

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

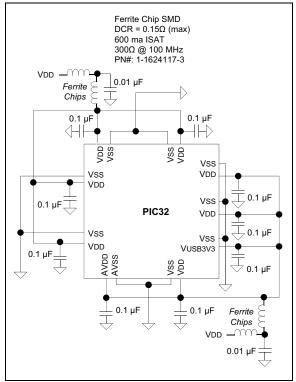
E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	81
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx450f256lt-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.9 Unused I/Os


Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.10 EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations

The use of LDO regulators is preferred to reduce overall system noise and provide a cleaner power source. However, when utilizing switching Buck/ Boost regulators as the local power source for PIC32 devices, as well as in electrically noisy environments or test conditions required for IEC 61000-4-4 and IEC 61000-4-2, users should evaluate the use of T-Filters (i.e., L-C-L) on the power pins, as shown in Figure 2-5. In addition to a more stable power source, use of this type of T-Filter can greatly reduce susceptibility to EMI sources and events.

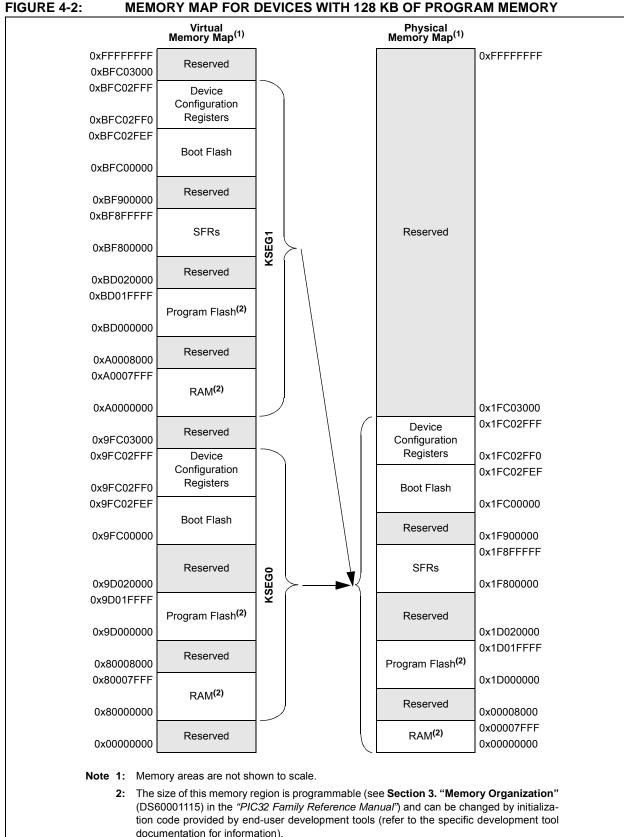
FIGURE 2-5: EMI/EMC/EFT SUPPRESSION CIRCUIT

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32[®] architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)


In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e[®], is also available by accessing the CP0 registers, listed in Table 3-2.

Reserved HWREna BadVAddr ⁽¹⁾ Count ⁽¹⁾ Reserved Compare ⁽¹⁾ Status ⁽¹⁾	Reserved in the PIC32MX330/350/370/430/450/470 family core. Enables access via the RDHWR instruction to selected hardware registers. Reports the address for the most recent address-related exception. Processor cycle count. Reserved in the PIC32MX330/350/370/430/450/470 family core. Timer interrupt control.
BadVAddr ⁽¹⁾ Count ⁽¹⁾ Reserved Compare ⁽¹⁾ Status ⁽¹⁾	Reports the address for the most recent address-related exception. Processor cycle count. Reserved in the PIC32MX330/350/370/430/450/470 family core.
Count ⁽¹⁾ Reserved Compare ⁽¹⁾ Status ⁽¹⁾	Processor cycle count. Reserved in the PIC32MX330/350/370/430/450/470 family core.
Reserved Compare ⁽¹⁾ Status ⁽¹⁾	Reserved in the PIC32MX330/350/370/430/450/470 family core.
Compare ⁽¹⁾ Status ⁽¹⁾	
Status ⁽¹⁾	Timer interrupt control.
(4)	Processor status and control.
IntCtl ⁽¹⁾	Interrupt system status and control.
SRSCtl ⁽¹⁾	Shadow register set status and control.
SRSMap ⁽¹⁾	Provides mapping from vectored interrupt to a shadow set.
Cause ⁽¹⁾	Cause of last general exception.
EPC ⁽¹⁾	Program counter at last exception.
PRId	Processor identification and revision.
EBASE	Exception vector base register.
Config	Configuration register.
Config1	Configuration register 1.
Config2	Configuration register 2.
Config3	Configuration register 3.
Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
Debug ⁽²⁾	Debug control and exception status.
DEPC ⁽²⁾	Program counter at last debug exception.
Reserved	Reserved in the PIC32MX330/350/370/430/450/470 family core.
ErrorEPC ⁽¹⁾	Program counter at last error.
DESAVE ⁽²⁾	Debug handler scratchpad register.
	RSMap ⁽¹⁾ Cause ⁽¹⁾ PC ⁽¹⁾ PRId BASE Config Config1 Config2 Config3 Reserved Debug ⁽²⁾ DEPC ⁽²⁾ Reserved ErrorEPC ⁽¹⁾

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used during debug.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	R/W-y R/W-y		R/W-y	R/W-0	R/W-0	R/W-1
31:24	_	—	Р	LLODIV<2:0>	>	F	RCDIV<2:0>	
22:16	U-0	R-0	R-1	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y
23:16	—	SOSCRDY	PBDIVRDY	PBDIV	/<1:0>	Р	LLMULT<2:0>	
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
15:8	—		COSC<2:0>		—	NOSC<2:0>		
7:0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-y	R/W-0
7:0	CLKLOCK	ULOCK ⁽¹⁾	SLOCK	SLPEN	CF	UFRCEN ⁽¹⁾	SOSCEN	OSWEN

Legend:

y = Value set from Configuration bits on POR

Legena.	y - value set nom conne		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

- bit 29-27 PLLODIV<2:0>: Output Divider for PLL
 - 111 = PLL output divided by 256
 - 110 = PLL output divided by 64
 - 101 = PLL output divided by 32
 - 100 = PLL output divided by 16
 - 011 = PLL output divided by 8
 - 010 = PLL output divided by 4
 - 001 = PLL output divided by 2
 - 000 = PLL output divided by 1

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

- 111 = FRC divided by 256
- 110 = FRC divided by 64
- 101 = FRC divided by 32
- 100 = FRC divided by 16
- 011 = FRC divided by 8
- 010 = FRC divided by 4
- 001 = FRC divided by 2 (default setting)
- 000 = FRC divided by 1
- bit 23 Unimplemented: Read as '0'
- bit 22 SOSCRDY: Secondary Oscillator (Sosc) Ready Indicator bit
 - 1 = Indicates that the Secondary Oscillator is running and is stable
 - 0 = Secondary Oscillator is still warming up or is turned off
- bit 21 PBDIVRDY: Peripheral Bus Clock (PBCLK) Divisor Ready bit
 - 1 = PBDIV<1:0> bits can be written
 - 0 = PBDIV<1:0> bits cannot be written
- bit 20-19 **PBDIV<1:0>:** Peripheral Bus Clock (PBCLK) Divisor bits
 - 11 = PBCLK is SYSCLK divided by 8 (default)
 - 10 = PBCLK is SYSCLK divided by 4
 - 01 = PBCLK is SYSCLK divided by 2
 - 00 = PBCLK is SYSCLK divided by 1
- Note 1: This bit is available on PIC32MX4XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

9.2 Control Registers

TABLE 9-1: PREFETCH REGISTER MAP

ess										Bit	s								
Virtual Address (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
4000	CHECON ⁽¹⁾	31:16	—	_	—	—		_	—	—	_		—		—	—		CHECOH	0000
1000		15:0	—	_		—	_	_	DCSZ	<1:0>	—		PREFE	N<1:0>	—	P	FMWS<2:0)>	0007
4010	CHEACC ⁽¹⁾		CHEWEN	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	—	_	—	—	—	_	—	—	—		—	—		CHEID	X<3:0>		00xx
4020	CHETAG ⁽¹⁾	31:16	LTAGBOOT	—	—	—	—	—	—	—				LTAG<	:23:16>				xxx0
1020								LTAG<	15:4>						LVALID	LLOCK	LTYPE	—	xxx2
4030	CHEMSK ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—	—	_	—	—	—	—	0000
		15:0					LN	1ASK<15:5	>					—	—	_	—	—	xxxx
4040	CHEW0	31:16		CHEW0<31:0>														XXXX	
		15:0		X														XXXX	
4050	CHEW1	31:16		CHEW1<31:0>														xxxx	
		15:0																	xxxx
4060	CHEW2	31:16								CHEW2	<31:0>								xxxx
		15:0																	XXXX
4070	CHEW3	31:16								CHEW3	<31:0>								XXXX
		15:0			_	_	_	_					CH	IELRU<24:1	16>				XXXX
4080	CHELRU	31:16 15:0							_	CHELRU	<15.0>		CI		10-				0000
										CHELRU	<15.0>								0000
4090	CHEHIT	31:16 15:0								CHEHIT	<31:0>								xxxx
																			XXXX
40A0	CHEMIS	31:16 15:0								CHEMIS	<31:0>								xxxx
		31:16																	xxxx
40C0	CHEDEADT	15:0								CHEPFAB	T<31:0>								xxxx xxxx
Legen			n value on Re	sot = u	nimplomon	tod road as	: '0' Reset	values are	shown in h	avadocimal									XXXX

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

PIC32MX330/350/370/430/450/470

					=			
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	CHEWEN	—			—			—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	-	—		-	—		-	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
10.0	—	—	_	-	—	—	-	—
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0			_			CHEID	X<3:0>	

REGISTER 9-2: CHEACC: CACHE ACCESS REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 **CHEWEN:** Cache Access Enable bits for registers CHETAG, CHEMSK, CHEW0, CHEW1, CHEW2, and CHEW3

1 = The cache line selected by CHEIDX<3:0> is writeable

0 = The cache line selected by CHEIDX<3:0> is not writeable

bit 30-4 **Unimplemented:** Write '0'; ignore read

bit 3-0 CHEIDX<3:0>: Cache Line Index bits

The value selects the cache line for reading or writing.

TABLE 10-3: DMA CHANNEL 0 THROUGH CHANNEL 3 REGISTER MAP

ess		0								Bi	its								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	DCH0CON	31:16	—	_		_		_	_	_	_	_	_	_	_	_	_		0000
3060	DCHUCON	15:0	CHBUSY	—	_	—	_	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	_	CHEDET	CHPR	l<1:0>	0000
3070	DCH0ECON	31:16	—	—	—	—	_	—	_	—		1	r		Q<7:0>	•			00FF
0070	DOINCEOUN	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—	—	—	FFF8
3080	DCH0INT	31:16	—	—	—	—	-	—	—	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
0000	Borioitti	15:0	—	—	—	—	—	—	—	—	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3090	DCH0SSA	31:16 15:0								CHSSA	<31:0>								0000
		31:16																	0000
30A0	DCH0DSA	15:0								CHDSA	A<31:0>								0000
		31:16	_	_	_		_	_	_	_	_	_	_	_	_	_		_	0000
30B0	DCH0SSIZ	15:0		CHSSIZ<15:0> 00														0000	
		31:16														0000			
30C0	DCH0DSIZ	15:0														0000			
0000		31:16	—	_	—	—	—	—	—	_	—		_	—	_	_	—	_	0000
30D0	DCH0SPTR	15:0								CHSPT	R<15:0>					•			0000
2050		31:16	_	_	_	—	_	_	_	_	_	_	_	_	_	—	_	_	0000
30E0	DCH0DPTR	15:0								CHDPT	R<15:0>								0000
2050	DCH0CSIZ	31:16	—		_	_	_	_	_	_	_	_	_	_	_	—	_	_	0000
30FU	DCHUCSIZ	15:0								CHCSIZ	Z<15:0>								0000
3100	DCH0CPTR	31:16	—	_		—		_	_	—	_	_	_	_	_	_	_		0000
3100	DCHUCFTK	15:0								CHCPT	R<15:0>		-						0000
3110	DCH0DAT	31:16	—	—		—	_	—	—	—		—	—	—	—	—	—	—	0000
5110	DONUDAI	15:0	—	—	_	—	_		—	—				CHPDA	AT<7:0>				0000
3120	DCH1CON	31:16	—	—	_	—	—		—		—	—	—	—	—	—	—	—	0000
0120	Bonnoon	15:0	CHBUSY	—	—	—	_	—	—	CHCHNS	CHEN	CHAED	CHCHN	CHAEN		CHEDET	CHPR	l<1:0>	0000
3130	DCH1ECON	31:16	—	—	—	—	—	—	—	—		1	-		Q<7:0>	-			OOFF
0.00		15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	—		—	FFF8
3140	DCH1INT	31:16	-	_	_	—	_	—	_	—	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
55		15:0	—	_	—	—	—	—	—	-	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
3150	DCH1SSA	31:16								CHSSA	<31:0>								0000
		15:0																	0000
3160	DCH1DSA	31:16								CHDSA	<31:0>								0000
		15:0								exadecimal									0000

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

11.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32 USB module includes the following features:

- USB full-speed support for host and device
- Low-speed host support
- USB OTG support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- · Transaction handshaking performed by hardware
- · Endpoint buffering anywhere in system RAM
- · Integrated DMA to access system RAM and Flash
- The implementation and use of the USB Note: specifications, and other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

TABLE 11-1: USB REGISTER MAP (CONTINUED)

ess								,			Bit	s							6
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5390	U1EP9	31:16	—	—		—	_	_	—	—			—	—	—	—	—	_	0000
5390	UIEF9	15:0	—	_		_	-	-	—	_	—		_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53A0	U1EP10	31:16	—	_		_			_				_	—	_	_	—		0000
53A0	UIEFIU	15:0	_	_		_	-	-	_	_	_		—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16	_	_	—	_	_	_	_	_	_	_	_	—	_	_	_	_	0000
5560	UIEFII	15:0	_	_	—	_	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16	_	_	—	_	—	—	-	-	—	—	_	—	_	_	—	_	0000
5300	UIEFIZ	15:0	_	_	—	_	—	—	-	-	—	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53D0	U1EP13	31:16	_		_	_	—	—		_	_	_		—	—	_	—	_	0000
55D0	UIEF 13	15:0	_	_	—	_	—	—	-	-	—	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_		_	_	_	_	_	-	_	_	_	_	_	_	_	_	0000
53E0	U1EP14	15:0	_		_	_	_	_		_			_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16	_		_	_	_	_		_			_	_	_	_	_	_	0000
53F0	U1EP15	15:0	_		_	_	_	_		_			_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

12.4 Control Registers

		FI	C32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY																
ess (Ð								Bi	ts								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	ANSELA	31:16	—	—	_	—	_	—	—	_	—	—	—	_	—	—	—	_	0000
0000	ANOLLA	15:0	—	—	_	—	_	ANSELA10	ANSELA9	_	_		_	_			—	_	0060
6010	TRISA	31:16	—	—	-	—	_	—	—		_	—	_		—	—	_		0000
		15:0	TRISA15	TRISA14	_	—	_	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	xxxx
6020	PORTA	31:16	—	—	_	—		—	_		_		_	—			—	—	0000
	-	15:0	RA15	RA14	_	—	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
6030	LATA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	LATA15	LATA14	—	—	—	LATA10	LATA9	—	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
6040	ODCA	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
		15:0	ODCA15	ODCA14	—	—	—	ODCA10	ODCA9	—	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	xxxx
6050	CNPUA	31:16			_	—	_	_			—		_	_				_	0000
			CNPUA15	CNPUA14	_	—	_	CNPUA10	CNPUA9	_	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	_
6060	CNPDA	31:16	—	—	_	—	_	—	—	_	—	—	—	—	—	—	—	—	0000
			CNPDA15	CNPDA14	—		_	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	
6070	CNCONA	31:16				—	_	_			_								0000
		15:0	ON		SIDL	—	_	_			_								0000
6080	CNENA	31:16	-	-	_	—	_	-	-	_	-	-	-	—	—	—	—	—	0000
		15:0	CNIEA15		_	—	_	CNIEA10	CNIEA9	—	CNIEA7	CNIEA6	CNIEA5	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	XXXX
6000	CNSTATA	31:16	-	-	_	—	_	-	-	—	-	-	-	—	-	-	-	-	0000
0090	CINGTATA	15:0	CN STATA15	CN STATA14	_	—	_	CN STATA10	CN STATA9	—	CN STATA7	CN STATA6	CN STATA5	CN STATA4	CN STATA3	CN STATA2	CN STATA1	CN STATA0	xxxx

TABLE 12-3:PORTA REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,
PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE 12-12: PORTF REGISTER MAP FOR PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY

		U																	
ess		â								Bit	s								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6510	TRISF	31:16	_		—	—	_	—	_	—	_	-	—	_	—	-	—	_	0000
0010	-	15:0	—	—	TRISF13	TRISF12	—	—	_	TRISF8	—	—	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	xxxx
6520	PORTF	31:16	_	_	—		_	_		—	_		—	_	_	_	—		0000
		15:0	—	_	RF13	RF12	—	—		RF8	—	_	RF5	RF4	RF3	RF2	RF1	RF0	XXXX
6530	LATF	31:16	—	_	—	_	—	—		—	—	_	—	—	—	_	—		0000
		15:0	—	_	LATF13	LATF12	—	—		LATF8	—	_	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	XXXX
6540	ODCF	31:16	—	_	—	_	—	—		—	—	_	—	—	—	_	—		0000
		15:0	—	_	ODCF13	ODCF12	—	—		ODCF8	—	_	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	xxxx
6550	CNPUF	31:16	_		—		_	_		—	_		—	_		_	—		0000
		15:0	—	_	CNPUF13	CNPUF12	—	_	_	CNPUF8	_		CNPUF5	CNPUF4	CNPDF3	CNPUF2	CNPUF1	CNPUF0	XXXX
6560	CNPDF	31:16	—	_	-		—	_	_	—	_		—	—	—	—	—	—	0000
	_	15:0	—	_	CNPDF13	CNPDF12	—	_	_	CNPDF8	_		CNPDF5	CNPFF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	XXXX
6570	CNCONF	31:16	_	_	-		—	_	_	—	_		—	_	—	_	_	_	0000
		15:0	ON	_	SIDL	—	_	—	_	_	_	—	—	_	—	_	_	_	0000
6580	CNENF	31:16	—	_	-		—	_	_	—	_		—	—	—	—	—	—	0000
	_	15:0	—	_	CNIEF13	CNIEF12	—	_	_	CNIEF8	_		CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	XXXX
0500		31:16	—		—	—	—	—	—	—	—		—		—		_		0000
6590	CNSTATF	15:0	—	—	CN STATF13	CN STATF12	—	—	—	CN STATF8	_	—	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	xxxx

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Legend:

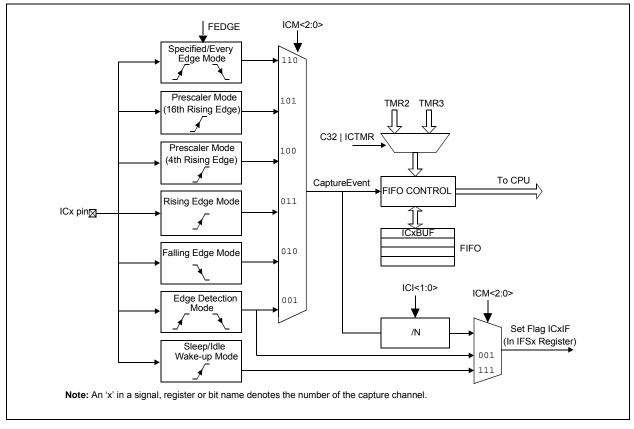
Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

16.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS60001122), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause capture events:


- Simple capture event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
 - Capture timer value on every edge (rising and falling)
 - Capture timer value on every edge (rising and falling), specified edge first.

- Prescaler capture event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

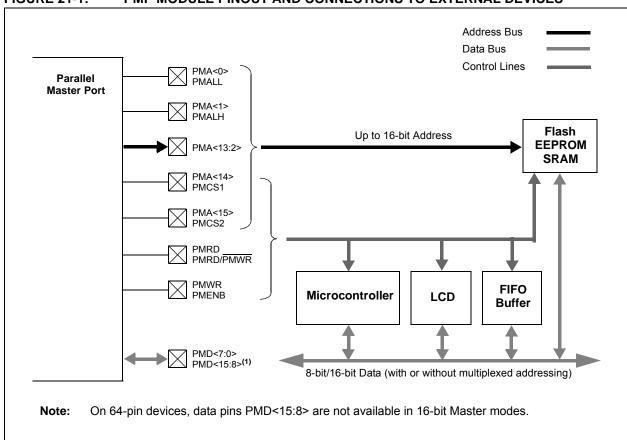
- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on input capture event
- 4-word FIFO buffer for capture values Interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

FIGURE 16-1: INPUT CAPTURE BLOCK DIAGRAM

REGIST	ER 18-1:	SPIxCON: S	SPI CONTROL REGISTER (CONTINUED)							
bit 17			e Edge Select bit (Framed SPI mode only)							
	 1 = Frame synchronization pulse coincides with the first bit clock 0 = Frame synchronization pulse precedes the first bit clock 									
h:+ 40	 0 = Frame synchronization pulse precedes the first bit clock ENHBUF: Enhanced Buffer Enable bit⁽²⁾ 									
bit 16	ENHBUF: Enhanced Buffer Enable bit ⁽²⁾ 1 = Enhanced Buffer mode is enabled									
	0 = Enhanced Buffer mode is disabled									
bit 15		ripheral On bi								
		ripheral is ena								
		ripheral is dis								
bit 14	Unimpleme	ented: Read a	as '0'							
bit 13	SIDL: Stop	in Idle Mode b	pit							
	1 = Discontinue operation when CPU enters in Idle mode									
	0 = Continu									
bit 12		isable SDOx								
		 1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register 0 = SDOx pin is controlled by the module 								
bit 11-10			t Communication Select bits							
	When AUD		Communication Select bits							
	MODE32	MODE16	Communication							
	1	1	24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame							
	1	0	32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame							
	0	1	16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame							
	0	0	16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame							
	When AUD	EN = 0:								
	MODE32	MODE16	Communication							
	1	x	32-bit							
	0	1	16-bit							
	0	0	8-bit							
bit 9		0ata Input Sar le (MSTEN =	nple Phase bit							
			$\frac{1}{2}$. at end of data output time							
			at middle of data output time							
	Slave mode (MSTEN = 0):									
		-	en SPI is used in Slave mode. The module always uses SMP = 0.							
bit 8	CKE: SPI Clock Edge Select bit ⁽³⁾									
		1 = Serial output data changes on transition from active clock state to Idle clock state (see CKP bit)								
bit 7	0 = Serial output data changes on transition from Idle clock state to active clock state (see CKP bit)									
	SSEN: Slave Select Enable (Slave mode) bit 1 = SSx pin used for Slave mode									
	$0 = \overline{SSx}$ pin not used for Slave mode, pin controlled by port function.									
bit 6	CKP: Clock Polarity Select bit ⁽⁴⁾									
	1 = Idle sta	Idle state for clock is a high level; active state is a low level								
		0 = Idle state for clock is a low level; active state is a high level								
bit 5		MSTEN: Master Mode Enable bit								
		1 = Master mode 0 = Slave mode								
		lioue								
Note 1:	When using	g the 1:1 PBC	LK divisor, the user software should not read or write the peripheral's SFRs in the							
	SYSCLK cycle immediately following the instruction that clears the module's ON bit.									
2:	This bit car	n only be writte	en when the ON bit = 0.							
3:	This bit is r mode (FRN		Framed SPI mode. The user should program this bit to '0' for the Framed SPI							
4:	-	-	PI module functions as if the CKP bit is equal to '1', regardless of the actual value							
	of CKP.	<u> </u>								

REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)

- bit 4 **DISSDI:** Disable SDI bit 1 = SDI pin is not used by the SPI module (pin is controlled by PORT function)
 - 0 = SDI pin is controlled by the SPI module
- bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is not full (has one or more empty elements)
 - 10 = Interrupt is generated when the buffer is empty by one-half or more
 - 01 = Interrupt is generated when the buffer is completely empty
 - 00 = Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are complete
- bit 1-0 SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is full
 - 10 = Interrupt is generated when the buffer is full by one-half or more
 - 01 = Interrupt is generated when the buffer is not empty
 - 00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.


21.0 PARALLEL MASTER PORT (PMP)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Parallel Master Port (PMP)" (DS60001128), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. The following are key features of the PMP module:

- 8-bit,16-bit interface
- · Up to 16 programmable address lines
- · Up to two Chip Select lines
- Programmable strobe options
 - Individual read and write strobes, or
 - Read/write strobe with enable strobe
- Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- · Programmable polarity on control signals
- Parallel Slave Port support
 - Legacy addressable
 - Address support
 - 4-byte deep auto-incrementing buffer
- · Programmable Wait states
- Operate during CPU Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers
- Freeze option for in-circuit debugging

Note: On 64-pin devices, data pins PMD<15:8> are not available in 16-bit Master modes.

FIGURE 21-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

NOTES:

30.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

30.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

IABLE 31-7								
			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)					
DC CHARACTERISTICS			Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial					
			$-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
	(0)		$-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param. No.	Тур. ⁽²⁾	Max.	Units Conditions					
PIC32MX37	0 Device	s Only						
Power-Down	n Curren	it (IPD) (N	lote 1)					
DC40k	55	95	μA	-40°C				
DC40I	81	95	μA	+25°C	Base Power-Down Current			
DC40n	281	450	μA	+85°C				
DC40m	559	895	μA	+105°C				
PIC32MX47	0 Device	s Only			· · · · · · · · · · · · · · · · · · ·			
Power-Dow	n Curren	it (IPD) (N	lote 1)					
DC40k	33	78	μA	-40°C				
DC40o	33	78	μA	0°C(5)				
DC40I	49	78	μA	+25°C	Base Power-Down Current			
DC40p	281	450	μA	+70°C ⁽⁵⁾				
DC40n	281	450	μA	+85°C				
DC40m	559	895	μA	+105°C				
PIC32MX33	0/350/370	0/430/450)/470 Dev	vices				
Module Diffe	erential (Current						
DC41e	6.7	20	μA	3V	Watchdog Timer Current: ΔIWDT (Note 3)			
DC42e	29.1	50	μA	3V	RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC (Note 3)			
DC43d	1000	1200	μA	3V	ADC: Aladc (Notes 3,4)			

TABLE 31-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

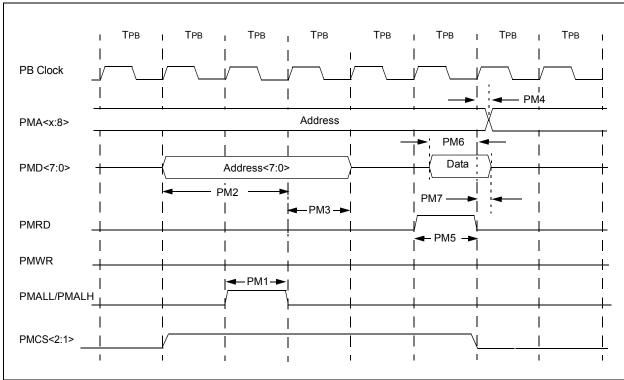
Note 1: The test conditions for IPD measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL oscillator is disabled if the USB module is implemented, PBCLK divisor = 1:8
- CPU is in Sleep mode, program Flash memory Wait states = 7, Program Cache and Prefetch are disabled and SRAM data memory Wait states = 1
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is set
- WDT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD
- RTCC and JTAG are disabled
- Voltage regulator is off during Sleep mode (VREGS bit in the RCON register = 0)
- 2: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: Test conditions for ADC module differential current are as follows: Internal ADC RC oscillator enabled.
- **5:** 120 MHz commercial devices only (0°C to +70°C).

PIC32MX330/350/370/430/450/470

FIGURE 31-10: SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS SCKx (CKP = 0) SP11 SP10 SP21 SP20 SCKx (CKP = 1) SP35 SP20 SP21 Bit 14 SDOx MSb -1 LSb **SP31** SP30 SDIx LSb In MSb In Bit 14 SP40 'SP41' Note: Refer to Figure 31-1 for load conditions.

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Typical ⁽		Max.	Max. Units Condition		
SP10	TscL	SCKx Output Low Time (Note 3)	Тѕск/2	—	—	ns	—	
SP11	TscH	SCKx Output High Time (Note 3)	Тѕск/2	—	—	ns	_	
SP20	TSCF	SCKx Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time (Note 4)	—	_	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)		_	_	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	_		ns	See parameter DO31	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	_	15	ns	VDD > 2.7V	
				—	20	ns	VDD < 2.7V	
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	10	—	—	ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—		ns	—	


Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

PIC32MX330/350/370/430/450/470

FIGURE 31-21: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 31-39: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commerciation} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industriation} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temperature} \\ \end{array}$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
PM1	TLAT	PMALL/PMALH Pulse Width	—	1 Трв	_	_	_
PM2	Tadsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	_	2 Трв	—		—
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	_	1 Трв	—		
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	—	—	ns	_
PM5	Trd	PMRD Pulse Width	—	1 Трв	_	—	—
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	—	ns	_
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	1 Трв	—	—	—	PMP Clock

Note 1: These parameters are characterized, but not tested in manufacturing.