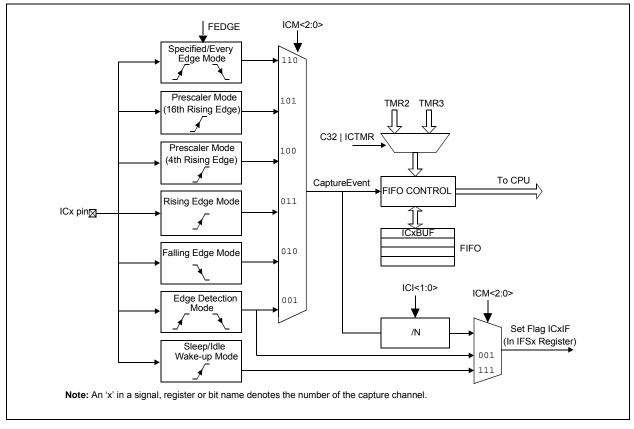
- · Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

16.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS60001122), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause capture events:


- Simple capture event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
 - Capture timer value on every edge (rising and falling)
 - Capture timer value on every edge (rising and falling), specified edge first.

- Prescaler capture event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on input capture event
- 4-word FIFO buffer for capture values Interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

FIGURE 16-1: INPUT CAPTURE BLOCK DIAGRAM

PIC32MX330/350/370/430/450/470

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	_
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	PTEN<1	5:14> ⁽¹⁾			PTEN	<13:8>		
7.0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0			PTEN	<7:2>	PTEN<1:0> ⁽²⁾			

REGISTER 21-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Write '0'; ignore read

- bit 15-14 **PTEN<15:14>:** PMCSx Address Port Enable bits
 - 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1⁽¹⁾
 - 0 = PMA15 and PMA14 function as port I/O
- bit 13-2 **PTEN<13:2>:** PMP Address Port Enable bits 1 = PMA<13:2> function as PMP address lines
 - 0 = PMA<13:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Address Port Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
 - 0 = PMA1 and PMA0 pads function as port I/O
- Note 1: The use of these pins as PMA15/PMA14 or CS2/CS1 is selected by the CSF<1:0> bits (PMCON<7:6>).
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by the ADRMUX<1:0> bits in the PMCON register.

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- · On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the PBCLK will start running and the device will enter into Idle mode.

27.3.2 IDLE MODE

In Idle mode, the CPU is Halted but the System Clock (SYSCLK) source is still enabled. This allows peripherals to continue operation when the CPU is Halted. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

- Note 1: Changing the PBCLK divider ratio requires recalculation of peripheral timing. For example, assume the UART is configured for 9600 baud with a PB clock ratio of 1:1 and a Posc of 8 MHz. When the PB clock divisor of 1:2 is used, the input frequency to the baud clock is cut in half; therefore, the baud rate is reduced to 1/2 its former value. Due to numeric truncation in calculations (such as the baud rate divisor), the actual baud rate may be a tiny percentage different than expected. For this reason, any timing calculation required for a peripheral should be performed with the new PB clock frequency instead of scaling the previous value based on a change in the PB divisor ratio.
 - 2: Oscillator start-up and PLL lock delays are applied when switching to a clock source that was disabled and that uses a crystal and/or the PLL. For example, assume the clock source is switched from Posc to LPRC just prior to entering Sleep in order to save power. No oscillator startup delay would be applied when exiting Idle. However, when switching back to Posc, the appropriate PLL and/or oscillator start-up/lock delays would be applied.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

27.3.3 PERIPHERAL BUS SCALING METHOD

Most of the peripherals on the device are clocked using the PBCLK. The peripheral bus can be scaled relative to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals using PBCLK are affected when the divisor is changed. Peripherals such as the USB, Interrupt Controller, DMA, and the bus matrix are clocked directly from SYSCLK. As a result, they are not affected by PBCLK divisor changes.

Changing the PBCLK divisor affects:

- The CPU to peripheral access latency. The CPU has to wait for next PBCLK edge for a read to complete. In 1:8 mode, this results in a latency of one to seven SYSCLKs.
- The power consumption of the peripherals. Power consumption is directly proportional to the frequency at which the peripherals are clocked. The greater the divisor, the lower the power consumed by the peripherals.

To minimize dynamic power, the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance. When selecting a PBCLK divider, peripheral clock requirements, such as baud rate accuracy, should be taken into account. For example, the UART peripheral may not be able to achieve all baud rate values at some PBCLK divider depending on the SYSCLK value.

27.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 27-1 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

TABLE 27-1:	PERIPHERAL MODULE DISABLE BITS AND LOCATIONS

Peripheral ⁽¹⁾	PMDx bit Name ⁽¹⁾	Register Name and Bit Location
ADC1	AD1MD	PMD1<0>
СТМИ	CTMUMD	PMD1<8>
Comparator Voltage Reference	CVRMD	PMD1<12>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>
UART3	U3MD	PMD5<2>
UART4	U4MD	PMD5<3>
UART5	U5MD	PMD5<4>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>
I2C1	I2C1MD	PMD5<16>
2C2	I2C2MD	PMD5<17>
USB ⁽²⁾	USBMD	PMD5<24>
RTCC	RTCCMD	PMD6<0>
Reference Clock Output	REFOMD	PMD6<1>
PMP	PMPMD	PMD6<16>

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX330/350/ 370/430/450/470 Controller Family Features" for the lists of available peripherals.

2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

TABLE 28-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

ess										Bits									s
Virtual Addres (BFC0_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2550	DEVCFG3	31:16	FVBUSONIO	FUSBIDIO	IOL1WAY	PMDL1WAY	_	_	_		—		_			FS	RSSEL<2:0	>	xxxx
2660	DEVCEGS	15:0								USERID<1	5:0>								xxxx
2554	DEVCFG2	31:16	—	—	—	—	—	—	—		—		—			FP	LLODIV<2:0	>	xxxx
2664	DEVCFGZ	15:0	UPLLEN ⁽¹⁾	—	—	_	—	UPL	LIDIV<2:0	(1)	—	FF	PLLMUL<2:	0>	_	FF	PLLIDIV<2:0>	>	xxxx
2550	DEVCFG1	31:16	—	_	_	—	_	_	FWDTWI	NSZ<1:0>	FWDTEN	WINDIS	_		١	NDTPS<4:0)>		xxxx
2660	DEVCEGI	15:0	FCKSM	<1:0>	FPBD	IV<1:0>	_	OSCIOFNC	POSCM	OD<1:0>	IESO	_	FSOSCEN	_	_	F	NOSC<2:0>		xxxx
2550	DEVCFG0	31:16	—	_	—	CP	_	—	_	BWP	—	_	—	—		PWP	<7:4>		xxxx
2650	DEVCEGO	15:0		PWP<	:3:0>		—	—		-	—	_	—	ICESE	L<1:0>	JTAGEN	DEBUG	<1:0>	xxxx

Legend: x = unknown value on Reset; - = reserved, write as '1'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on devices with a USB module.

TABLE 28-2: DEVICE ID, REVISION, AND CONFIGURATION SUMMARY

ess		e								Bi	ts								ú
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000		31:16	_	_	—	—	_	—	—	_	—	_	—	_	—	_	_	—	0000
F200	CFGCON	15:0	_	—	IOLOCK	PMDLOCK	—	_	—	—	—	—	—	_	JTAGEN	TROEN	_	TDOEN	000B
F220	DEVID	31:16		VER	<3:0>							DEVID	<27:16>						xxxx ⁽¹⁾
F220	DEVID	15:0			DEVID<15:0> xxxx ⁽¹									xxxx ⁽¹⁾					
E220	SYSKEY	31:16								SYSKE	V<31.0>								0000
F230	O I ORL I	15:0								OTORL	1-01.02								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the device variant.

30.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

30.12 Third-Party Development Tools

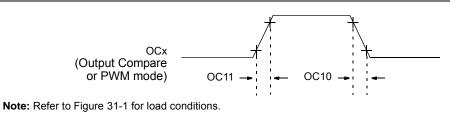
Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

DC CHA	RACTE	RISTICS	(unless otherw	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Symb.	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions			
DI60b	Іісн	Input High Injection Current	0		+5 ^(8,9,10)	mA	Pins with Analog functions. Exceptions: [SOSCI, SOSCO, OSC1, D+, D-] = 0 mA max. Digital 5V tolerant desig- nated pins (VIH < $5.5V$) ⁽⁹⁾ . Exceptions: [All] = 0 mA max. Digital non-5V tolerant desig- nated pins. Exceptions: [N/A] = 0 mA max.			
DI60c	∑IICT	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽¹¹⁾	_	+20 ⁽¹¹⁾	mA	Absolute instantaneous sum of all \pm input injection cur- rents from all I/O pins (IICL + IICH) $\leq \sum$ IICT			

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

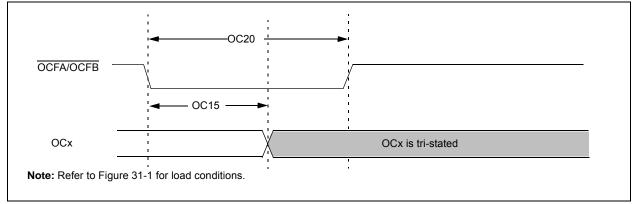
Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.


- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V tolerant pins.
- 6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.
- 7: VIL source < (Vss 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- **10:** Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (VSS 0.3)).
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

				d Opera	ating Co	ondition	s: 2.3V to 3.6V
DC CHA	RACTER	ISTICS	Operatin	ig tempe	erature	$T_A \le +70^{\circ}C$ for Commercial $\le T_A \le +85^{\circ}C$ for Industrial $\le T_A \le +105^{\circ}C$ for V-temp	
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - All I/O output pins not defined as 8x Sink Driver pins	_	_	0.4	V	IOL \leq 9 mA, VDD = 3.3V
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RC15, RD2, RD10, RF6, RG6	_	_	0.4	v	$\text{IOL} \leq 15 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
DO20	Voн	Output High Voltage I/O Pins: 4x Source Driver Pins - All I/O output pins not defined as 8x Source Driver pins	2.4	_	_	v	IOH ≥ -10 mA, VDD = 3.3V
		Output High Voltage I/O Pins: 8x Source Driver Pins - RC15, RD2, RD10, RF6, RG6	2.4	_	_	V	Ioh \ge -15 mA, Vdd = 3.3V
		Output High Voltage	1.5 ⁽¹⁾	—			IOH \geq -14 mA, VDD = 3.3V
		4x Source Driver Pins - All I/O	2.0 ⁽¹⁾	_	_	V	IOH \ge -12 mA, VDD = 3.3V
DO20A	Vou1	output pins not defined as 8x Sink Driver pins	3.0 ⁽¹⁾	_			IOH \ge -7 mA, VDD = 3.3V
	VOHT	Output High Voltage	1.5 ⁽¹⁾	_	_		IOH \ge -22 mA, VDD = 3.3V
		8x Source Driver Pins - RC15,	2.0 ⁽¹⁾	_	_	V	Ioh \geq -18 mA, Vdd = 3.3V
		RD2, RD10, RF6, RG6	3.0 ⁽¹⁾	_	_		IOH \ge -10 mA, VDD = 3.3V

TABLE 31-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.


TABLE 31-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

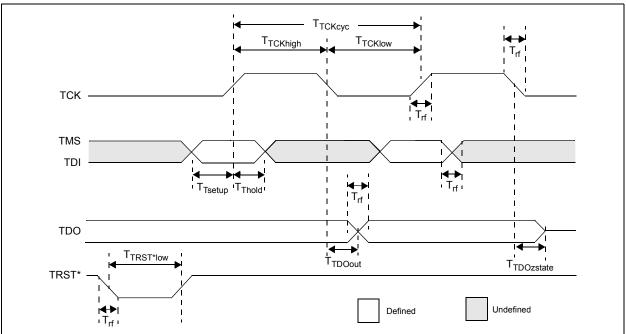
АС СНА	RACTER	ISTICS	(unless	d Operating C otherwise stat g temperature	onditions: 2.3V to 3.6V ed) $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions		
OC10	TccF	OCx Output Fall Time	—	—	_	ns	See parameter DO32		
OC11	TccR	OCx Output Rise Time	—	—	_	ns	See parameter DO31		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 31-9: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 31-28: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS


AC CHAP	RACTERIST	rics	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristics ⁽¹⁾	Min	Typical ⁽²⁾	Max	Units	Conditions			
OC15	Tfd	Fault Input to PWM I/O Change	—	—	50	ns	_			
OC20	TFLT	Fault Input Pulse Width	50	—	_	ns	—			

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

PIC32MX330/350/370/430/450/470

FIGURE 31-23: EJTAG TIMING CHARACTERISTICS

TABLE 31-43: EJTAG TIMING REQUIREMENTS

АС СНА	RACTERISTI	cs	(unles		ise state	anditions: 2.3V to 3.6V ed) $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions
EJ1	Ттсксүс	TCK Cycle Time	25	—	ns	—
EJ2	Ттскнідн	TCK High Time	10	—	ns	—
EJ3	TTCKLOW	TCK Low Time	10	—	ns	—
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	—	ns	_
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	_	ns	—
EJ6	Ττροουτ	TDO Output Delay Time from Falling TCK		5	ns	—
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	_	5	ns	—
EJ8	TTRSTLOW	TRST Low Time	25	—	ns	
EJ9	Trf	TAP Signals Rise/Fall Time, All Input and Output			ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.