

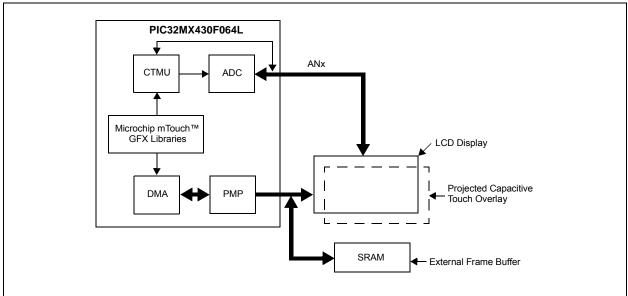
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	81
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx450f256l-v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-8: LOW-COST CONTROLLERLESS (LCC) GRAPHICS APPLICATION WITH PROJECTED CAPACITIVE TOUCH

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	_	_	_	_	—		—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	_	_	—	_	_	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0		
15:8	BMXDKPBA<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0		BMXDKPBA<7:0>								

REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 **BMXDKPBA<15:10>:** DRM Kernel Program Base Address bits When non-zero, this value selects the relative base address for kernel program space in RAM

bit 9-0 BMXDKPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	_	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—	—	—	—	
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
15:8	_	—	_	—	—	SRIPL<2:0> ⁽¹⁾			
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	_	—			VEC	<5:0>(1)			

REGISTER 7-2: INTSTAT: INTERRUPT STATUS REGISTER

Legend:

Logonan						
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-11 Unimplemented: Read as '0'

- bit 10-8 **SRIPL<2:0>:** Requested Priority Level bits⁽¹⁾ 111-000 = The priority level of the latest interrupt presented to the CPU
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 VEC<5:0>: Interrupt Vector bits⁽¹⁾ 11111-00000 = The interrupt vector that is presented to the CPU
- Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

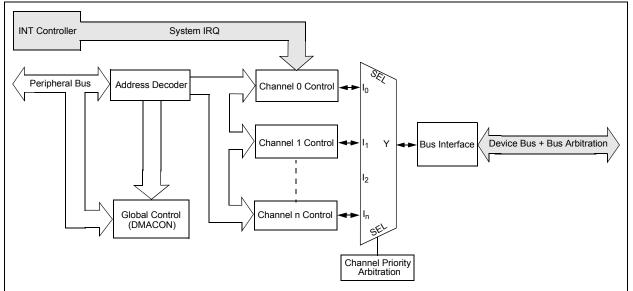
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24				IPTMF	<31:24>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	IPTMR<23:16>								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	IPTMR<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	IPTMR<7:0>								

REGISTER 7-3: IPTMR: INTERRUPT PROXIMITY TIMER REGISTER

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bi	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 **IPTMR<31:0>:** Interrupt Proximity Timer Reload bits Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32 Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32 (such as Peripheral Bus (PBUS) devices: SPI, UART, PMP, etc.) or memory itself.

Following are some of the key features of the DMA controller module:

- Four identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination

- Fixed priority channel arbitration
- · Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- · Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Pattern (data) match transfer termination
- · Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- · CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 10-1: DMA BLOCK DIAGRAM

INE OIDTE	REGISTER 10-8. DEFRECON: DMA CHANNEL & EVENT CONTROL REGISTER								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24		—	_	—	—	_	—	—	
22:16	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
23:16	CHAIRQ<7:0> ⁽¹⁾								
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
15:8	CHSIRQ<7:0> ⁽¹⁾								
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN				

REGISTER 10-8 DCHxECON: DMA CHANNEL 'x' EVENT CONTROL REGISTER

Legend:	S = Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-24 Unimplemented: Read as '0'

bit 31-24	Unimplemented: Read as '0'
bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag
	00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer
h:4 7	
bit 7	CFORCE: DMA Forced Transfer bit
	1 = A DMA transfer is forced to begin when this bit is written to a '1'
	0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	1 = A DMA transfer is aborted when this bit is written to a '1'
	0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	1 = Abort transfer and clear CHEN on pattern match
	0 = Pattern match is disabled
bit 4	SIRQEN: Channel Start IRQ Enable bit
	1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs

- Start channel cell transfer if an interrupt matching CHSIRQ occurs 0 = Interrupt number CHSIRQ is ignored and does not start a transfer
- bit 3 AIRQEN: Channel Abort IRQ Enable bit
 - 1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
 - 0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
- bit 2-0 Unimplemented: Read as '0'
- Note 1: See Table 7-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	-	-	-	-	—	-	—			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	-		-				—			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15.6	-	-	-	-	—	-	—	-		
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS		
7:0	DISEE	DMYEE	DMAEF ⁽¹⁾	BTOEF ⁽²⁾	DFN8EF	CRC16EF	CRC5EF ⁽⁴⁾	DIDEE		
	BTSEF B	BMXEF DMAEF ⁽¹⁾	BIUEF-	DENGER	UKU IDEF	EOFEF ^(3,5)	PIDEF			

REGISTER 11-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 BTSEF: Bit Stuff Error Flag bit
 - 1 = Packet is rejected due to bit stuff error
 - 0 = Packet is accepted
- bit 6 BMXEF: Bus Matrix Error Flag bit
 1 = The base address, of the BDT, or the address of an individual buffer pointed to by a BDT entry, is invalid.
 0 = No address error
- bit 5 **DMAEF:** DMA Error Flag bit⁽¹⁾ 1 = USB DMA error condition detected
 - 0 = No DMA error
- bit 4 **BTOEF:** Bus Turnaround Time-Out Error Flag bit⁽²⁾
 - 1 = Bus turnaround time-out has occurred
 - 0 = No bus turnaround time-out

bit 3 **DFN8EF:** Data Field Size Error Flag bit

- 1 = Data field received is not an integral number of bytes
- 0 = Data field received is an integral number of bytes

bit 2 CRC16EF: CRC16 Failure Flag bit

- 1 = Data packet rejected due to CRC16 error
- 0 = Data packet accepted
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

TABLE 12-1: INPUT PIN SELECTION

Peripheral Pin	[pin name]R SFR	[pin name]R bits	[<i>pin name</i>]R Value to RPn Pin Selection			
INT3	INT3R	INT3R<3:0>	0000 = RPD2 0001 = RPG8			
T2CK	T2CKR	T2CKR<3:0>	0010 = RPF4 0011 = RPD10			
IC3	IC3R	IC3R<3:0>	0100 = RPF1 0101 = RPB9			
U1RX	U1RXR	U1RXR<3:0>				
U2RX	U2RXR	U2RXR<3:0>	1000 - RFB3 1001 = Reserved 1010 = RPC1 ⁽³⁾			
U5CTS	U5CTSR ⁽³⁾	U5CTSR<3:0>	$\frac{1011}{1011} = \text{RPD14(3)}$ 1100 = RPG1(3)			
REFCLKI	REFCLKIR	REFCLKIR<3:0>	1100 = RPA14 ⁽³⁾ 1110 = Reserved 1111 = RPF2 ⁽¹⁾			
INT4	INT4R	INT4R<3:0>	0000 = RPD3 0001 = RPG7			
T5CK IC4	T5CKR	T5CKR<3:0>	0010 = RPF5 0011 = RPD11			
	IC4R	IC4R<3:0>	0100 = RPF0 0101 = RPB1			
U3RX	U3RXR	U3RXR<3:0>				
U4CTS	U4CTSR	U4CTSR<3:0>	1001 = Reserved 1010 = RPC4 ⁽³⁾ 1011 = RPD15 ⁽³⁾ 1100 = RPG0 ⁽³⁾			
SDI1	SDI1R	SDI1R<3:0>				
SDI2	SDI2R	SDI2R<3:0>	1101 = RPA15 ⁽³⁾ 1110 = RPF2 ⁽¹⁾ 1111 = RPF7 ⁽²⁾			
INT2	INT2R	INT2R<3:0>	0000 = RPD9 0001 = RPG6			
T4CK	T4CKR	T4CKR<3:0>	0010 = RPB8 0011 = RPB15			
IC2	IC2R	IC2R<3:0>	0100 = RPD4 0101 = RPB0			
IC5	IC5R	IC5R<3:0>	0110 = RPE3 0111 = RPB7			
U1CTS	U1CTSR	U1CTSR<3:0>	1000 = Reserved 1001 = RPF12 ⁽³⁾ 1010 = RPD12 ⁽³⁾ 1011 = RPF8 ⁽³⁾ 1100 = RPC3 ⁽³⁾			
U2CTS	U2CTSR	U2CTSR<3:0>				
SS1	SS1R	SS1R<3:0>	1101 = RPE9 ⁽³⁾ 1110 = Reserved			
			1111 = RPB2			

Note 1: This selection is not available on 64-pin USB devices.

2: This selection is only available on 100-pin General Purpose devices.

3: This selection is not available on 64-pin USB and General Purpose devices.

4: This selection is only available on General Purpose devices.

		P	C32MX	430F064	L, PIC3	2MX450	F128L,	PIC32M	X450F2	56L, AN	ID PIC3	2MX47	0F512L	DEVIC	ES ONL	.Y			
ess										Bits	6								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6300	ANSELD	31:16		—	—	—	—		—	—	—		—	—	—		—		0000
		15:0	_	—	—	_	—	—	—	—	—	_	—	—	ANSELD3	ANSELD2	ANSELD1	_	000E
6310	TRISD	31:16	_	—	—	—	—	—	—	—	—		—	_	_	_	—	_	0000
	_	15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	xxxx
5320	PORTD	31:16	_	—	_	—	—	—	—	—	—		—	—		—	—	_	0000
	_	15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
6330	LATD	31:16		—	—	—	—	—	—	—	—	—	—	—	—		—	—	0000
		15:0	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	XXXX
6340	ODCD	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	_	0000
		15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	xxxx
6350	CNPUD	31:16	-	—	—	—	—	-	—	—	—	—	—	—	—	—	—	-	0000
		15:0	CNPUD15	CNPUD14	CNPUD13	CNPUD12	CNPUD11	CNPUD10		CNPUD8	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	xxxx
6360	CNPDD	31:16	-	—	—	—	—	-	—	—	—	—	—	—	—	—	—	_	0000
			CNPDD15	-	CNPDD13	CNPDD12	CNPDD11	CNPDD10		CNPDD8	-	CNPDD6		CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	XXXX
6370	CNCOND	31:16	_		-											_			0000
		15:0	ON		SIDL											_			0000
6380	CNEND	31:16	-	-	-	-			-	-	-		-	-	-	-			0000
		15:0	CNIED15	CNIED14	CNIED13	CNIED12	CNIED11	CNIED10	CNIED9	CNIED8	CNIED7	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	XXXX
6200		31:16	-	-	—	—	—	-	-	—	-	-	—	-	—	—	—	-	0000
6390	CNSTATD	15:0	CNS TATD15	CN STATD14	CN STATD13	CN STATD12	CN STATD11	CN STATD10	CN STATD9	CN STATD8	CN STATD7	CN STATD6	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	xxxx

TABLE 12-7: PORTD REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

		C	ONLY																
ess										Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6510	TRISF	31:16	_	_	_		_		_				_		-				0000
0310	TRIST	15:0	_	—	TRISF13	TRISF12	_	_	—	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	xxxx
6520	PORTF	31:16	—	—	—	—	_	-	—	-	—	-	—	_	_	-	_	-	0000
0520	TOKI	15:0	—	—	RF13	RF12	_	-	—	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
6530	LATF	31:16	—	—	—	—	_	-	—	-	-	-	—	_	_	-	_	-	0000
0000	LAII	15:0	—	—	LATF13	LATF12	_	-	—	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
6540	ODCF	31:16	_		—	—	—	_		_	_		—		_	_			0000
0040	0001	15:0	_		ODCF13	ODCF12	—	_		ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	xxxx
6550	CNPUF	31:16	—		—	—	—	—		—	—	_	—	—	—	—	—	_	0000
0000		15:0	—	—	CNPUF13	CNPUF12	—	—	—	CNPUF8	CNPUF7	CNPUF6	CNPUF5	CNPUF4	CNPDF3	CNPUF2	CNPUF1	CNPUF0	xxxx
6560	CNPDF	31:16	—	—	—	—	—	_	—	—	_	_	—	_	—	_	—	—	0000
		15:0	—	—	CNPDF13	CNPDF12	—	-	—	CNPDF8	CNPDF7	CNPDF6	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	xxxx
6570	CNCONF	31:16	—	—	—	—	—	-	—	-	-	_	—	_	_	-	—	—	0000
		15:0	ON	—	SIDL	—	—	-	—	-	-	_	—	_	_	-	—	—	0000
6580	CNENF	31:16	—	—	—	—	—	-	—	-	-	_	—	_	—	-	—	—	0000
		15:0	—	—	CNIEF13	CNIEF12	—	-	—	CNIEF8	CNIEF7	_	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	xxxx
		31:16	—	—	—	—	—	-	—	-	-	_	—	_	-	-	—	—	0000
6590	CNSTATF	15:0	_	—	CN STATF13	CN STATF12	_	_	—	CN STATF8	CN STATF7	_	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	xxxx

TABLE 12-11: PORTF REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, AND PIC32MX370F512L DEVICES

Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGISTER 19-2: I2CxSTAT: I²C STATUS REGISTER

	-							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	-	_	-	—		_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	_	_	_	—	_	_
15.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
15:8	ACKSTAT	TRSTAT	-	-	_	BCL	GCSTAT	ADD10
7:0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

Legend:	HS = Set in hardware	HSC = Hardware set/clear	ed
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit

(when operating as I^2C master, applicable to master transmit operation)

- 1 = Acknowledge was not received from slave
- 0 = Acknowledge was received from slave

Hardware set or clear at end of slave Acknowledge.

- bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation)
 - 1 = Master transmit is in progress (8 bits + ACK)
 - 0 = Master transmit is not in progress

Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.

- bit 13-11 Unimplemented: Read as '0'
- bit 10 BCL: Master Bus Collision Detect bit

1 = A bus collision has been detected during a master operation

0 = No collision

Hardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module.

- bit 9 **GCSTAT:** General Call Status bit
 - 1 = General call address was received
 - 0 = General call address was not received

Hardware set when address matches general call address. Hardware clear at Stop detection.

bit 8 ADD10: 10-bit Address Status bit

1 = 10-bit address was matched

0 = 10-bit address was not matched

Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

- bit 7 IWCOL: Write Collision Detect bit
 - 1 = An attempt to write the I2CxTRN register failed because the I²C module is busy
 - 0 = No collision

Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).

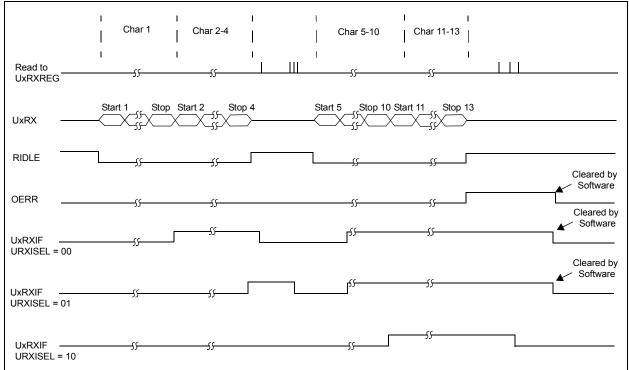
bit 6 I2COV: Receive Overflow Flag bit

1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

- bit 5 **D_A:** Data/Address bit (when operating as I²C slave)
 - 1 = Indicates that the last byte received was data
 - 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.


REGISTE	ER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)
bit 8	 TRMT: Transmit Shift Register is Empty bit (read-only) 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer
bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bit 11 = Reserved; do not use 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full (i.e., has 6 or more data characters) 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full (i.e., has 4 or more data characters) 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Data is being received
bit 3	 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character 0 = Parity error has not been detected
bit 2	 FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit.
	This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state.
	1 = Receive buffer has overflowed0 = Receive buffer has not overflowed

- bit 0 URXDA: Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

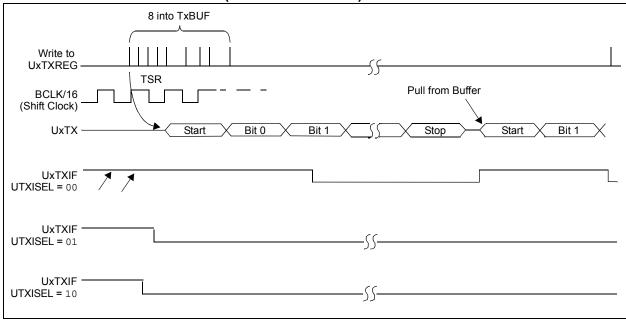

20.2 Timing Diagrams

Figure 20-2 and Figure 20-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 20-2: UART RECEPTION

FIGURE 20-3: TRANSMISSION (8-BIT OR 9-BIT DATA)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—	—	—	—	—	—			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16		—	—	_	—	—	—	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0			
15:8		VCFG<2:0>		OFFCAL	—	CSCNA	—	—			
7:0	R-0 U-0 R/W		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	BUFS	_		SMP	I<3:0>		BUFM	ALTS			

REGISTER 23-2: AD1CON2: ADC CONTROL REGISTER 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

	VREFH	VREFL				
000	AVDD	AVss				
001	External VREF+ pin	AVss				
010	AVDD	External VREF- pin				
011	External VREF+ pin	External VREF- pin				
1xx	AVDD	AVss				

bit 12 OFFCAL: Input Offset Calibration Mode Select bit

1 = Enable Offset Calibration mode

Positive and negative inputs of the sample and hold amplifier are connected to VREFL

0 = Disable Offset Calibration mode

The inputs to the sample and hold amplifier are controlled by AD1CHS or AD1CSSL

bit 11 Unimplemented: Read as '0'

- bit 10 **CSCNA:** Input Scan Select bit
 - 1 = Scan inputs

0 = Do not scan inputs

bit 9-8 **Unimplemented:** Read as '0'

bit 7 **BUFS:** Buffer Fill Status bit

Only valid when BUFM = 1.

1 = ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7

0 = ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF

bit 6 Unimplemented: Read as '0'

bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits

```
1111 = Interrupts at the completion of conversion for each 16<sup>th</sup> sample/convert sequence
```

```
1110 = Interrupts at the completion of conversion for each 15<sup>th</sup> sample/convert sequence
```

- .
- •

0001 = Interrupts at the completion of conversion for each 2^{nd} sample/convert sequence 0000 = Interrupts at the completion of conversion for each sample/convert sequence

bit 1 BUFM: ADC Result Buffer Mode Select bit

- 1 = Buffer configured as two 8-word buffers, ADC1BUF7-ADC1BUF0, ADC1BUFF-ADCBUF8
 - 0 = Buffer configured as one 16-word buffer ADC1BUFF-ADC1BUF0

bit 0 ALTS: Alternate Input Sample Mode Select bit

- 1 = Uses Sample A input multiplexer settings for first sample, then alternates between Sample B and Sample A input multiplexer settings for all subsequent samples
- 0 = Always use Sample A input multiplexer settings

REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

- bit 11-5 **Reserved:** Write '1'
- bit 4-3 ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits
 - 11 = PGEC1/PGED1 pair is used
 - 10 = PGEC2/PGED2 pair is used
 - 01 = PGEC3/PGED3 pair is used
 - 00 = Reserved
- bit 2 JTAGEN: JTAG Enable bit⁽¹⁾ 1 = JTAG is enabled 0 = JTAG is disabled
- bit 1-0 **DEBUG<1:0>:** Background Debugger Enable bits (forced to '11' if code-protect is enabled)
 - 1x = Debugger is disabled0x = Debugger is enabled
- Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.

28.2 On-Chip Voltage Regulator

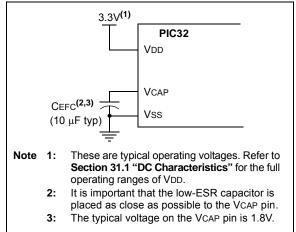
All PIC32MX330/350/370/430/450/470 devices' core and digital logic are designed to operate at a nominal 1.8V. To simplify system designs, most devices in the PIC32MX330/350/370/430/450/470 family incorporate an on-chip regulator providing the required core logic voltage from VDD.

A low-ESR capacitor (such as tantalum) must be connected to the VCAP pin (see Figure 28-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 31.1 "DC Characteristics"**.

Note:	It is important that the low-ESR capacitor
	is placed as close as possible to the VCAP
	pin.

28.2.1 HIGH VOLTAGE DETECT (HVD)

The HVD module monitors the core voltage at the VCAP pin. If a voltage above the required level is detected on VCAP, the I/O pins are disabled and the device is held in Reset as long as the HVD condition persists. See parameter HV10 (VHVD) in Table 31-11 in **Section 31.1** "**DC Characteristics**" for more information.


28.2.2 ON-CHIP REGULATOR AND POR

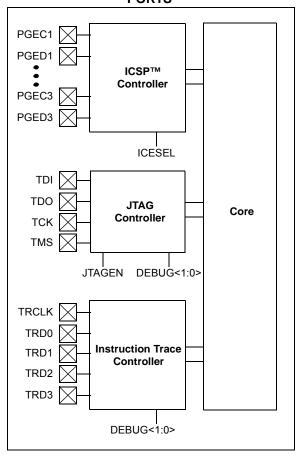
It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

28.2.3 ON-CHIP REGULATOR AND BOR

PIC32MX330/350/370/430/450/470 devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in **Section 31.1 "DC Characteristics"**.

FIGURE 28-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

28.3 Programming and Diagnostics


PIC32MX330/350/370/430/450/470 devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming[™] (ICSP[™]) interfaces
- Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

FIGURE 28-2:

BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS

DC CHARACTERISTICS			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions			
D130	Eр	Cell Endurance	20,000	—		E/W	—			
D131	Vpr	VDD for Read	2.3	—	3.6	V	—			
D132	VPEW	VDD for Erase or Write	2.3	—	3.6	V	—			
D134	TRETD	Characteristic Retention	20	_	_	Year	Provided no other specifications are violated			
D135	IDDP	Supply Current during Programming	—	10		mA	—			
D138	Tww	Word Write Cycle Time ⁽⁴⁾	44	_	59	μs	—			
D136	Trw	Row Write Cycle Time ^(2,4)	2.8	3.3	3.8	ms	—			
D137	TPE	Page Erase Cycle Time ⁽⁴⁾	22	—	29	ms	—			
D139	TCE	Chip Erase Cycle Time ⁽⁴⁾	86	—	116	ms	—			

TABLE 31-12: DC CHARACTERISTICS: PROGRAM MEMORY⁽³⁾

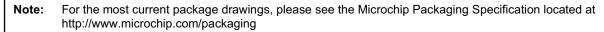
Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

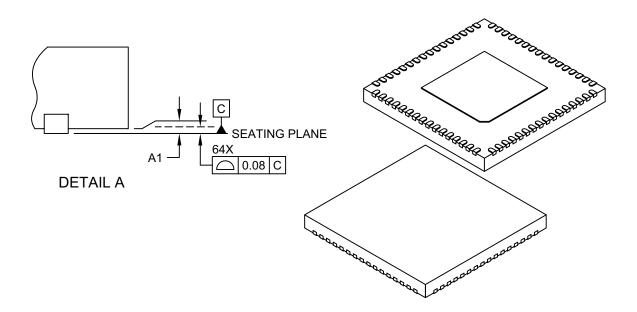
2: The minimum SYSCLK for row programming is 8 MHz. Care should be taken to minimize bus activities during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default Arbitration mode is mode 1 (CPU has lowest priority).

- **3:** Refer to the *"PIC32 Flash Programming Specification"* (DS60001145) for operating conditions during programming and erase cycles.
- 4: This parameter depends on the FRC accuracy (see Table 31-20) and the FRC tuning values (see Register 8-2).

DC CHARACTERISTICS	(unless otherwise state	ndard Operating Conditions: 2.3V to 3.6Vless otherwise stated)erating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
	-40°C \leq TA \leq +105°C for V-temp				
Required Flash Wait States	SYSCLK	Units	Conditions		
0 Wait State	0-40	MHz	-40°C to +85°C		
	0-30	MHz	-40°C to +105°C		
1 Wait State	41-80	MHz	-40°C to +85°C		
	31-60	MHz	-40°C to +105°C		
2 Wait States	81-100	MHz	-40°C to +85°C		
	61-80	MHz	-40°C to +105°C		
3 Wait States	101-120	MHz	0°C to +70°C		

TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)


AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	I Characteristics		Min. ⁽¹⁾	Max.	Units	Conditions	
IM34	THD:STO	Stop Condition	100 kHz mode	Трв * (BRG + 2)		ns	—	
		Hold Time	400 kHz mode	Трв * (BRG + 2)	—	ns		
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	ns		
IM40	TAA:SCL	SCL Output Valid from Clock	100 kHz mode	—	3500	ns	—	
			400 kHz mode	—	1000	ns	—	
			1 MHz mode (Note 2)	—	350	ns	—	
IM45	TBF:SDA	SDA Bus Free Time	100 kHz mode	4.7	—	μS	The amount of time the	
				400 kHz mode	1.3	—	— μs	bus must be free
			1 MHz mode (Note 2)	0.5	—	μS	before a new transmission can start	
IM50	Св	Bus Capacitive Loading		—	400	pF	—	
IM51	Tpgd	Pulse Gobbler Delay		52	312	ns	See Note 3	


Note 1: BRG is the value of the I²C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

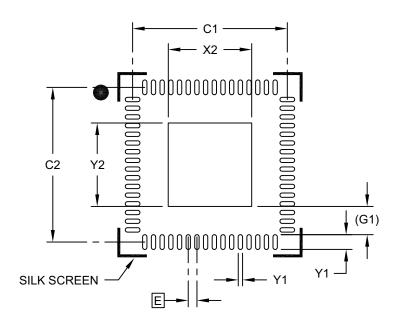
64-Terminal Plastic Quad Flat Pack, No Lead (RG) 9x9x0.9 mm Body [QFN] Saw Singulated

	Units	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX	
Number of Terminals	Ν	64			
Pitch	е	0.50 BSC			
Overall Height	Α	0.80	0.85	0.90	
Standoff	A1	0.00	0.02	0.05	
Standoff	A3	0.20 REF			
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	4.60	4.70	4.80	
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	4.60	4.70	4.80	
Terminal Width	b	0.15	0.20	0.25	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	К	1.755 REF			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-260A Sheet 2 of 2

64-Lead Very Thin Plastic Quad Flat, No Lead Package (RG) - 9x9x1.0 mm Body [QFN] 4.7x4.7 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	X2			4.80
Optional Center Pad Length	Y2			4.80
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.25
Contact Pad Length (X64)	Y1			0.85
Contact Pad to Center Pad (X64)	G1		1.625 REF	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2260A

PIC32MX330/350/370/430/450/470

0

Oscillator Configuration	73
Output Compare	
Р	
Packaging	
Details	
Marking	
Parallel Master Port (PMP)	213
PIC32 Family USB Interface Diagram	114
Pinout I/O Descriptions (table)	
Power-on Reset (POR)	
and On-Chip Voltage Regulator	
Power-Saving Features	
CPU Halted Methods	
Operation	
with CPU Running	
Prefetch Cache	83
R	

Real	-Time Clock and Calendar (RTCC)	 223
Regi	ster Map	
	ADC	 235
	Bus Matrix	 45
	Comparator	 244
	Comparator Voltage Reference	
	CTMU	 252
	Device and Revision ID Summary	 262
	Device Configuration Word Summary	
	DMA Channel 0-3	 95
	DMA CRC	
	DMA Global	
	Flash Controller	 54
	I2C1 and I2C2	
	Interrupt	
	Output Compare1-5	
	Parallel Master Port	
	Peripheral Pin Select Input	
	Peripheral Pin Select Output	
	PORTA	
	PORTB	
	PORTC	
	PORTD	
	PORTE	
	PORTF	
	PORTG	
	Prefetch	
	RTCC	
	SPI1 and SPI2	
	System Control	
	Timer1-5	
	UART1-5	
	USB	
Dogi	sters	 115
Regi	[pin name]R (Peripheral Pin Select Input)	165
	AD1CHS (ADC Input Select)	
	AD1CON1 (A/D Control 1)	
	AD1CON1 (A/D Control 1)	
	AD1CON2 (ADC Control 2)	
	AD1CON3 (ADC Control 3)	
	AD1CSSL (ADC Input Scan Select)	
	ALRMDATE (Alarm Date Value)	
	ALRMDATECLR (ALRMDATE Clear)	
	ALRMDATESET (ALRMDATE Set)	
	ALRMTIME (Alarm Time Value)	 231

ALRMTIMECLR (ALRMTIME Clear)	232
ALRMTIMEINV (ALRMTIME Invert)	
ALRMTIMESET (ALRMTIME Set).	
BMXBOOTSZ (Boot Flash (IFM) Size	51
BMXCON (Bus Matrix Configuration)	46
BMXDKPBA (Data RAM Kernel Program	
Base Address)	47
BMXDRMSZ (Data RAM Size Register)	
BMXDUDBA (Data RAM User Data Base Address)	48
BMXDUPBA (Data RAM User Program	
Base Address)	49
BMXPFMSZ (Program Flash (PFM) Size)	51
BMXPUPBA (Program Flash (PFM) User Program	
Base Address)	50
CHEACC (Cache Access)	86
CHECON (Cache Control)	
CHEHIT (Cache Hit Statistics)	
CHELRU (Cache LRU)	90
CHEMIS (Cache Miss Statistics)	91
CHEMSK (Cache TAG Mask)	88
CHETAG (Cache TAG)	87
CHEW0 (Cache Word 0)	88
CHEW1 (Cache Word 1)	89
CHEW2 (Cache Word 2)	
CHEW3 (Cache Word 3)	90
CM1CON (Comparator 1 Control)	245
CMSTAT (Comparator Control Register)	246
CNCONx (Change Notice Control for PORTx)	166
CTMUCON (CTMU Control)	253
CVRCON (Comparator Voltage Reference Control)	249
DCHxCON (DMA Channel x Control)	103
DCHxCPTR (DMA Channel x Cell Pointer)	110
DCHxCSIZ (DMA Channel x Cell-Size)	110
DCHxDAT (DMA Channel x Pattern Data)	111
DCHxDPTR (Channel x Destination Pointer)	109
DCHxDSA (DMA Channel x Destination	
Start Address)	107
DCHxDSIZ (DMA Channel x Destination Size)	108
DCHxECON (DMA Channel x Event Control)	104
DCHxINT (DMA Channel x Interrupt Control)	
DCHxSPTR (DMA Channel x Source Pointer)	
DCHxSSA (DMA Channel x Source Start Address).	
DCHxSSIZ (DMA Channel x Source Size)	
DCRCCON (DMA CRC Control)	
DCRCDATA (DMA CRC Data)	
DCRCXOR (DMA CRCXOR Enable)	
DEVCFG0 (Device Configuration Word 0	
DEVCFG1 (Device Configuration Word 1	
DEVCFG2 (Device Configuration Word 2	
DEVCFG3 (Device Configuration Word 3	
DEVID (Device and Revision ID)	
DMAADDR (DMA Address)	
DMAADDR (DMR Address)	
DMACON (DMA Controller Control)	
DMASTAT (DMA Status)	
I2CxCON (I2C Control)	200
I2CxSTAT (I2C Status)	
ICxCON (Input Capture x Control)	
IFSx (Interrupt Flag Status)	
INTCON (Interrupt Control)	
INTSTAT (Interrupt Status)	69
IPCx (Interrupt Priority Control)	
IPTMR Interrupt Proximity Timer)	69
NVMADDR (Flash Address)	56
NVMCON (Programming Control)	55