

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	81
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx450f256lt-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Pin Tables

64-	-PIN QFN ^(1,2,3,4) AND TQFP ^(1,2,3,4) (TOP VII	EW)	
Pl Pl	C32MX330F064H C32MX350F128H C32MX350F256H C32MX370F512H		
	64	1	64
	QF	N ⁽⁴⁾	TQFP
Pin #	Full Pin Name	Pin #	Full Pin Name
1	AN22/RPE5/PMD5/RE5	33	RPF3/RF3
2	AN23/PMD6/RE6	34	RPF2/RF2
3	AN27/PMD7/RE7	35	RPF6/SCK1/INT0/RF6
4	AN16/C1IND/RPG6/SCK2/PMA5/RG6	36	SDA1/RG3
5	AN17/C1INC/RPG7/PMA4/RG7	37	SCL1/RG2
6	AN18/C2IND/RPG8/PMA3/RG8	38	VDD
7	MCLR	39	OSC1/CLKI/RC12
8	AN19/C2INC/RPG9/PMA2/RG9	40	OSC2/CLKO/RC15
9	Vss	41	Vss
10	Vdd	42	RPD8/RTCC/RD8
11	AN5/C1INA/RPB5/RB5	43	RPD9/RD9
12	AN4/C1INB/RB4	44	RPD10/PMCS2/RD10
13	PGED3/AN3/C2INA/RPB3/RB3	45	RPD11/PMCS1/RD11
14	PGEC3/AN2/C2INB/RPB2/CTED13/RB2	46	RPD0/RD0
15	PGEC1/VREF-/CVREF-/AN1/RPB1/CTED12/RB1	47	SOSCI/RPC13/RC13
16	PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0	48	SOSCO/RPC14/T1CK/RC14
17	PGEC2/AN6/RPB6/RB6	49	AN24/RPD1/RD1
18	PGED2/AN7/RPB7/CTED3//RB7	50	AN25/RPD2/RD2
19	AVDD	51	AN26/RPD3/RD3
20	AVss	52	RPD4/PMWR/RD4
21	AN8/RPB8/CTED10//RB8	53	RPD5/PMRD/RD5
22	AN9/RPB9/CTED4/PMA7/RB9	54	RD6
23	TMS/Cvrefout/AN10/RPB10/CTED11//PMA13/RB10	55	RD7
24	TDO/AN11/PMA12/RB11	56	VCAP
25	Vss	57	VDD
26	Vdd	58	RPF0/RF0
27	TCK/AN12/PMA11/RB12	59	RPF1/RF1
28	TDI/AN13/PMA10/RB13	60	PMD0/RE0
29	AN14/RPB14/CTED5/PMA1/RB14	61	PMD1/RE1
30	AN15/RPB15/OCFB/CTED6/PMA0/RB15	62	AN20/PMD2/RE2
31	RPF4/SDA2/PMA9/RF4	63	RPE3/CTPLS/PMD3/RE3
32	RPF5/SCL2/PMA8/RF5	64	AN21/PMD4/RE4

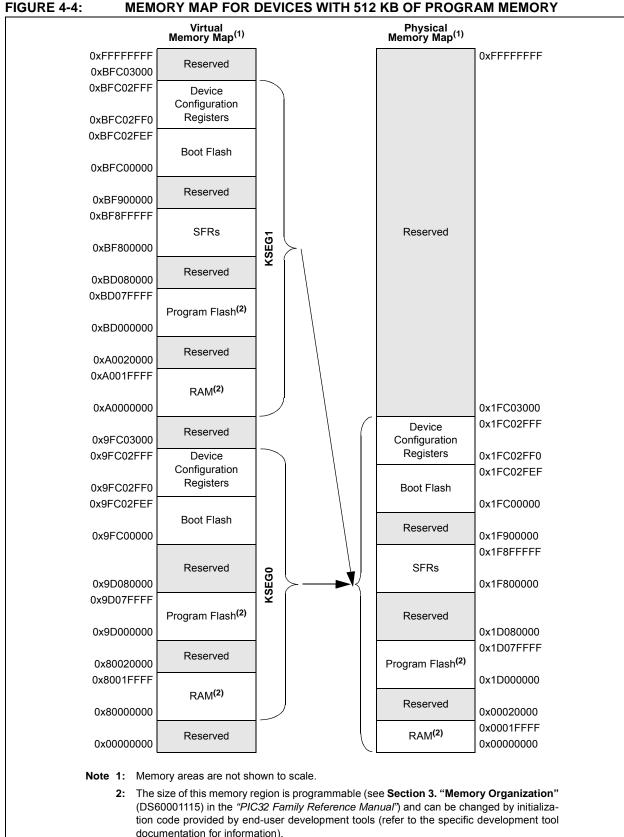
1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

Every I/O port pin (RBx-RGx), with the exception of RF6, can be used as a change notification pin (CNBx-CNGx). See Section 12.0 "I/O 2: Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

RPF6 (pin 35) is only available for output functions. 4:

TABLE 1-1: PINOUT I/O DESCRIPTIONS

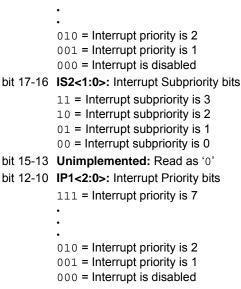

		Pin Numb	er							
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description				
AN0	16	25	B14		Analog					
AN1	15	24	A15	I	Analog					
AN2	14	23	B13	I	Analog					
AN3	13	22	A13	I	Analog					
AN4	12	21	B11	I	Analog					
AN5	11	20	A12	I	Analog					
AN6	17	26	A20	I	Analog					
AN7	18	27	B16	I	Analog					
AN8	21	32	A23	I	Analog					
AN9	22	33	B19	I	Analog					
AN10	23	34	A24	I	Analog					
AN11	24	35	B20	I	Analog					
AN12	27	41	B23	I	Analog					
AN13	28	42	A28	I	Analog	Analog input channels.				
AN14	29	43	B24	I	Analog					
AN15	30	44	A29	I	Analog					
AN16	4	10	A7	I	Analog					
AN17	5	11	B6	I	Analog					
AN18	6	12	A8	I	Analog					
AN19	8	14	A9	I	Analog					
AN20	62	98	A66	I	Analog					
AN21	64	100	A67	I	Analog					
AN22	1	3	B2	I	Analog					
AN23	2	4	A4	I	Analog					
AN24	49	76	A52	I	Analog					
AN25	50	77	B42	I	Analog					
AN26	51	78	A53	I	Analog					
AN27	3	5	B3	I	Analog					
CLKI	39	63	B34	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.				
CLKO	40	64	A42	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with the OSC2 pin function.				
OSC1	39	63	B34	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.				
OSC2	40	64	A42	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.				
SOSCI	47	73	A47	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.				
SOSCO	48	74	B40	0	—	32.768 kHz low-power oscillator crystal output.				
-	ST = Schm		tible input or o out with CMOS			alog = Analog input P = Power = Output I = Input				

TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.



Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	—	—			IP3<2:0>	IS3<	IS3<1:0>		
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:10	—	—		IP2<2:0>			IS2<1:0>		
15:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	—	—	—		IP1<2:0>		IS1<1:0>		
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	_	_			IP0<2:0>		IS0<	1:0>	

REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Legend:

R = Readable bit	= Readable bit W = Writable bit		ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-1 for the exact bit definitions.

Oscillator Control Registers 8.1

TAB	TABLE 8-1: OSCILLATOR CONTROL REGISTER MAP																		
ess		0				Bits										6			
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
F000	OSCCON	31:16	_	_	PI	PLLODIV<2:0> FRCDIV<2:0> —		_	SOSCRDY PBDIVRDY PBDIV<1:0> PLLMU			LMULT<2:0	_MULT<2:0> x1						
F000	USCCON	15:0	_		COSC<2:	0>	_		NOSC<2:0)>	CLKLOCK	ULOCK ⁽⁴⁾	SLOCK	SLPEN	CF	UFRCEN ⁽⁴⁾	SOSCEN	OSWEN	xxxx ⁽²⁾
F010	OSCTUN	31:16	—	_	_	_	_	—	—		_	—	_	_		—	_	_	0000
1010	030101	15:0	—	_		—	—	—	—		-	_			TUN	\<5:0>			0000
5000	REFOCON	31:16	_								RODIV<	4:0>							0000
F020	F020 REFOCON		ON	—	SIDL	OE	RSLP	—	DIVSWEN	ACTIVE	—	—	—	—		ROSE	L<3:0>		0000
5000	DEFOTDIM	SECTED 31:16 ROTRIM<8:0>				_		_	_	_	_	—	0000						
F030	REFOTRIM	15:0	_	_		_	_	_	_		—	_		_		_		_	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

Reset values are dependent on the DEVCFGx Configuration bits and the type of reset. 2:

This bit is only available on devices with a USB module. 3:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	_	_	_	_	_	_	—			
23:16	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:10	_	_	_	_	_	_	_	—			
15.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	_	-	_	_	_		_	—			
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	_	_			TUN<	5:0> (1)					

REGISTER 8-2: OSCTUN: FRC TUNING REGISTER

Legend:	y = Value set from Configuration bits on POR					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-6 Unimplemented: Read as '0'

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized nor tested.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24	CHEW1<31:24>									
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:16	CHEW1<23:16>									
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8	CHEW1<15:8>									
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
7:0				CHEW1	<7:0>					

REGISTER 9-6: CHEW1: CACHE WORD 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW1<31:0>:** Word 1 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

REGISTER 9-7: CHEW2: CACHE WORD 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24	CHEW2<31:24>									
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:16	CHEW2<23:16>									
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8	CHEW2<15:8>									
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
7:0				CHEW2	<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **CHEW2<31:0>:** Word 2 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

11.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32 USB module includes the following features:

- USB full-speed support for host and device
- Low-speed host support
- USB OTG support
- · Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- · Transaction handshaking performed by hardware
- · Endpoint buffering anywhere in system RAM
- · Integrated DMA to access system RAM and Flash
- The implementation and use of the USB Note: specifications, and other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_		—	_	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_		—	_	_	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	_	_	_		—	_	_	—
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R-0	R/WC-0, HS
7:0	STALLIF	ATTACHIF ⁽¹⁾	RESUMEIF ⁽²⁾	IDLEIF	TRNIF ⁽³⁾	SOFIF	UERRIF ⁽⁴⁾	URSTIF ⁽⁵⁾
	OTTLE		REGOMEN	IDEEN		0011	OLIVI	DETACHIF ⁽⁶⁾
								1

REGISTER 11-6: U1IR: USB INTERRUPT REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Setta	ble bit
R = Readable bit	W = Writable bit	U = Unimplemented b	vit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

	-	
bit 7		STALLIF: STALL Handshake Interrupt bit 1 = In Host mode, a STALL handshake was received during the handshake phase of the transaction
		In Device mode, a STALL handshake was transmitted during the handshake phase of the transaction
		0 = STALL handshake has not been sent
bit 6		ATTACHIF: Peripheral Attach Interrupt bit ⁽¹⁾
		1 = Peripheral attachment was detected by the USB module
		0 = Peripheral attachment was not detected
bit 5		RESUMEIF: Resume Interrupt bit ⁽²⁾
		1 = K-State is observed on the D+ or D- pin for 2.5 µs
		0 = K-State is not observed
bit 4		IDLEIF: Idle Detect Interrupt bit
		1 = Idle condition detected (constant Idle state of 3 ms or more)0 = No Idle condition detected
bit 3		TRNIF: Token Processing Complete Interrupt bit ⁽³⁾
DILS		1 = Processing of current token is complete; a read of the U1STAT register will provide endpoint information
		0 = Processing of current token not complete
bit 2		SOFIF: SOF Token Interrupt bit
		1 = SOF token received by the peripheral or the SOF threshold reached by the host
		0 = SOF token was not received nor threshold reached
bit 1		UERRIF: USB Error Condition Interrupt bit ⁽⁴⁾
		1 = Unmasked error condition has occurred
		0 = Unmasked error condition has not occurred
bit 0		URSTIF: USB Reset Interrupt bit (Device mode) ⁽⁵⁾
		1 = Valid USB Reset has occurred
		0 = No USB Reset has occurred
bit 0		DETACHIF: USB Detach Interrupt bit (Host mode) ⁽⁶⁾
		1 = Peripheral detachment was detected by the USB module
		0 = Peripheral detachment was not detected
Note	1:	This bit is valid only if the HOSTEN bit is set (see Register 11-11), there is no activity on the USB for
		$2.5 \mu\text{s}$, and the current bus state is not SE0.
	2:	When not in Suspend mode, this interrupt should be disabled.
	3:	Clearing this bit will cause the STAT FIFO to advance.
	4:	Only error conditions enabled through the U1EIE register will set this bit.
	5:	Device mode.
	6:	Host mode.

15.1 Watchdog Timer Control Registers

DS60001185F-page	
е —	
78	

TABLE 15-1: WATCHDOG TIMER CONTROL REGISTER MAP

ess		æ									Bits								s
Virtual Addres (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0000	WDTCON	31:16	_	_	_	_	-	-	—	—	_	—	—	_	_	_	—	—	0000
0000	WDICON	15:0	ON				_	_	_	_		SWDTPS<4:0> WDTWINEN WDTCLR 0					0000		

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

PIC32MX330/350/370/430/450/470

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_			—	_
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	PTEN<1	5:14> ⁽¹⁾			PTEN•	<13:8>		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		PTEN<1:0> ⁽²⁾						

REGISTER 21-4: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Legend:

Legenu.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Write '0'; ignore read

- bit 15-14 **PTEN<15:14>:** PMCSx Address Port Enable bits
 - 1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1⁽¹⁾
 - 0 = PMA15 and PMA14 function as port I/O
- bit 13-2 **PTEN<13:2>:** PMP Address Port Enable bits 1 = PMA<13:2> function as PMP address lines
 - 0 = PMA<13:2> function as port I/O
- bit 1-0 **PTEN<1:0>:** PMALH/PMALL Address Port Enable bits
 - 1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL⁽²⁾
 - 0 = PMA1 and PMA0 pads function as port I/O
- Note 1: The use of these pins as PMA15/PMA14 or CS2/CS1 is selected by the CSF<1:0> bits (PMCON<7:6>).
 - 2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by the ADRMUX<1:0> bits in the PMCON register.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	_	—	_	_			
00.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	—	—	—	—	_	—	_	_			
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC ⁽³⁾		AMASK	<3:0> ⁽³⁾				
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	ARPT<7:0> ⁽³⁾										
	•										

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled

bit 14 CHIME: Chime Enable bit⁽²⁾

- 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
- 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽²⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit⁽³⁾

- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing, which are then synchronized to the PB clock domain
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is > 32 RTC clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽³⁾

- 0000 = Every half-second
- 0001 = Every second
- 0010 = Every 10 seconds
- 0011 = Every minute
- 0100 = Every 10 minutes
- 0101 = Every hour
- 0110 = Once a day
- 0111 = Once a week
- 1000 = Once a month
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1010 = Reserved; do not use
- 1011 = Reserved; do not use
- 11xx = Reserved; do not use
- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is reset only on a Power-on Reset (POR).

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)

bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits⁽³⁾ 11111111 = Alarm will trigger 256 times

0000000 = Alarm will trigger one time

The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.

- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is reset only on a Power-on Reset (POR).

TABLE 23-1: ADC REGISTER MAP (CONTINUED)

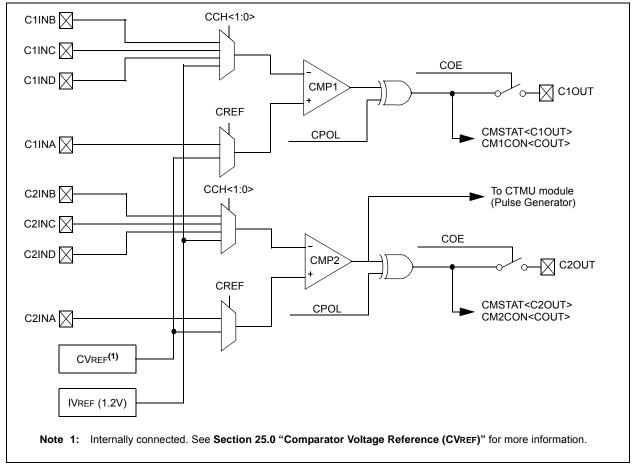
ess		0								В	its								ŝ
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9110	ADC1BUFA	31:16 15:0							ADC Res	ult Word A	(ADC1BUF	A<31:0>)							0000
9120	ADC1BUFB	31:16 15:0							ADC Res	ult Word B	(ADC1BUF	B<31:0>)							0000
9130	ADC1BUFC	31:16 15:0							ADC Res	ult Word C	(ADC1BUF	C<31:0>)							0000
9140	ADC1BUFD	31:16 15:0							ADC Res	ult Word D	(ADC1BUF	D<31:0>)							0000
9150	ADC1BUFE	31:16 15:0							ADC Res	ult Word E	(ADC1BUF	E<31:0>)							0000
9160	ADC1BUFF	31:16 15:0							ADC Res	ult Word F	(ADC1BUF	F<31:0>)							0000

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for details.

24.0 COMPARATOR


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer Section 19. to "Comparator" (DS60001110), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Analog Comparator module contains two comparators that can be configured in a variety of ways.

The following are key features of this module:

- · Selectable inputs available include:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference (IVREF)
 - Comparator voltage reference (CVREF)
- · Outputs can be Inverted
- Selectable interrupt generation

A block diagram of the comparator module is provided in Figure 24-1.

FIGURE 24-1: COMPARATOR BLOCK DIAGRAM

DC CHA	RACTE	RISTICS	Standard Oper (unless otherw Operating temp	vise state	ed) 0°C ≤ Ta -40°C ≤ T	≤ +70°0 Ā ≤ +85	5 3.6V C for Commercial 5°C for Industrial 55°C for V-temp
Param. No.	Symb.	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
		Input Leakage Current (Note 3)					
DI50	lı∟	I/O Ports	—	_	<u>+</u> 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
DI51		Analog Input Pins	—	—	<u>+</u> 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
DI55		MCLR ⁽²⁾	_		<u>+</u> 1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	—	—	<u>+</u> 1	μA	$VSS \le VPIN \le VDD,$ XT and HS modes
							Pins with Analog functions. Exceptions: [N/A] = 0 mA max
DI60a	licl	Input Low Injection Current	0	_	₋₅ (7,10)	mA	Digital 5V tolerant desig- nated pins. Exceptions: [N/A] = 0 mA max
							Digital non-5V tolerant desig- nated pins. Exceptions: [N/A] = 0 mA max

TABLE 31-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Device Pin Tables" section for the 5V tolerant pins.
- 6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.
- 7: VIL source < (VSS 0.3). Characterized but not tested.
- 8: VIH source > (VDD + 0.3) for non-5V tolerant pins only.
- **9:** Digital 5V tolerant pins do not have an internal high side diode to VDD, and therefore, cannot tolerate any "positive" input injection current.
- **10:** Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDD + 0.3) or VIL source < (Vss 0.3)).
- 11: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If Note 7, IICL = (((Vss 0.3) VIL source) / Rs). If Note 8, IICH = ((IICH source (VDD + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ VSOURCE ≤ (VDD + 0.3), injection current = 0.

TABLE 31-14: COMPARATOR SPECIFICATIONS

DC CHA		STICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments		
D300	VIOFF	Input Offset Voltage	—	±7.5	±25	mV	AVDD = VDD, AVSS = VSS		
D301	VICM	Input Common Mode Voltage	0	—	Vdd	V	AVdd = Vdd, AVss = Vss (Note 2)		
D302	CMRR	Common Mode Rejection Ratio	55	—	_	dB	Max VICM = (VDD - 1)V (Note 2)		
D303	Tresp	Response Time	—	150	400	ns	AVdd = Vdd, AVss = Vss (Notes 1,2)		
D304	ON2ov	Comparator Enabled to Output Valid	-		10	μS	Comparator module is configured before setting the comparator ON bit (Note 2)		
D305	IVREF	Internal Voltage Reference	1.14	1.2	1.26	V	—		

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

2: These parameters are characterized but not tested.

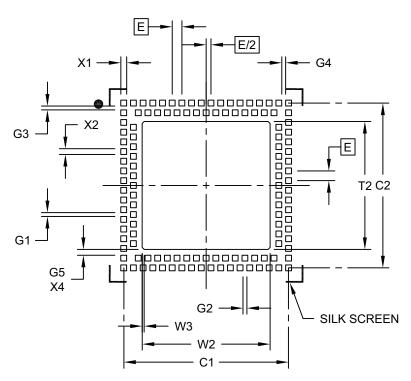
3: Settling time measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but not tested in manufacturing.

AC CHARACTERISTICS ⁽⁵⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions		
ADC Ac	curacy – N	leasurements with Inter	nal VREF+/VR	EF-					
AD20d	Nr	Resolution		10 data bits		bits	(Note 3)		
AD21d	INL	Integral Nonlinearity	> -1	_	< 1	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)		
AD22d	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)		
AD23d	Gerr	Gain Error	> -4	—	< 4	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)		
AD24d	Eoff	Offset Error	> -2	—	< 2	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)		
AD25d	_	Monotonicity	—	—	_	—	Guaranteed		
Dynami	c Performa	ince	•	•		•	•		
AD31b	SINAD	Signal to Noise and Distortion	55	58	—	dB	(Notes 3,4)		
AD34b	ENOB	Effective Number of Bits	9	9.5	_	bits	(Notes 3,4)		

TABLE 31-35: ADC MODULE SPECIFICATIONS (CONTINUED)

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.


3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for VBORMIN values.

124-Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Pad Clearance	G1	0.20		
Pad Clearance	G2	0.20		
Pad Clearance	G3	0.20		
Pad Clearance	G4	0.20		
Contact to Center Pad Clearance (X4)	G5	0.30		
Optional Center Pad Width	T2			6.60
Optional Center Pad Length	W2			6.60
Optional Center Pad Chamfer (X4)	W3		0.10	
Contact Pad Spacing	C1		8.50	
Contact Pad Spacing	C2		8.50	
Contact Pad Width (X124)	X1			0.30
Contact Pad Length (X124)	X2			0.30

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2193A

Revision C (October 2013)

This revision includes the following updates, as listed in Table A-2.

TABLE A-2: MAJOR SECTION UPDATES

Section	Update Description				
"32-bit Microcontrollers (up to 512 KB Flash and 128 KB SRAM) with	The Operating Conditions and Core sections were updated in support of 100 MHz (-40°C to +85°C) devices.				
Audio/Graphics/Touch (HMI), USB, and Advanced Analog"	Added Notes 2 and 3 regarding the conductive thermal pad to the 124-pin VTLA pin diagrams.				
2.0 "Guidelines for Getting Started	Updated the recommended minimum connection (see Figure 2-1).				
with 32-bit MCUs"	Added 2.10 "Sosc Design Recommendation".				
20.0 "Parallel Master Port (PMP)"	Updated the Parallel Port Control register, PMCON (see Register 20-1).				
	Updated the Parallel Port Mode register, PMMODE (see Register 20-2).				
	Updated the Parallel Port Pin Enable register, PMAEN (see Register 20-4).				
30.0 "Electrical Characteristics"	Removed Note 4 from the Absolute Maximum Ratings.				
	The maximum frequency for parameter DC5 In Operating MIPS vs. Voltage was changed to 100 MHz (see Table 30-1).				
	Parameter DC25a was added to DC Characteristics: Operating Current (IDD) (see Table 30-5).				
	Parameter DC34c was added to DC Characteristics: Idle Current (IIDLE) (see Table 30-5).				
	Added parameters for PIC32MX370/470 devices and removed Note 5 from DC Characteristics: Power-Down Current (IPD) (see Table 30-7).				
	Updated the Minimum, Typical, and Maximum values and added a reference to Note 3 for parameter DI30 (ICNPU) in DC Characteristics: I/O Pin Input Specifications (see Table 30-8).				
	The SYSCLK values for all required Flash Wait states were updated (see Table 30-13).				
	Added parameter DO50A (Csosc) to the Capacitive Loading Requirements on Output Pins (see Table 30-16).				
	Updated the maximum values for parameter OS10, and the Characteristics definition of parameter OS42 (GM) in the External Clock Timing Characteristics (see Table 30-17).				
31.0 "DC and AC Device Characteristics Graphs"	Updated the IPD, IIDLE, and IDD graphs, and added new graphs for the PIC32MX370/470 devices (see Figure 31-5 through Figure 31-13).				