

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx450f256l-120-tl

Email: info@E-XFL.COM

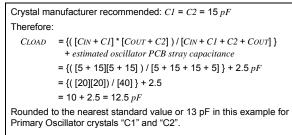
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Pin Numb	er									
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description						
RE0	60	93	B52	I/O	ST							
RE1	61	94	A64	I/O	ST							
RE2	62	98	A66	I/O	ST							
RE3	63	99	B56	I/O	ST							
RE4	64	100	A67	I/O	ST	DODIE is a hidiractional I/O part						
RE5	1	3	B2	I/O	ST	PORTE is a bidirectional I/O port						
RE6	2	4	A4	I/O	ST							
RE7	3	5	B3	I/O	ST	1						
RE8	—	18	A11	I/O	ST	-						
RE9	—	19	B10	I/O	ST							
RF0	58	87	B49	I/O	ST							
RF1	59	88	A60	I/O	ST							
RF2	34(1)	52	A36	I/O	ST							
RF3	33	51	A35	I/O	ST							
RF4	31	49	B27	I/O	ST]						
RF5	32	50	A32	I/O	ST	PORTF is a bidirectional I/O port						
RF6	35(1)	55(1)	B30 ⁽¹⁾	I/O	ST							
RF7	—	54(1)	A37 ⁽¹⁾	I/O	ST	1						
RF8	—	53	B29	I/O	ST	1						
RF12	—	40	A27	I/O	ST							
RF13	—	39	B22	I/O	ST							
RG0		90	A61	I/O	ST							
RG1		89	B50	I/O	ST							
RG2	37(1)	57(1)	B31	I/O	ST							
RG3	36 ⁽¹⁾	56 ⁽¹⁾	A38	I/O	ST							
RG6	4	10	A7	I/O	ST							
RG7	5	11	B6	I/O	ST	POPTC is a hidiractional 1/0 part						
RG8	6	12	A8	I/O	ST	PORTG is a bidirectional I/O port						
RG9	8	14	A9	I/O	ST							
RG12	—	96	A65	I/O	ST]						
RG13	—	97	B55	I/O	ST]						
RG14	—	95	B54	I/O	ST]						
RG15	_	1	A2	I/O	ST							
T1CK	48	74	B40	I	ST	Timer1 External Clock Input						
T2CK	PPS	PPS	PPS	I	ST	Timer2 External Clock Input						
ТЗСК	PPS	PPS	PPS	I	ST	Timer3 External Clock Input						
T4CK	PPS	PPS	PPS	I	ST	Timer4 External Clock Input						
T5CK	PPS	PPS	PPS	1	ST	Timer4 External Clock Input						

TABLE 1-1-PINOLIT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module. 2: This pin is only available on devices with a USB module.

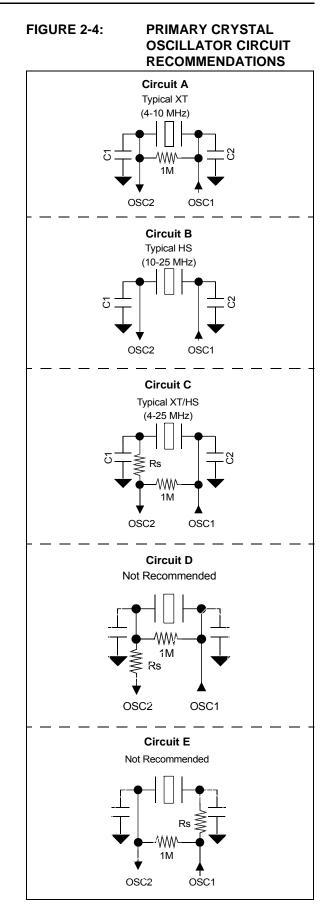

3: This pin is not available on 64-pin devices.

2.8.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION

The following example assumptions are used to calculate the Primary Oscillator loading capacitor values:

- CIN = PIC32_OSC2_Pin Capacitance = ~4-5 pF
- COUT = PIC32_OSC1_Pin Capacitance = ~4-5 pF
- C1 and C2 = XTAL manufacturing recommended loading capacitance
- Estimated PCB stray capacitance, (i.e.,12 mm length) = 2.5 pF

EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR CALCULATION



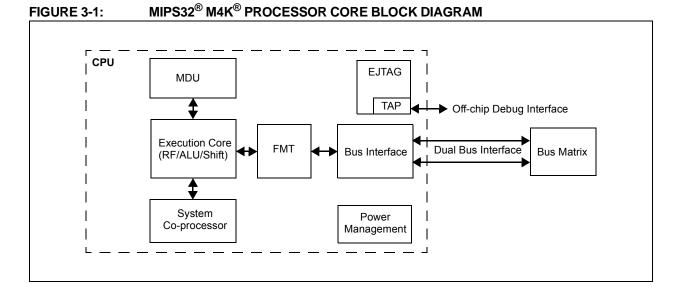
The following tips are used to increase oscillator gain, (i.e., to increase peak-to-peak oscillator signal):

- Select a crystal with a lower "minimum" power drive rating
- Select an crystal oscillator with a lower XTAL manufacturing "ESR" rating.
- Add a parallel resistor across the crystal. The smaller the resistor value the greater the gain. It is recommended to stay in the range of 600k to 1M
- C1 and C2 values also affect the gain of the oscillator. The lower the values, the higher the gain.
- C2/C1 ratio also affects gain. To increase the gain, make C1 slightly smaller than C2, which will also help start-up performance.
- Note: Do not add excessive gain such that the oscillator signal is clipped, flat on top of the sine wave. If so, you need to reduce the gain or add a series resistor, RS, as shown in circuit "C" in Figure 2-4. Failure to do so will stress and age the crystal, which can result in an early failure. Adjust the gain to trim the max peak-to-peak to ~VDD-0.6V. When measuring the oscillator signal you must use a FET scope probe or a probe with ≤ 1.5 pF or the scope probe itself will unduly change the gain and peak-to-peak levels.

2.8.1.1 Additional Microchip References

- AN588 "PICmicro[®] Microcontroller Oscillator Design Guide"
- AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849 "Basic PICmicro[®] Oscillator Design"

3.0 CPU


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS60001113), which is available from the *Documentation > Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). Resources for the MIPS32[®] M4K[®] Processor Core are available at http://www.imgtec.com.

The the MIPS32[®] M4K[®] Processor Core is the heart of the PIC32MX330/350/370/430/450/470 device processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations.

3.1 Features

- 5-stage pipeline
- · 32-bit address and data paths
- MIPS32[®] Enhanced Architecture (Release 2):
 - Multiply-accumulate and multiply-subtract instructions
 - Targeted multiply instruction
 - Zero/One detect instructions
 - WAIT instruction
 - Conditional move instructions (MOVN, MOVZ)
 - Vectored interrupts
 - Programmable exception vector base
 - Atomic interrupt enable/disable
 - GPR shadow registers to minimize latency for interrupt handlers
 - Bit field manipulation instructions

- MIPS16e[®] Code Compression:
 - 16-bit encoding of 32-bit instructions to improve code density
 - Special PC-relative instructions for efficient loading of addresses and constants
 - SAVE and RESTORE macro instructions for setting up and tearing down stack frames within subroutines
 - Improved support for handling 8 and 16-bit data types
- Simple Fixed Mapping Translation (FMT) Mechanism:
- Simple Dual Bus Interface:
 - Independent 32-bit address and data buses
 - Transactions can be aborted to improve interrupt latency
- Autonomous Multiply/Divide Unit (MDU):
 - Maximum issue rate of one 32x16 multiply per clock
 - Maximum issue rate of one 32x32 multiply every other clock
 - Early-in iterative divide. Minimum 11 and maximum 33 clock latency (dividend (*rs*) sign extension-dependent)
- · Power Control:
 - Minimum frequency: 0 MHz
 - Low-Power mode (triggered by WAIT instruction)
 - Extensive use of local gated clocks
- EJTAG Debug and Instruction Trace:
 - Support for single stepping
 - Virtual instruction and data address/value
 - Breakpoints

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_	_	_	—	_	—	—	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	_	_	_	—	_	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
15:8	BMXDUDBA<15:8>										
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
7:0				BMXDU	DBA<7:0>						

REGISTER 4-3: BMXDUDBA: DATA RAM USER DATA BASE ADDRESS REGISTER

Legend:

Legena:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUDBA<15:10>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM, the value must be greater than BMXDKPBA.

bit 9-0 BMXDUDBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	—	—	—	—	—	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	-	—	—	—		_
45.0	R/W-0	R/W-0	R-0	R-0	R-0	U-0	U-0	U-0
15:8	WR	WREN	WRERR ⁽¹⁾	LVDERR ⁽¹⁾	LVDSTAT ⁽¹⁾	—	—	_
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	—	—		—		NVMOF	°<3:0>	

REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15	WR: Write Control bit
	This bit is writable when WREN = 1 and the unlock sequence is followed.
	1 = Initiate a Flash operation. Hardware clears this bit when the operation completes
	0 = Flash operation complete or inactive
bit 14	WREN: Write Enable bit
	1 = Enable writes to WR bit and enables LVD circuit
	0 = Disable writes to WR bit and disables LVD circuit
	This is the only bit in this register reset by a device Reset.
bit 13	WRERR: Write Error bit ⁽¹⁾
	This bit is read-only and is automatically set by hardware.
	1 = Program or erase sequence did not complete successfully
	0 = Program or erase sequence completed normally
bit 12	LVDERR: Low-Voltage Detect Error bit (LVD circuit must be enabled) ⁽¹⁾
	This bit is read-only and is automatically set by hardware.
	1 = Low-voltage detected (possible data corruption, if WRERR is set)
	0 = Voltage level is acceptable for programming
bit 11	LVDSTAT: Low-Voltage Detect Status bit (LVD circuit must be enabled) ⁽¹⁾
	This bit is read-only and is automatically set, and cleared, by hardware.
	1 = Low-voltage event active
	0 = Low-voltage event NOT active
bit 10-4	Unimplemented: Read as '0'
bit 3-0	NVMOP<3:0>: NVM Operation bits
	These bits are writable when WREN = 0.
	1111 = Reserved
	•
	0111 = Reserved
	0110 = No operation
	0101 = Program Flash (PFM) erase operation: erases PFM, if all pages are not write-protected
	0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
	0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected 0010 = No operation
	0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected
	0000 = No operation

Note 1: This bit is cleared by setting NVMOP = 0000, and initiating a Flash operation (i.e., WR).

Oscillator Control Registers 8.1

TAB	TABLE 8-1: OSCILLATOR CONTROL REGISTER MAP																		
ess		0									Bits								6
Virtual Address (BF80_#) Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset	
E000	F000 OSCCON	31:16 — — PLLODIV<2:0>		>				SOSCRDY	SOSCRDY PBDIVRDY PBDIV<1:0>			PLLMULT<2:0>		x1xx ⁽²⁾					
F000	USCCON	15:0	_		COSC<2:	0>	_		NOSC<2:0)>	CLKLOCK	ULOCK ⁽⁴⁾	SLOCK	SLPEN	CF	UFRCEN ⁽⁴⁾	SOSCEN	OSWEN	xxxx ⁽²⁾
F010	OSCTUN	31:16	—	_	_	_	_	—	—		_	—	_	_		—	_	_	0000
1010	030101	15:0	—	_		—	—	—	—		-	_			TUN	\<5:0>			0000
5000	REFOCON	31:16	_								RODIV<	4:0>							0000
F020	REFUCUN	15:0	ON	—	SIDL	OE	RSLP	—	DIVSWEN	ACTIVE	—	—	—	—		ROSE	L<3:0>		0000
5000	DEFOTDIM	31:16				I	ROTRIM<	8:0>				_		_	_	_	_	—	0000
F030 H	REFOTRIM	15:0	_	_		_	_	_	_		—	_		_		_		_	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

Reset values are dependent on the DEVCFGx Configuration bits and the type of reset. 2:

This bit is only available on devices with a USB module. 3:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	—	_	_		_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
23:16	—	—	—	_	—	—	_	CHECOH
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	—	—	—	-	—	_	DCSZ	2<1:0>
7.0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
7:0	_	—	PREFEN<1:0>		_	PFMWS<2:0>		>

REGISTER 9-1: CHECON: CACHE CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-17 Unimplemented: Write '0'; ignore read

- bit 16 CHECOH: Cache Coherency Setting on a PFM Program Cycle bit
 - 1 = Invalidate all data and instruction lines
 - 0 = Invalidate all data lnes and instruction lines that are not locked
- bit 15-10 Unimplemented: Write '0'; ignore read
- bit 9-8 DCSZ<1:0>: Data Cache Size in Lines bits
 - 11 = Enable data caching with a size of 4 Lines
 - 10 = Enable data caching with a size of 2 Lines
 - 01 = Enable data caching with a size of 1 Line
 - 00 = Disable data caching

Changing these bits induce all lines to be reinitialized to the "invalid" state.

bit 7-6 **Unimplemented:** Write '0'; ignore read

bit 5-4 **PREFEN<1:0>:** Predictive Prefetch Enable bits

- 11 = Enable predictive prefetch for both cacheable and non-cacheable regions
- 10 = Enable predictive prefetch for non-cacheable regions only
- 01 = Enable predictive prefetch for cacheable regions only
- 00 = Disable predictive prefetch
- bit 3 Unimplemented: Write '0'; ignore read

bit 2-0 PFMWS<2:0>: PFM Access Time Defined in Terms of SYSLK Wait States bits

- 111 = Seven Wait states
- 110 = Six Wait states
- 101 = Five Wait states
- 100 = Four Wait states
- 011 = Three Wait states
- 010 = Two Wait states
- 001 = One Wait state
- 000 = Zero Wait state

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
51.24	LTAGBOOT	—	—	—	—	-	_	—			
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
23:16	LTAG<19:12>										
15:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
15:8	LTAG<11:4>										
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-0	R/W-0	R/W-1	U-0			
7.0		LTAG<	<3:0>		LVALID	LLOCK	LTYPE	—			

REGISTER 9-3: CHETAG: CACHE TAG REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31 LTAGBOOT: Line TAG Address Boot bit

- 1 = The line is in the 0x1D000000 (physical) area of memory
- 0 = The line is in the 0x1FC00000 (physical) area of memory

bit 30-24 Unimplemented: Write '0'; ignore read

bit 23-4 LTAG<19:0>: Line TAG Address bits

LTAG<19:0> bits are compared against physical address to determine a hit. Because its address range and position of PFM in kernel space and user space, the LTAG PFM address is identical for virtual addresses, (system) physical addresses, and PFM physical addresses.

bit 3 LVALID: Line Valid bit

- 1 = The line is valid and is compared to the physical address for hit detection
- 0 = The line is not valid and is not compared to the physical address for hit detection

bit 2 LLOCK: Line Lock bit

- 1 = The line is locked and will not be replaced
- 0 = The line is not locked and can be replaced

bit 1 LTYPE: Line Type bit

- 1 = The line caches instruction words
- 0 = The line caches data words
- bit 0 Unimplemented: Write '0'; ignore read

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	-	—	_	-	—	_	—	—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	-	—	_	-	—	_	—	—	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15.0		_	_		_	-		_	
7.0	R-0	U-0	R-0	U-0	R-0	R-0	U-0	R-0	
7:0	ID	—	LSTATE		SESVD	SESEND		VBUSVD	

REGISTER 11-3: U1OTGSTAT: USB OTG STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 ID: ID Pin State Indicator bit
 - 1 = No cable is attached or a Type-B cable has been plugged into the USB receptacle
 - 0 = A Type-A cable has been plugged into the USB receptacle
- bit 6 Unimplemented: Read as '0'
- bit 5 LSTATE: Line State Stable Indicator bit
 - 1 = USB line state (U1CON<SE0> and U1CON<JSTATE>) has been stable for the previous 1 ms
 - 0 = USB line state (U1CON<SE0> and U1CON<JSTATE>) has not been stable for the previous 1 ms

bit 4 Unimplemented: Read as '0'

- bit 3 SESVD: Session Valid Indicator bit
 - 1 = VBUS voltage is above Session Valid on the A or B device
 - 0 = VBUS voltage is below Session Valid on the A or B device
- bit 2 SESEND: B-Device Session End Indicator bit
 - 1 = VBUS voltage is below Session Valid on the B device
 - 0 = VBUS voltage is above Session Valid on the B device

bit 1 Unimplemented: Read as '0'

- bit 0 VBUSVD: A-Device VBUS Valid Indicator bit
 - 1 = VBUS voltage is above Session Valid on the A device
 - 0 = VBUS voltage is below Session Valid on the A device

REGISTER 11-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER (CONTINUED)

- bit 1 CRC5EF: CRC5 Host Error Flag bit⁽⁴⁾
 - 1 = Token packet is rejected due to CRC5 error
 - 0 = Token packet is accepted
 - EOFEF: EOF Error Flag bit^(3,5)
 - 1 = EOF error condition is detected
 - 0 = No EOF error condition
- bit 0 PIDEF: PID Check Failure Flag bit
 - 1 = PID check is failed
 - 0 = PID check is passed
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

TABLE 12-16:PORTG REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H,
PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY

ess		6								Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600	ANSELG	31:16	_	-	_	_	_		—	_	_	—			_	—	_	_	0000
0000	ANSELG	15:0		-	-	-	-		ANSELG9	ANSELG8	ANSELG7	ANSELG6			_	—	—	—	01C0
6610	TRISG	31:16	_	-	_	_	_		—	—	-	—	_	_	—	—	_	—	0000
0010	TRISO	15:0	_	_	_	_	_	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	_	—	xxxx
6620	PORTG	31:16	_		-	_	-		_	_		—	_		_	—	_	_	0000
0020	FURIO	15:0	_		-	_	-		RG9	RG8	RG7	RG6	_		RG3 ⁽²⁾	RG2 ⁽²⁾	_	_	xxxx
6630	LATG	31:16	_		-	—			—	—		—	-		—	—	—	—	0000
0030	LAIO	15:0	_	—	—	—	—	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	—	—	xxxx
6640	ODCG	31:16	_	—	—	—	—	_	—	—	_	—	_	_	—	—	—	—	0000
0040	0000	15:0	_	—	—	—	—	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	—	—	xxxx
6650	CNPUG	31:16	—	_	—	—	—		—	—		—	—		—	—	_	—	0000
0000		15:0	—	_	—	—	—		CNPUG9	CNPUG8	CNPUG7	CNPUG6	—		CNPUG3	CNPUG2	_	—	xxxx
6660	CNPDG	31:16	—	_	—	—	_		—	—		—	—	_	—	—	_	—	0000
0000		15:0	—	_	—	—	_		CNPDG9	CNPDG8	CNPDG7	CNPDG6	—	_	CNPDG3	CNPDG2	_	—	xxxx
6670	CNCONG	31:16	—	_	—	—	_		—	_		—	—	_	—	—	_	—	0000
0070	oncono	15:0	ON	_	SIDL	—	_		—	_		—	—	_	—	—	_	—	0000
6680	CNENG	31:16	—	_	—	—	_		—	_		—	—	_	—	—	_	—	0000
0000	ONLING	15:0	—	_	—	—	_		CNIEG9	CNIEG8	CNIEG7	CNIEG6	—	_	CNIEG3	CNIEG2	_	—	xxxx
		31:16	—	_	—	—	—		—	_	_	—	—		—	—	_	—	0000
6690	CNSTATG	15:0	—	-	_	—	_	-	CN STATG9	CN STATG8	CN STATG7	CN STATG6	—		CN STATG3	CN STATG2	—	—	xxxx

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: This bit is only available on devices without a USB module.

13.0 TIMER1


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14. "Timers"** (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

This family of PIC32 devices features one synchronous/ asynchronous 16-bit timer that can operate as a freerunning interval timer for various timing applications and counting external events. This timer can also be used with the Low-Power Secondary Oscillator (Sosc) for Real-Time Clock (RTC) applications. The following modes are supported:

- · Synchronous Internal Timer
- Synchronous Internal Gated Timer
- Synchronous External Timer
- Asynchronous External Timer

13.1 Additional Supported Features

- · Selectable clock prescaler
- Timer operation during CPU Idle and Sleep mode
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a Real-Time Clock (RTC)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_		_	_	_	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_			_	_	_	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	_	SIDL	TWDIS	TWIP	_	_	—
7.0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
7:0	TGATE		TCKPS<1:0>		_	TSYNC	TCS	_

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

= Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

Unimplemented: Read as 0
ON: Timer On bit ⁽¹⁾
1 = Timer is enabled
0 = Timer is disabled
Unimplemented: Read as '0'
SIDL: Stop in Idle Mode bit
1 = Discontinue operation when device enters Idle mode0 = Continue operation even in Idle mode
TWDIS: Asynchronous Timer Write Disable bit
1 = Writes to TMR1 are ignored until pending write operation completes0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)
TWIP: Asynchronous Timer Write in Progress bit
In Asynchronous Timer mode:
1 = Asynchronous write to TMR1 register in progress0 = Asynchronous write to TMR1 register complete
In Synchronous Timer mode: This bit is read as '0'
Unimplemented: Read as '0'
TGATE: Timer Gated Time Accumulation Enable bit
When $TCS = 1$:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation is enabled
0 = Gated time accumulation is disabled
Unimplemented: Read as '0'
TCKPS<1:0>: Timer Input Clock Prescale Select bits
11 = 1:256 prescale value 10 = 1:64 prescale value
01 = 1:8 prescale value
00 = 1:1 prescale value
Unimplemented: Read as '0'

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGIST	ER 18-1:	SPIxCON: S	SPI CONTROL REGISTER (CONTINUED)						
bit 17			e Edge Select bit (Framed SPI mode only)						
			on pulse coincides with the first bit clock						
h:+ 40		 Frame synchronization pulse precedes the first bit clock ENHBUF: Enhanced Buffer Enable bit⁽²⁾ 							
bit 16		ed Buffer mo							
		ed Buffer mod							
bit 15		ripheral On bi							
		ripheral is ena							
		ripheral is dis							
bit 14	Unimpleme	ented: Read a	as '0'						
bit 13	SIDL: Stop	in Idle Mode b	pit						
		•	n when CPU enters in Idle mode						
		ue operation i							
bit 12		isable SDOx							
			d by the module. Pin is controlled by associated PORT register ed by the module						
bit 11-10			t Communication Select bits						
	When AUD		Communication Select bits						
	MODE32	MODE16	Communication						
	1	1	24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame						
	1	0	32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame						
	0	1	16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame						
	0	0	16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame						
	When AUD	FN = 0:							
	MODE32	MODE16	Communication						
	1	x	32-bit						
	0	1	16-bit						
	0	0	8-bit						
bit 9			nple Phase bit						
		<u>le (MSTEN =</u> ata sampled a	\pm). at end of data output time						
			at middle of data output time						
		• (MSTEN = 0							
		-	en SPI is used in Slave mode. The module always uses SMP = 0.						
bit 8		lock Edge Se							
			anges on transition from active clock state to Idle clock state (see CKP bit) anges on transition from Idle clock state to active clock state (see CKP bit)						
bit 7		-	ble (Slave mode) bit						
		n used for Sla							
			Slave mode, pin controlled by port function.						
bit 6		Polarity Sele							
	1 = Idle sta	te for clock is	a high level; active state is a low level						
			a low level; active state is a high level						
bit 5		aster Mode Er	hable bit						
	1 = Master 0 = Slave r								
		lieue							
Note 1:	When using	g the 1:1 PBC	LK divisor, the user software should not read or write the peripheral's SFRs in the						
		-	ely following the instruction that clears the module's ON bit.						
2:	This bit car	n only be writte	en when the ON bit = 0.						
3:	This bit is r mode (FRN		e Framed SPI mode. The user should program this bit to '0' for the Framed SPI						
4:	-	-	PI module functions as if the CKP bit is equal to '1', regardless of the actual value						
	of CKP.	<u> </u>							

REGISTER 19-1: I2CxCON: I²C CONTROL REGISTER

	-							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	—	—	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	_	_	_	_
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
15:8	0N ⁽¹⁾	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
7:0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN

Legend:	HC = Cleared in Hardware				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

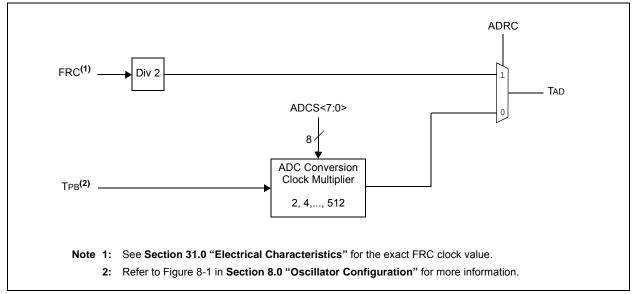
- bit 15 **ON:** I²C Enable bit⁽¹⁾
 - 1 = Enables the I^2C module and configures the SDA and SCL pins as serial port pins
 - 0 = Disables the I^2 C module; all I^2 C pins are controlled by PORT functions
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
 - **SCLREL:** SCLx Release Control bit (when operating as I²C slave)
 - 1 = Release SCLx clock

bit 12

- 0 = Hold SCLx clock low (clock stretch)
- If STREN = 1:

Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.

If STREN = 0:


Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission.

- bit 11 STRICT: Strict I²C Reserved Address Rule Enable bit
 - 1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space.
 - 0 = Strict I²C Reserved Address Rule is not enabled

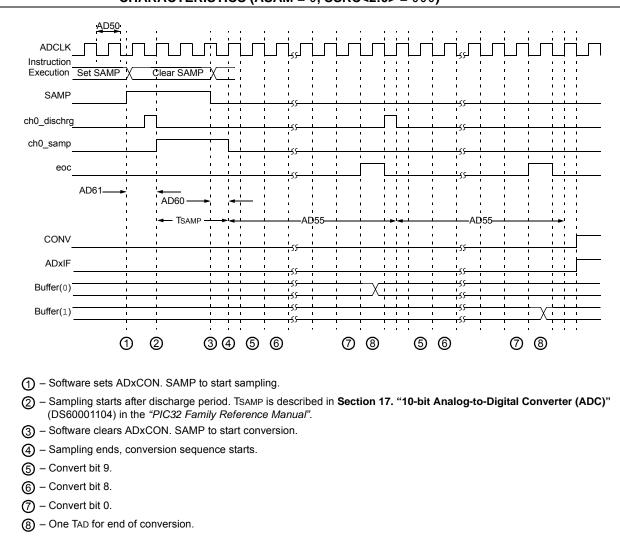
bit 10 A10M: 10-bit Slave Address bit

- 1 = I2CxADD is a 10-bit slave address
- 0 = I2CxADD is a 7-bit slave address
- bit 9 **DISSLW:** Disable Slew Rate Control bit
 - 1 = Slew rate control is disabled
 - 0 = Slew rate control is enabled
- bit 8 SMEN: SMBus Input Levels bit
 - 1 = Enable I/O pin thresholds compliant with SMBus specification
 - 0 = Disable SMBus input thresholds
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

FIGURE 23-2: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

REGISTER 23-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

bit 4 **CLRASAM:** Stop Conversion Sequence bit (when the first ADC interrupt is generated)


- 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated.
- 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
- bit 3 Unimplemented: Read as '0'
- bit 2 ASAM: ADC Sample Auto-Start bit
 - 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set.
 0 = Sampling begins when SAMP bit is set
- bit 1 **SAMP:** ADC Sample Enable bit⁽²⁾
 - 1 = The ADC sample and hold amplifier is sampling
 - 0 = The ADC sample/hold amplifier is holding
 - When ASAM = 0, writing '1' to this bit starts sampling.
 - When SSRC = 000, writing '0' to this bit will end sampling and start conversion.
- bit 0 **DONE:** Analog-to-Digital Conversion Status bit⁽³⁾
 - 1 = Analog-to-digital conversion is done
 - 0 = Analog-to-digital conversion is not done or has not started

Clearing this bit will not affect any operation in progress.

- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ 0, this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when ADC is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

- bit 10 EDGSEQEN: Edge Sequence Enable bit 1 = Edge 1 must occur before Edge 2 can occur 0 = No edge sequence is needed bit 9 **IDISSEN:** Analog Current Source Control bit⁽²⁾ 1 = Analog current source output is grounded 0 = Analog current source output is not grounded CTTRIG: Trigger Control bit bit 8 1 = Trigger output is enabled 0 = Trigger output is disabled bit 7-2 ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current 011110 000001 = Minimum positive change from nominal current 000000 = Nominal current output specified by IRNG<1:0> 1111111 = Minimum negative change from nominal current 100010 100001 = Maximum negative change from nominal current IRNG<1:0>: Current Range Select bits⁽³⁾ bit 1-0 11 = 100 times base current 10 = 10 times base current 01 = Base current level 00 = 1000 times base current⁽⁴⁾
- Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

FIGURE 31-18: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)

0

Oscillator Configuration	73
Output Compare	
Р	
Packaging	
Details	
Marking	
Parallel Master Port (PMP)	213
PIC32 Family USB Interface Diagram	114
Pinout I/O Descriptions (table)	
Power-on Reset (POR)	
and On-Chip Voltage Regulator	
Power-Saving Features	
CPU Halted Methods	
Operation	
with CPU Running	
Prefetch Cache	83
R	

Real	-Time Clock and Calendar (RTCC)	 223
Regi	ster Map	
	ADC	 235
	Bus Matrix	 45
	Comparator	 244
	Comparator Voltage Reference	
	CTMU	 252
	Device and Revision ID Summary	 262
	Device Configuration Word Summary	
	DMA Channel 0-3	 95
	DMA CRC	
	DMA Global	
	Flash Controller	 54
	I2C1 and I2C2	
	Interrupt	
	Output Compare1-5	
	Parallel Master Port	
	Peripheral Pin Select Input	
	Peripheral Pin Select Output	
	PORTA	
	PORTB	
	PORTC	
	PORTD	
	PORTE	
	PORTF	
	PORTG	
	Prefetch	
	RTCC	
	SPI1 and SPI2	
	System Control	
	Timer1-5	
	UART1-5	
	USB	
Dogi	sters	 115
Regi	[pin name]R (Peripheral Pin Select Input)	165
	AD1CHS (ADC Input Select)	
	AD1CON1 (A/D Control 1)	
	AD1CON1 (A/D Control 1)	
	AD1CON2 (ADC Control 2)	
	AD1CON3 (ADC Control 3)	
	AD1CSSL (ADC Input Scan Select)	
	ALRMDATE (Alarm Date Value)	
	ALRMDATECLR (ALRMDATE Clear)	
	ALRMDATESET (ALRMDATE Set)	
	ALRMTIME (Alarm Time Value)	 231

ALRMTIMECLR (ALRMTIME Clear)	232
ALRMTIMEINV (ALRMTIME Invert)	
ALRMTIMESET (ALRMTIME Set).	
BMXBOOTSZ (Boot Flash (IFM) Size	51
BMXCON (Bus Matrix Configuration)	46
BMXDKPBA (Data RAM Kernel Program	
Base Address)	47
BMXDRMSZ (Data RAM Size Register)	
BMXDUDBA (Data RAM User Data Base Address).	48
BMXDUPBA (Data RAM User Program	
Base Address)	49
BMXPFMSZ (Program Flash (PFM) Size)	51
BMXPUPBA (Program Flash (PFM) User Program	
Base Address)	50
CHEACC (Cache Access)	86
CHECON (Cache Control)	85
CHEHIT (Cache Hit Statistics)	
CHELRU (Cache LRU)	90
CHEMIS (Cache Miss Statistics)	91
CHEMSK (Cache TAG Mask)	88
CHETAG (Cache TAG)	87
CHEW0 (Cache Word 0)	88
CHEW1 (Cache Word 1)	89
CHEW2 (Cache Word 2)	
CHEW3 (Cache Word 3)	90
CM1CON (Comparator 1 Control)	
CMSTAT (Comparator Control Register)	
CNCONx (Change Notice Control for PORTx)	166
CTMUCON (CTMU Control)	
CVRCON (Comparator Voltage Reference Control)	
DCHxCON (DMA Channel x Control)	
DCHxCPTR (DMA Channel x Cell Pointer)	
DCHxCSIZ (DMA Channel x Cell-Size)	
DCHxDAT (DMA Channel x Pattern Data)	
DCHxDPTR (Channel x Destination Pointer)	
DCHxDSA (DMA Channel x Destination	
Start Address)	107
DCHxDSIZ (DMA Channel x Destination Size)	
DCHxECON (DMA Channel x Event Control)	104
DCHxINT (DMA Channel x Interrupt Control)	105
DCHxSPTR (DMA Channel x Source Pointer)	109
DCHxSSA (DMA Channel x Source Start Address).	107
DCHxSSIZ (DMA Channel x Source Size)	108
DCRCCON (DMA CRC Control)	100
DCRCDATA (DMA CRC Data)	102
DCRCXOR (DMA CRCXOR Enable)	102
DEVCFG0 (Device Configuration Word 0	
DEVCFG1 (Device Configuration Word 1	265
DEVCFG2 (Device Configuration Word 2	267
DEVCFG3 (Device Configuration Word 3	269
DEVID (Device and Revision ID)	271
DMAADDR (DMA Address)	99
DMAADDR (DMR Address)	99
DMACON (DMA Controller Control)	
DMASTAT (DMA Status)	99
I2CxCON (I2C Control)	200
I2CxSTAT (I2C Status)	
ICxCON (Input Capture x Control)	182
IFSx (Interrupt Flag Status)	70
INTCON (Interrupt Control)	68
INTSTAT (Interrupt Status)	69
IPCx (Interrupt Priority Control)	71
IPTMR Interrupt Proximity Timer)	69
NVMADDR (Flash Address)	56
NVMCON (Programming Control)	55