

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	81
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx450f256lt-v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

124	-PIN VTLA (BOTTOM VIEW) ^(1,2,3,4)	17			A34	
	A	17		B13 B29		nductive ermal Pad
	PIC32MX430F064L PIC32MX450F128L PIC32MX450F256L PIC32MX470F512L			B1 B56	B41	A51
		y Indica	A1 tor	A68		
Package Bump #	Full Pin Name		Package Bump #		Full Pin Name	
B7	MCLR		B32	SDA2/RA3		
B8	Vss		B33	TDO/RA5		
B9	TMS/CTED1/RA0		B34	OSC1/CLKI/RC12	2	
B10	RPE9/RE9		B35	No Connect		
B11	AN4/C1INB/RB4		B36	SCL1/RPA14/RA	14	
B12	Vss		B37	RPD8/RTCC/RD8	8	
B13	PGEC3/AN2/C2INB/RPB2/CTED13/RB2		B38	RPD10/SCK1/PM	CS2/RD10	
B14	PGED1/AN0/RPB0/RB0		B39	RPD0/INT0/RD0		
B15	No Connect		B40	SOSCO/RPC14/T	1CK/RC14	
B16	PGED2/AN7/RPB7/CTED3/RB7		B41	Vss		
B17	VREF+/CVREF+/PMA6/RA10		B42	AN25/RPD2/RD2		
B18	AVss		B43	RPD12/PMD12/R	D12	
B19	AN9/RPB9/CTED4/RB9		B44	RPD4/PMWR/RD	4	
B20	AN11/PMA12/RB11		B45	PMD14/RD6		
B21	Vdd		B46	No Connect		
B22	RPF13/RF13		B47	No Connect		
B23	AN12/PMA11/RB12		B48	VCAP		
B24	AN14/RPB14/CTED5/PMA1/RB14		B49	RPF0/PMD11/RF	0	
B25	Vss		B50	RPG1/PMD9/RG	1	
B26	RPD14/RD14		B51	TRCLK/RA6		
B27	RPF4/PMA9/RF4		B52	PMD0/RE0		
B28	No Connect		B53	VDD		
B29	RPF8/RF8		B54	TRD2/RG14		
B30	VUSB3V3		B55	TRD0/RG13		
B31	D+		B56	RPE3/CTPLS/PM	D3/RE3	

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: Shaded package bumps are 5V tolerant.

4: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

NOTES:

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/ 470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Memory" (DS60001121), Program which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX330/350/370/430/450/470 devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: On PIC32MX330/350/370/430/450/470 devices, the Flash page size is 4 KB and the row size is 512 bytes (1024 IW and 128 IW, respectively).

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP

ess		0								Bi	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	DCH0CON	31:16	—	_		_		_	_	_	_	_	_	_	_	_	_		0000
3060	DCHUCON	15:0	CHBUSY	—	_	—	_	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	l<1:0>	0000
3070	DCH0ECON	31:16	—	—	—	—	_	—	_	—		1	-		Q<7:0>	•			00FF
0070	DOINCEOUN	15:0		CHSIRQ<7:0> CFORCE CABORT PATEN SIRQEN AIRQEN FFF8															
3080	DCH0INT	31:16	—	—	—	—	-	—	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
0000	Borioitti	15:0	—	—	—	—	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3090	DCH0SSA	31:16 15:0		CHSSA<31:0>															
		31:16		0000															
30A0	DCH0DSA	15:0								CHDSA	A<31:0>								0000
		31:16	_	_	_		_	_	_	_	_	_	_	_	_	_		_	0000
30B0	DCH0SSIZ	15:0								CHSSIZ	Z<15:0>								0000
		31:16	_																
30C0	DCH0DSIZ	15:0								CHDSIZ	Z<15:0>								0000
0000		31:16	—	_	—	—	—	—	—	_	—		_	—	_	_	—	_	0000
30D0	DCH0SPTR	15:0								CHSPT	R<15:0>					•			0000
2050		31:16	_	_	_	—	_	_	_	_	_	_	_	_	_	—	_	_	0000
30E0	DCH0DPTR	15:0								CHDPT	R<15:0>								0000
2050	DCH0CSIZ	31:16	—		_	_	_	_	_	_	_	_	_	—	_	_	_	_	0000
30FU	DCHUCSIZ	15:0								CHCSIZ	Z<15:0>								0000
3100	DCH0CPTR	31:16	—	_		—		_	_	—	_	_	_	_	_	_	_		0000
3100	DCHUCFTK	15:0								CHCPT	R<15:0>		-						0000
3110	DCH0DAT	31:16	—	—		—	_	—	—	—		—	—	—	—	—	—	—	0000
5110	DONUDAI	15:0	—	—	_	—	_		—	—				CHPDA	AT<7:0>				0000
3120	DCH1CON	31:16	—	—	_	—	—		—		—	—	—	—	—	—	—	—	0000
0120	Bonnoon	15:0	CHBUSY	—	—	—	_	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN		CHEDET	CHPR	l<1:0>	0000
3130	DCH1ECON	31:16	—	—	—	—	—	—	—	—		1	-		Q<7:0>	-			OOFF
0.00		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—		—	FFF8
3140	DCH1INT	31:16	-	_	_	—	_	—	_	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
55		15:0	—	_	—	—	—	—	—	-	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3150	DCH1SSA	31:16	CHSSA<31:0>																
		15:0																	0000
3160	DCH1DSA	31:16								CHDSA	<31:0>								0000
		15:0	value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

TABLE 11-1: USB REGISTER MAP (CONTINUED)

ess								,			Bit	s							6
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5390	U1EP9	31:16	—	—		—	_	_	—	—			—	—	—	—	—	_	0000
5390	UIEF9	15:0	—	_			_	_	—	—	—		_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53A0	U1EP10	31:16	—	_		_			_				_	—	_	_	—		0000
53A0	UIEFIU	15:0	_	_		_	-	-	_	_	_		—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16	_	_	—	_	_	_	_	_	_	_	_	—	_	_	_	_	0000
5560	UIEFII	15:0	_	_	—	_	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16	_	_	—	_	—	—	-	-	—	—	_	—	_	_	—	_	0000
5300	UIEFIZ	15:0	_	_	—	_	—	—	-	-	—	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53D0	U1EP13	31:16	_		—	_	—	—		_	_	_		—	—	_	—	_	0000
55D0	UIEF 13	15:0	_	_	—	_	—	—	-	-	—	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_		_	_	_	_	_	-	_	_	_	_	_	_	_	_	0000
53E0	U1EP14	15:0	_		_	_	_	_		_			_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_		_	_	_	_		_			_	_	_	_	_	_	0000
53F0	U1EP15	15:0	_		_	_	_	_		_	-		_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31:24		—	—	—		—	—	—
23:16	U-0	U-0						
23.10			_	_	_	_	_	—
15:8	U-0	U-0						
10.0	_	_	_	_		_	_	—
	R/W-0	R/W-0						
7:0	BTSEE	BMXEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE ⁽¹⁾ EOFEE ⁽²⁾	PIDEE

REGISTER 11-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	BTSEE: Bit Stuff Error Interrupt Enable bit

- 1 = BTSEF interrupt is enabled
- 0 = BTSEF interrupt is disabled
- bit 6 BMXEE: Bus Matrix Error Interrupt Enable bit
 - 1 = BMXEF interrupt is enabled
 - 0 = BMXEF interrupt is disabled
- bit 5 **DMAEE:** DMA Error Interrupt Enable bit
 - 1 = DMAEF interrupt is enabled
 - 0 = DMAEF interrupt is disabled
- bit 4 BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
 - 1 = BTOEF interrupt is enabled
 - 0 = BTOEF interrupt is disabled
- bit 3 **DFN8EE:** Data Field Size Error Interrupt Enable bit
 - 1 = DFN8EF interrupt is enabled
 - 0 = DFN8EF interrupt is disabled
- bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
 - 1 = CRC16EF interrupt is enabled
 - 0 = CRC16EF interrupt is disabled
- bit 1 CRC5EE: CRC5 Host Error Interrupt Enable bit⁽¹⁾
 - 1 = CRC5EF interrupt is enabled
 - 0 = CRC5EF interrupt is disabled
 - EOFEE: EOF Error Interrupt Enable bit⁽²⁾
 - 1 = EOF interrupt is enabled
 - 0 = EOF interrupt is disabled
- bit 0 PIDEE: PID Check Failure Interrupt Enable bit
 - 1 = PIDEF interrupt is enabled
 - 0 = PIDEF interrupt is disabled

Note 1: Device mode.

2: Host mode.

Note: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

12.1 Parallel I/O (PIO) Ports

All port pins have ten registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

12.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the presence of outputs higher than VDD (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Device Pin Tables"** section for the available pins and their functionality.

12.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

12.1.3 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP.

12.1.4 INPUT CHANGE NOTIFICATION

The input change notification function of the I/O ports allows the PIC32MX330/350/370/430/450/470 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.

Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit.

Each I/O pin also has a weak pull-up and every I/O pin has a weak pull-down connected to it. The pullups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on change notifi- cation pins should always be disabled when the port pin is configured as a digital
	output. They should also be disabled on
	5V tolerant pins when the pin voltage can
	exceed VDD.

An additional control register (CNCONx) is shown in Register 12-3.

12.2 CLR, SET, and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

12.3 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only options.

Peripheral pin select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. Peripheral pin select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

12.3.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

12.3.2 AVAILABLE PERIPHERALS

The peripherals managed by the peripheral pin select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

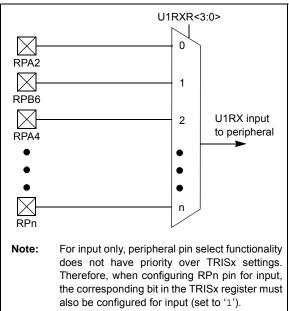
In comparison, some digital-only peripheral modules are never included in the peripheral pin select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral. When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

12.3.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


12.3.4 INPUT MAPPING

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [*pin name*]R registers, where [*pin name*] refers to the peripheral pins listed in Table 12-1, are used to configure peripheral input mapping (see Register 12-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table 12-1.

For example, Figure 12-2 illustrates the remappable pin selection for the U1RX input.

FIGURE 12-2:

REMAPPABLE INPUT EXAMPLE FOR U1RX

12.4 Control Registers

	PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY																		
ess (Ð								Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	ANSELA	31:16	—	—	_	—	_	—	—	_	—	—	—	_	—	—	—	_	0000
0000	ANOLLA	15:0	—	—	_	—	_	ANSELA10	ANSELA9	_	_		_	_			—	_	0060
6010	TRISA	31:16	—	—	-	—	_	—	—		_	—	_		—	—	_		0000
		15:0	TRISA15	TRISA14	_	—	_	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	xxxx
6020	PORTA	31:16	—	—	_	—		—	_		_		_	—			—	—	0000
	-	15:0	RA15	RA14	_	—	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
6030	LATA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	LATA15	LATA14	—	—	—	LATA10	LATA9	—	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
6040	ODCA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	ODCA15	ODCA14	—	—	—	ODCA10	ODCA9	—	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	xxxx
6050	CNPUA	31:16			_	—	_	_			—		_	_				_	0000
			CNPUA15	CNPUA14	_	—	_	CNPUA10	CNPUA9	_	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	_
6060	CNPDA	31:16	—	—	_	—	_	—	—	_	—	—	—	—	—	—	—	—	0000
			CNPDA15	CNPDA14	—		_	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	
6070	CNCONA	31:16				—	_	_			_								0000
		15:0	ON		SIDL	—	_	_			_								0000
6080	CNENA	31:16	-	-	_	_	_	-	-	_	-	-	-	—	—	—	—	—	0000
		15:0	CNIEA15		_	—	_	CNIEA10	CNIEA9	—	CNIEA7	CNIEA6	CNIEA5	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	XXXX
6000	CNSTATA	31:16	-	-	_	—	_	-	-	—	-	-	-	—	-	-	-	—	0000
0090	CINGTATA	15:0	CN STATA15	CN STATA14	_	—	_	CN STATA10	CN STATA9	—	CN STATA7	CN STATA6	CN STATA5	CN STATA4	CN STATA3	CN STATA2	CN STATA1	CN STATA0	xxxx

TABLE 12-3:PORTA REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,
PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

NOTES:

20.1 **Control Registers**

TABLE 20-1: UART1 THROUGH UART5 REGISTER MAP

ess)		Ð								Bi	ts								s
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	U1MODE ⁽¹⁾	31:16	_		-	_	_			_	_	—	_	_		_			0000
0000	UTMODE: /	15:0	ON		SIDL	IREN	RTSMD		UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
6010	U1STA ⁽¹⁾	31:16	—	_	—	_	—	_	_	ADM_EN				ADDR	<7:0>				0000
0010	01317	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6020	U1TXREG	31:16	—	_	—	_	—	_	_	—	_	_	—	—	_	—	_	_	0000
0020	UTIXILEO	15:0	—	_	—	_	_	_	_	TX8				Transmit	Register				0000
6030	U1RXREG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0000	ONVILO	15:0	—	—	—	—	—	—	—	RX8				Receive	Register				0000
6040	U1BRG ⁽¹⁾	31:16	—	—	—	—	—	—	—	—		—	—	—	—	—	—	—	0000
0010	OTDICO	15:0		Baud Rate Generator Prescaler								0000							
6200	U2MODE ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0	ON	—	SIDL	IREN	RTSMD	—	UEN		WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
6210	U2STA ⁽¹⁾	31:16	—	—	—	_	—	—	—	ADM_EN			1	ADDR					0000
		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6220	U2TXREG	31:16	_		_	_	_	_		—	_	—	—		—	_	—	_	0000
		15:0	_		_	_	_	_		TX8				Transmit	Register				0000
6230	U2RXREG	31:16	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	—	0000
		15:0	—	—	—	—	—	—	—	RX8				Receive	Register				0000
6240	U2BRG ⁽¹⁾	31:16	_	_	_	_	—	—		—	_	—	—	_	—	_	—	—	0000
		15:0							Bau	d Rate Gene	erator Pres	caler							0000
6400	U3MODE ⁽¹⁾	31:16	_	_	—	_	—	_	_	—		—	—	—	—	—	—	—	0000
		15:0	ON	_	SIDL	IREN	RTSMD	_	UEN	-	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEI	_<1:0>	STSEL	0000
6410	U3STA ⁽¹⁾	31:16	—										0000						
		15:0	UTXISE	:L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	=L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6420	U3TXREG	31:16	_	_		—	_	_	_	— 	—	—	—	— —	—	-	—	—	0000
		15:0	-	_	—	_	_	_		TX8				Transmit	-				0000
6430	U3RXREG	31:16	_	_	_	_	_	_	_	-	_	—	—	—	—	—	—	—	0000
		15:0	— [—															

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV registers" for more informa-Note 1: tion.

NOTES:

NOTES:

27.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 27-1 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

TABLE 27-1:	PERIPHERAL MODULE DISABLE BITS AND LOCATIONS

Peripheral ⁽¹⁾	PMDx bit Name ⁽¹⁾	Register Name and Bit Location
ADC1	AD1MD	PMD1<0>
СТМИ	CTMUMD	PMD1<8>
Comparator Voltage Reference	CVRMD	PMD1<12>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>
UART3	U3MD	PMD5<2>
UART4	U4MD	PMD5<3>
UART5	U5MD	PMD5<4>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>
I2C1	I2C1MD	PMD5<16>
2C2	I2C2MD	PMD5<17>
USB ⁽²⁾	USBMD	PMD5<24>
RTCC	RTCCMD	PMD6<0>
Reference Clock Output	REFOMD	PMD6<1>
PMP	PMPMD	PMD6<16>

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX330/350/ 370/430/450/470 Controller Family Features" for the lists of available peripherals.

2: Module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

- bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits
 - 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
 - 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
 - 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
- bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits
 - 11 = PBCLK is SYSCLK divided by 8
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- bit 11 Reserved: Write '1'
- bit 10 OSCIOFNC: CLKO Enable Configuration bit
 - 1 = CLKO output is disabled
 - 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00)
- bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Primary Oscillator is disabled
 - 10 = HS Oscillator mode is selected
 - 01 = XT Oscillator mode is selected
 - 00 = External Clock mode is selected
- bit 7 IESO: Internal External Switchover bit
 - 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)
 - 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
- bit 6 **Reserved:** Write '1'
- bit 5 **FSOSCEN:** Secondary Oscillator Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 4-3 Reserved: Write '1'
- bit 2-0 **FNOSC<2:0>:** Oscillator Selection bits
 - 111 = Fast RC Oscillator with divide-by-N (FRCDIV)
 - 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler
 - 101 = Low-Power RC Oscillator (LPRC)
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL)
 - 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾
 - 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
 - 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the Posc (POSCMOD = 11) when using this oscillator source.

Bit 3/15/7 R	Bit 30/22/14/6 R	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
R	R	Р					24/10/0/0						
		R	R	R	R	R	R						
VER<3:0> ⁽¹⁾					DEVID<27:24> ⁽¹⁾								
R	R	R	R	R	R	R	R						
DEVID<23:16> ⁽¹⁾													
R	R	R	R	R	R	R	R						
DEVID<15:8> ⁽¹⁾													
R	R	R	R	R	R	R	R						
			DEVID<	7:0>(1)	DEVID<7:0> ⁽¹⁾								
R	2	R R	R R	DEVID<2 R R R R DEVID<7 R R R R	DEVID<23:16> ⁽¹⁾ R R R R R DEVID<15:8> ⁽¹⁾ R R R R R	DEVID<23:16> ⁽¹⁾ R R R R R R DEVID<15:8> ⁽¹⁾ R R R R R R	DEVID<23:16>(1) R R R R DEVID<15:8> ⁽¹⁾ R R R R						

REGISTER 28-6: DEVID: DEVICE AND REVISION ID REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 **DEVID<27:0>:** Device ID⁽¹⁾

Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

DC CHARACTERISTICS			$\begin{tabular}{ c c c c c } \hline Standard Operating Conditions: 2.3V to 3.6V \\ \hline (unless otherwise stated) \\ \hline Operating temperature & 0°C \leq TA \leq +70°C for Commercial \\ -40°C \leq TA \leq +85°C for Industrial \\ -40°C \leq TA \leq +105°C for V-temp \\ \hline \end{tabular}$					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions	
Operating Voltage								
DC10	Vdd	Supply Voltage	2.3	_	3.6	V	_	
DC12	Vdr	RAM Data Retention Voltage (Note 1)	1.75	—	_	V	_	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	1.75	_	2.1	V	_	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.00005	_	0.115	V/µs	_	

TABLE 31-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

TABLE 31-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min. ⁽¹⁾	Typical	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD transition high-to-low	2.0	—	2.3	V	_

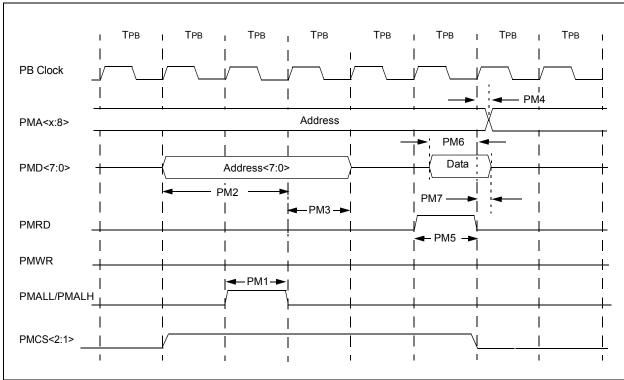
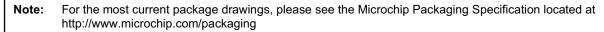

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

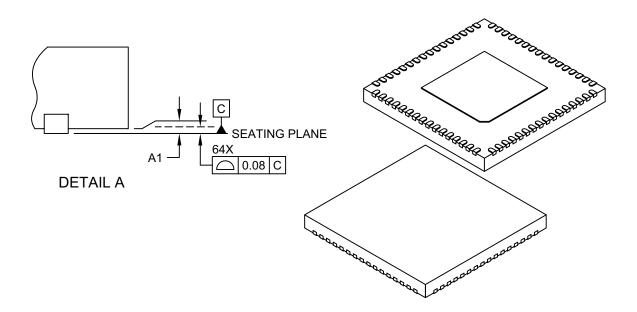
TABLE 31-11: ELECTRICAL CHARACTERISTICS: HVD

DC CHARACTERISTICS		Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param. No. ⁽¹⁾	aram. No. ⁽¹⁾ Symbol Characteristics M		Min.	Typical	Max.	Units	Conditions
HV10	Vhvd	High Voltage Detect on VCAP pin	—	2.5		V	—

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

PIC32MX330/350/370/430/450/470


FIGURE 31-21: PARALLEL MASTER PORT READ TIMING DIAGRAM


TABLE 31-39: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commerc} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industria} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temperature} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
PM1	TLAT	PMALL/PMALH Pulse Width	—	1 Трв	_	_	_	
PM2	Tadsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	_	2 Трв	—		—	
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	_	1 Трв	—			
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	—	—	ns	_	
PM5	Trd	PMRD Pulse Width	—	1 Трв	_	—	—	
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	—	ns	—	
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	1 Трв	—	—		PMP Clock	

Note 1: These parameters are characterized, but not tested in manufacturing.

64-Terminal Plastic Quad Flat Pack, No Lead (RG) 9x9x0.9 mm Body [QFN] Saw Singulated

	Ν	MILLIMETERS						
Dimension	Dimension Limits			MAX				
Number of Terminals	Ν		64					
Pitch	е		0.50 BSC					
Overall Height	Α	0.80	0.85	0.90				
Standoff	A1	0.00	0.02	0.05				
Standoff	A3	0.20 REF						
Overall Width	E		9.00 BSC					
Exposed Pad Width	E2	4.60	4.70	4.80				
Overall Length	D	9.00 BSC						
Exposed Pad Length	D2	4.60	4.70	4.80				
Terminal Width	b	0.15	0.20	0.25				
Terminal Length	L	0.30	0.40	0.50				
Terminal-to-Exposed-Pad	К	1.755 REF						

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-260A Sheet 2 of 2