

Welcome to E-XFL.COM

Microchip Technology - PIC32MX470F512H-120/PT Datasheet

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	49
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx470f512h-120-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX330/350/370/430/450/470

					Rei	nappab	ole Pe	ripher	als	s)										
Device	Pins	Packages	Program Memory (KB) ⁽¹⁾	Data Memory (KB)	Remappable Pins	Timers/Capture/Compare ⁽²⁾	UART	SPI/I ² S	External Interrupts ⁽³⁾	10-bit 1 Msps ADC (Channels)	Analog Comparators	USB On-The-Go (OTG)	CTMU	1²C	РМР	RTCC	DMA Channels (Programmable/Dedicated)	I/O Pins	JTAG	Trace
PIC32MX330F064H	64	QFN, TQFP	64+12	16	37	5/5/5	4	2/2	5	28	2	Ν	Y	2	Y	Y	4/0	53	Y	N
PIC32MX330F064L	100 124	TQFP VTLA	64+12	16	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
PIC32MX350F128H	64	QFN, TQFP	128+12	32	37	5/5/5	4	2/2	5	28	2	N	Y	2	Y	Y	4/0	53	Y	N
PIC32MX350F128L	100 124	TQFP VTLA	128+12	32	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
PIC32MX350F256H	64	QFN, TQFP	256+12	64	37	5/5/5	4	2/2	5	28	2	N	Y	2	Y	Y	4/0	53	Y	N
PIC32MX350F256L	100 124	TQFP	256+12	64	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
PIC32MX370F512H	64	QFN, TQFP	512+12	128	37	5/5/5	4	2/2	5	28	2	N	Y	2	Y	Y	4/0	53	Y	N
PIC32MX370F512L	100 124	TQFP VTLA	512+12	128	54	5/5/5	5	2/2	5	28	2	N	Y	2	Y	Y	4/0	85	Y	Y
PIC32MX430F064H	64	QFN, TQFP	64+12	16	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX430F064L	100 124	TQFP VTLA	64+12	16	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
PIC32MX450F128H	64	QFN, TQFP	128+12	32	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX450F128HB (see Note 4)	64	QFN, TQFP	128+12	32	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX450F128L	100 124	TQFP VTLA	128+12	32	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
PIC32MX450F256H	64	QFN, TQFP	256+12	64	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX450F256L	100 124	TQFP VTLA	256+12	64	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
PIC32MX470F512H	64	QFN, TQFP	512+12	128	34	5/5/5	4	2/2	5	28	2	Y	Y	2	Y	Y	4/2	49	Y	N
PIC32MX470F512L	100 124	TQFP VTLA	512+12	128	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y
PIC32MX470F512LB (see Note 4)	100 124	TQFP VTLA	512+12	128	51	5/5/5	5	2/2	5	28	2	Y	Y	2	Y	Y	4/2	81	Y	Y

TABLE 1:PIC32MX330/350/370/430/450/470 CONTROLLER FAMILY FEATURES

Note 1: All devices feature 12 KB of Boot Flash memory.

2: Four out of five timers are remappable.

3: Four out of five external interrupts are remappable.

4: This PIC32 device is targeted to specific audio software packages that are tracked for licensing royalty purposes. All peripherals and electrical characteristics are identical to their corresponding base part numbers

TABLE 7: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

124	-PIN VTLA (BOTTOM VIEW) ^(1,2,3,4)	17			A34	
	A	17		B13 B29		nductive ermal Pad
	PIC32MX430F064L PIC32MX450F128L PIC32MX450F256L PIC32MX470F512L			B1 B56	B41	A51
		y Indica	A1 tor	A68		
Package Bump #	Full Pin Name		Package Bump #		Full Pin Name	
B7	MCLR		B32	SDA2/RA3		
B8	Vss		B33	TDO/RA5		
B9	TMS/CTED1/RA0		B34	OSC1/CLKI/RC12	2	
B10	RPE9/RE9		B35	No Connect		
B11	AN4/C1INB/RB4		B36	SCL1/RPA14/RA	14	
B12	Vss		B37	RPD8/RTCC/RD8	8	
B13	PGEC3/AN2/C2INB/RPB2/CTED13/RB2		B38	RPD10/SCK1/PM	CS2/RD10	
B14	PGED1/AN0/RPB0/RB0		B39	RPD0/INT0/RD0		
B15	No Connect		B40	SOSCO/RPC14/T	1CK/RC14	
B16	PGED2/AN7/RPB7/CTED3/RB7		B41	Vss		
B17	VREF+/CVREF+/PMA6/RA10		B42	AN25/RPD2/RD2		
B18	AVss		B43	RPD12/PMD12/R	D12	
B19	AN9/RPB9/CTED4/RB9		B44	RPD4/PMWR/RD	4	
B20	AN11/PMA12/RB11		B45	PMD14/RD6		
B21	Vdd		B46	No Connect		
B22	RPF13/RF13		B47	No Connect		
B23	AN12/PMA11/RB12		B48	VCAP		
B24	AN14/RPB14/CTED5/PMA1/RB14		B49	RPF0/PMD11/RF	0	
B25	Vss		B50	RPG1/PMD9/RG	1	
B26	RPD14/RD14		B51	TRCLK/RA6		
B27	RPF4/PMA9/RF4		B52	PMD0/RE0		
B28	No Connect		B53	VDD		
B29	RPF8/RF8		B54	TRD2/RG14		
B30	VUSB3V3		B55	TRD0/RG13		
B31	D+		B56	RPE3/CTPLS/PM	D3/RE3	

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: Shaded package bumps are 5V tolerant.

4: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

Referenced Sources

This device data sheet is based on the following individual sections of the *"PIC32 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note:	To access the following documents, refer
	to the Documentation > Reference
	Manuals section of the Microchip PIC32
	website: http://www.microchip.com/pic32.

- Section 1. "Introduction" (DS60001127)
- Section 2. "CPU" (DS60001113)
- Section 3. "Memory Organization" (DS60001115)
- Section 4. "Prefetch Cache" (DS60001119)
- Section 5. "Flash Program Memory" (DS60001121)
- Section 6. "Oscillator Configuration" (DS60001112)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog Timer and Power-up Timer" (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Compare" (DS60001111)
- Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116)
- Section 27. "USB On-The-Go (OTG)" (DS60001126)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167)

		Pin Numb	er								
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description					
CVREF-	15	28	A21	I	Analog	Comparator Voltage Reference (Low)					
CVREF+	16	29	B17	Ι	Analog	Comparator Voltage Reference (High)					
CVREFOUT	23	34	A24	Ι	Analog	Comparator Voltage Reference (Output)					
C1INA	11	20	A12	I	Analog						
C1INB	12	21	B11	I	Analog	Comparator 1 Inputa					
C1INC	5	11	B6	I	Analog	Comparator 1 Inputs					
C1IND	4	10	A7	I	Analog						
C2INA	13	22	A13	Ι	Analog						
C2INB	14	23	B13	Ι	Analog						
C2INC	8	14	A9	Ι	Analog	Comparator 2 Inputs					
C2IND	6	12	A8	I	Analog						
C1OUT	PPS	PPS	PPS	0		Comparator 1 Output					
C2OUT	PPS	PPS	PPS	0		Comparator 2 Output					
PMALL	30	44	A29	0	TTL/ST	Parallel Master Port Address Latch Enable Low Byte					
PMALH	29	43	B24	0	TTL/ST	Parallel Master Port Address Latch Enable High Byte					
PMA0	30	44	A29	0	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)					
PMA1	29	43	B24	0	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)					
PMA2	8	14	A9	0	TTL/ST						
PMA3	6	12	A8	0	TTL/ST						
PMA4	5	11	B6	0	TTL/ST						
PMA5	4	10	A7	0	TTL/ST						
PMA6	16	29	B17	0	TTL/ST						
PMA7	22	28	A21	0	TTL/ST						
PMA8	32	50	A32	0	TTL/ST						
PMA9	31	49	B27	0	TTL/ST						
PMA10	28	42	A28	0	TTL/ST	Devellet Meeter Dert date (Develtingered Meeter					
PMA11	27	41	B23	0	TTL/ST	Parallel Master Port data (Demultiplexed Master mode) or Address/Data (Multiplexed Master modes)					
PMA12	24	35	B20	0	TTL/ST						
PMA13	23	34	A24	0	TTL/ST]					
PMA14	45	71	A46	0	TTL/ST]					
PMA15	44	70	B38	0	TTL/ST]					
PMCS1	45	71	A46	0	TTL/ST	ST ST ST					
PMCS2	44	70	B38	0	TTL/ST						
PMD0	60	93	B52	I/O	TTL/ST						
PMD1	61	94	A64	I/O	TTL/ST						
PMD2	62	98	A66	I/O	TTL/ST	1					
	ST = Schmi		tible input or ou out with CMOS			alog = Analog input P = Power = Output I = Input					

TARI E 1-1. PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUS

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

2.1 Basic Connection Requirements

Getting started with the PIC32MX330/350/370/430/ 450/470 family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming (ICSP[™]) and debugging purposes (see **2.5** "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.8 "External Oscillator Pins")

The following pins may be required:

VREF+/VREF- pins, used when external voltage reference for the ADC module is implemented.

Note: The AVDD and AVSS pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICE[™].

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

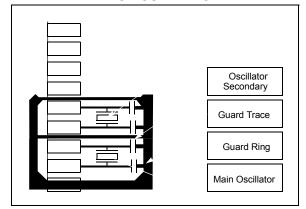
- "Using MPLAB[®] ICD 3" (poster) DS50001765
- "MPLAB[®] ICD 3 Design Advisory" DS50001764
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" DS50001616
- *"Using MPLAB[®] REAL ICE™ Emulator"* (poster) DS50001749

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.7 Trace


The trace pins can be connected to a hardware trace-enabled programmer to provide a compressed real-time instruction trace. When used for trace, the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22 Ohm series resistor between the trace pins and the trace connector.

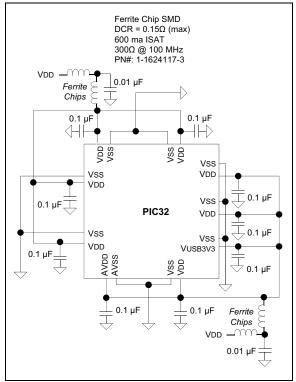
2.8 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

2.9 Unused I/Os


Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.10 EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations

The use of LDO regulators is preferred to reduce overall system noise and provide a cleaner power source. However, when utilizing switching Buck/ Boost regulators as the local power source for PIC32 devices, as well as in electrically noisy environments or test conditions required for IEC 61000-4-4 and IEC 61000-4-2, users should evaluate the use of T-Filters (i.e., L-C-L) on the power pins, as shown in Figure 2-5. In addition to a more stable power source, use of this type of T-Filter can greatly reduce susceptibility to EMI sources and events.

FIGURE 2-5: EMI/EMC/EFT SUPPRESSION CIRCUIT

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_		_	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	_	_	—	_	—
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
15:8	CHBUSY	—	_	_	_	_	_	CHCHNS ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	_	CHEDET	CHPF	RI<1:0>

REGISTER 10-7: DCHxCON: DMA CHANNEL 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 CHBUSY: Channel Busy bit
 - 1 = Channel is active or has been enabled
 - 0 = Channel is inactive or has been disabled
- bit 14-9 Unimplemented: Read as '0'
- bit 8 CHCHNS: Chain Channel Selection bit⁽¹⁾
 - 1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
 - 0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)

bit 7 CHEN: Channel Enable bit⁽²⁾

- 1 = Channel is enabled
- 0 = Channel is disabled

bit 6 CHAED: Channel Allow Events If Disabled bit

- 1 = Channel start/abort events will be registered, even if the channel is disabled
- 0 = Channel start/abort events will be ignored if the channel is disabled

bit CHCHN: Channel Chain Enable bit

- 1 = Allow channel to be chained
- 0 = Do not allow channel to be chained
- bit 4 CHAEN: Channel Automatic Enable bit
 - 1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete
 0 = Channel is disabled on block transfer complete

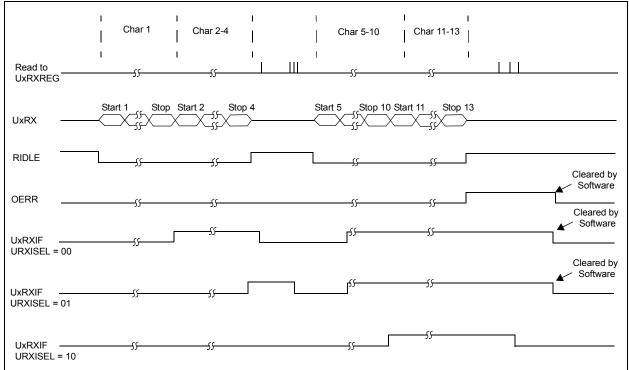
bit 3 Unimplemented: Read as '0'

- bit 2 CHEDET: Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected
- bit 1-0 CHPRI<1:0>: Channel Priority bits
 - 11 = Channel has priority 3 (highest)
 - 10 = Channel has priority 2
 - 01 = Channel has priority 1
 - 00 = Channel has priority 0
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

REGISTER 11-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER (CONTINUED)

- bit 1 CRC5EF: CRC5 Host Error Flag bit⁽⁴⁾
 - 1 = Token packet is rejected due to CRC5 error
 - 0 = Token packet is accepted
 - EOFEF: EOF Error Flag bit^(3,5)
 - 1 = EOF error condition is detected
 - 0 = No EOF error condition
- bit 0 PIDEF: PID Check Failure Flag bit
 - 1 = PID check is failed
 - 0 = PID check is passed
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

NOTES:


REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)

- bit 4 **DISSDI:** Disable SDI bit 1 = SDI pin is not used by the SPI module (pin is controlled by PORT function)
 - 0 = SDI pin is controlled by the SPI module
- bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is not full (has one or more empty elements)
 - 10 = Interrupt is generated when the buffer is empty by one-half or more
 - 01 = Interrupt is generated when the buffer is completely empty
 - 00 = Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are complete
- bit 1-0 SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is full
 - 10 = Interrupt is generated when the buffer is full by one-half or more
 - 01 = Interrupt is generated when the buffer is not empty
 - 00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.

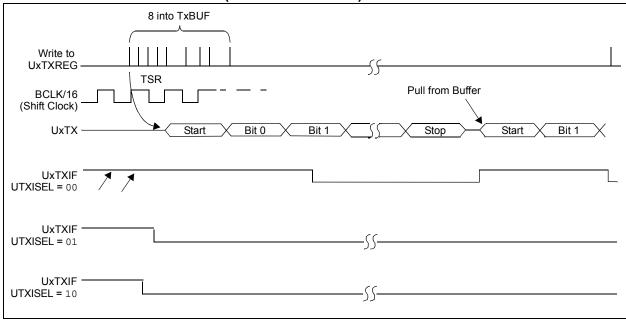

20.2 Timing Diagrams

Figure 20-2 and Figure 20-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 20-2: UART RECEPTION

FIGURE 20-3: TRANSMISSION (8-BIT OR 9-BIT DATA)

21.1 Control Registers

TABLE 21-1: PARALLEL MASTER PORT REGISTER MAP

ess		â								Bi	ts								\$
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000	PMCON	31:16	_		_	_	—	—	_	_	_	_	_	_	_	_	—	_	0000
1000	1 MOON	15:0	ON	—	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P	—	WRSP	RDSP	0000
7010	PMMODE	31:16	—	_	_	—	_	—	_	—	_	—	_	—	_	_	—	-	0000
7010		15:0	BUSY	IRQM	IRQM<1:0> INCM<1:0> MODE16 MODE<1:0> WAITB<1:0> WAITM<3:0> WAITE<1:0> 0000								0000						
7020		31:16	-			_	_	_		_	_	_		_			_		0000
7020	PMADDR	15:0	CS2	CS1							ADDR	<13:0>							0000
7030	PMDOUT	31:16								DATAOU	T<31.0>								0000
1000	TWDOOT	15:0								DAIMOO	1 401.04								0000
7040	PMDIN	31:16								DATAIN	<31.0>								0000
7040		15:0					-	-		D/ (I/ (II)	-01.04						-		0000
7050	PMAEN	31:16	—	_	—	—	—		—	—	_	—	—	—	—	—	—	—	0000
7050	FINALIN	15:0		PTEN<15:0> 0000															
7060	PMSTAT	31:16	_			_	_	_		_	_	_		_			_		0000
1000	FINISTAT	15:0	IBF	IBOV		_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	-	_	OB3E	OB2E	OB1E	OB0E	BFBF
Legend	4	inknow	n value on	Reset:=	unimpleme	hear bate	as 'n' Rese	at values ar	e shown in l	nevadecima	1								

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGISTER 23-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED)

bit 4 **CLRASAM:** Stop Conversion Sequence bit (when the first ADC interrupt is generated)

- 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated.
- 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence
- bit 3 Unimplemented: Read as '0'
- bit 2 ASAM: ADC Sample Auto-Start bit
 - 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set.
 0 = Sampling begins when SAMP bit is set
- bit 1 **SAMP:** ADC Sample Enable bit⁽²⁾
 - 1 = The ADC sample and hold amplifier is sampling
 - 0 = The ADC sample/hold amplifier is holding
 - When ASAM = 0, writing '1' to this bit starts sampling.
 - When SSRC = 000, writing '0' to this bit will end sampling and start conversion.
- bit 0 **DONE:** Analog-to-Digital Conversion Status bit⁽³⁾
 - 1 = Analog-to-digital conversion is done
 - 0 = Analog-to-digital conversion is not done or has not started

Clearing this bit will not affect any operation in progress.

- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ 0, this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when ADC is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

DC CHA	ARACTER	ISTICS	(unless o	Operating therwise st temperatur	t ated) re 0°C -40°	≤ TA ≤ +7 C ≤ TA ≤	V to 3.6V ′0°C for Commercial +85°C for Industrial +105°C for V-temp
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
Operati	ng Voltag	е					
DC10	Vdd	Supply Voltage	2.3	_	3.6	V	_
DC12	Vdr	RAM Data Retention Voltage (Note 1)	1.75	—	_	V	_
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	1.75	_	2.1	V	_
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.00005	_	0.115	V/µs	_

TABLE 31-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

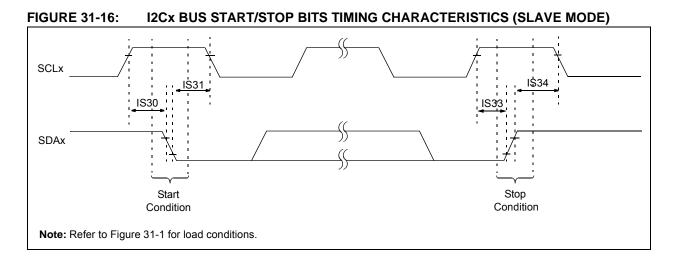
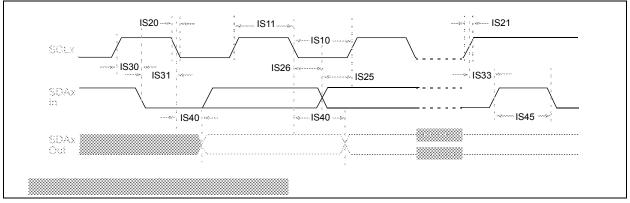

AC CHA	RACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	e stated) iture 0°(-4(C ≤ TA ≤ +)°C ≤ TA ≤	70°C for Commercial \$ +85°C for Industrial
Param. No.	Symbol	Charact	eristics	Min. ⁽¹⁾	-40 Max.	$O^{\circ}C \le TA \le$ Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Трв * (BRG + 2)		μS	
	1201002		400 kHz mode	Трв * (BRG + 2)		μs	_
			1 MHz mode (Note 2)	Трв * (BRG + 2)		μs	-
IM11	THI:SCL	Clock High Time	100 kHz mode	Трв * (BRG + 2)		μS	_
		_	400 kHz mode	Трв * (BRG + 2)		μS	—
			1 MHz mode (Note 2)	Трв * (BRG + 2)	_	μs	_
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode (Note 2)	_	100	ns	
M21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be
	Rise Time		400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode (Note 2)	—	300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	—
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode (Note 2)	100	—	ns	
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μS	—
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode (Note 2)	0	0.3	μs	
IM30	TSU:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	—	μS	Only relevant for
		Setup Time	400 kHz mode	Трв * (BRG + 2)		μS	Repeated Start
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	condition
IM31	THD:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	—	μS	After this period, the
		Hold Time	400 kHz mode	Трв * (BRG + 2)		μS	first clock pulse is
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	Трв * (BRG + 2)	—	μS	—
		Setup Time	400 kHz mode	Трв * (BRG + 2)		μS	
			1 MHz mode (Note 2)	Трв * (BRG + 2)	_	μS	

TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


Note 1: BRG is the value of the l^2C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

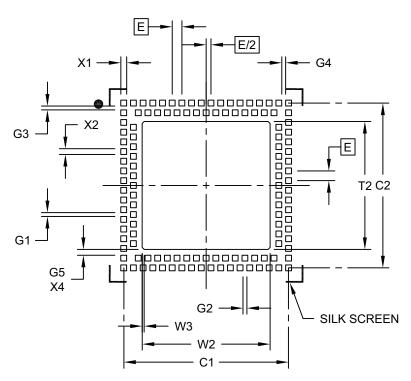

AC CHA	RACTERIS	STICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^\circ C \leq TA \leq +70^\circ C \mbox{ for Commerc} \\ & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industr} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-term} \end{array}$						
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions			
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	—			
		Hold Time	400 kHz mode	600	_	ns				
			1 MHz mode (Note 1)	250		ns				
IS40	TAA:SCL	Output Valid from	100 kHz mode	0	3500	ns	—			
		Clock	400 kHz mode	0	1000	ns				
			1 MHz mode (Note 1)	0	350	ns				
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus			
			400 kHz mode	1.3		μs	must be free before a new			
			1 MHz mode (Note 1)	0.5	_	μS	transmission can start			
IS50	Св	Bus Capacitive Lo	ading	_	400	pF	—			

TABLE 31-34: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

124-Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	1	MILLIMETER:	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Pad Clearance	G1	0.20		
Pad Clearance	G2	0.20		
Pad Clearance	G3	0.20		
Pad Clearance	G4	0.20		
Contact to Center Pad Clearance (X4)	G5	0.30		
Optional Center Pad Width	T2			6.60
Optional Center Pad Length	W2			6.60
Optional Center Pad Chamfer (X4)	W3		0.10	
Contact Pad Spacing	C1		8.50	
Contact Pad Spacing	C2		8.50	
Contact Pad Width (X124)	X1			0.30
Contact Pad Length (X124)	X2			0.30

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2193A

INDEX

Α	
AC Characteristics	295
10-Bit Conversion Rate Parameters	318
ADC Specifications	316
Analog-to-Digital Conversion Requirements	319
EJTAG Timing Requirements	327
Internal FRC Accuracy	297
Internal RC Accuracy	297
OTG Electrical Specifications	325
Parallel Master Port Read Requirements	323
Parallel Master Port Write	324
Parallel Master Port Write Requirements	324
Parallel Slave Port Requirements	322
PLL Clock Timing	297
Analog-to-Digital Converter (ADC)	233
Assembler	
MPASM Assembler	276

В

Block Diagrams	
ADC Module	233
Comparator I/O Operating Modes	243
Comparator Voltage Reference	247
Connections for On-Chip Voltage Regulator	272
CPU	35
CTMU Configurations	
Time Measurement	251
DMA	93
I2C Circuit	198
Input Capture	
Interrupt Controller	
JTAG Programming, Debugging and Trace Ports	
Output Compare Module	185
PMP Pinout and Connections to External Devices.	213
Prefetch Module	83
Reset System	59
RTCC	223
SPI Module	189
Timer1	
Timer2/3/4/5 (16-Bit)	
Typical Multiplexed Port Structure 137	7, 353
UART	205
WDT and Power-up Timer	177
Brown-out Reset (BOR)	
and On-Chip Voltage Regulator	272

С

C Compilers	
MPLAB C18	
Charge Time Measurement Unit. See CTMU.	
Clock Diagram	74
Comparator	
Specifications	293, 294
Comparator Module	
Comparator Voltage Reference (CVref	
Configuration Bit	
Configuring Analog Port Pins	
CPU	
Architecture Overview	
Coprocessor 0 Registers	
Core Exception Types	
EJTAG Debug Support	
Power Management	
-	

CPU Module CTMU	27, 35
Registers	253
Customer Change Notification Service	359
Customer Notification Service	359
Customer Support	359

D

DC and AC Characteristics	
Graphs and Tables	329
DC Characteristics	280
I/O Pin Input Specifications	287
I/O Pin Output Specifications	290
Idle Current (IIDLE)	283
Power-Down Current (IPD)	284
Program Memory	292
Temperature and Voltage Specifications	281
Development Support	275
Direct Memory Access (DMA) Controller	

Е

—	
Electrical Characteristics	279
AC	295
Errata	14
External Clock	
Timer1 Timing Requirements	301
Timer2, 3, 4, 5 Timing Requirements	302
Timing Requirements	296
F	
Flash Program Memory	53
RTSP Operation	53

Н

High Voltage Detect (I	HVD)	61,	272,	291
		,	,	

I

137
138
138
138
273
197
294
359
63
64

Μ

Memory Maps	
Devices with 128 KB of Program Memory	41
Devices with 256 KB of Program Memory	42
Devices with 512 KB of Program Memory	43
Devices with 64 KB of Program Memory	40
Memory Organization	39
Layout	39
Microchip Internet Web Site	. 359
MPLAB ASM30 Assembler, Linker, Librarian	. 276
MPLAB Integrated Development Environment Software.	. 275
MPLAB PM3 Device Programmer	. 277
MPLAB REAL ICE In-Circuit Emulator System	. 277
MPLINK Object Linker/MPLIB Object Librarian	. 276