

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	49
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx470f512h-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)
------------	-------------------------	-------------

		Pin Numb	er					
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description		
U1CTS	PPS	PPS	PPS	I	ST	UART1 Clear to Send		
U1RTS	PPS	PPS	PPS	0	_	UART1 Ready to Send		
U1RX	PPS	PPS	PPS	I	ST	UART1 Receive		
U1TX	PPS	PPS	PPS	0	_	UART1 Transmit		
U2CTS	PPS	PPS	PPS	I	ST	UART2 Clear to Send		
U2RTS	PPS	PPS	PPS	0	_	UART2 Ready to Send		
U2RX	PPS	PPS	PPS	I	ST	UART2 Receive		
U2TX	PPS	PPS	PPS	0	_	UART2 Transmit		
U3CTS	PPS	PPS	PPS		ST	UART3 Clear to Send		
U3RTS	PPS	PPS	PPS	0		UART3 Ready to Send		
U3RX	PPS	PPS	PPS		ST	UART3 Receive		
U3TX	PPS	PPS	PPS	0	_	UART3 Transmit		
U4CTS	PPS	PPS	PPS	I	ST	UART4 Clear to Send		
U4RTS	PPS	PPS	PPS	0	_	UART4 Ready to Send		
U4RX	PPS	PPS	PPS	I	ST	UART4 Receive		
U4TX	PPS	PPS	PPS	0	_	UART4 Transmit		
U5CTS ⁽³⁾	_	PPS	PPS		ST	UART5 Clear to Send		
U5RTS ⁽³⁾	_	PPS	PPS	0		UART5 Ready to Send		
U5RX ⁽³⁾	_	PPS	PPS	I	ST	UART5 Receive		
U5TX ⁽³⁾	_	PPS	PPS	0	_	UART5 Transmit		
SCK1	35 ⁽¹⁾ , 50 ⁽²⁾	55 ⁽¹⁾ , 70 ⁽²⁾	B30 ⁽¹⁾ , B38 ⁽²⁾	I/O	ST	Synchronous Serial Clock Input/Output for SPI1		
SDI1	PPS	PPS	PPS	0		SPI1 Data In		
SDO1	PPS	PPS	PPS	I/O	ST	SPI1 Data Out		
SS1	PPS	PPS	PPS	I/O	—	SPI1 Slave Synchronization for Frame Pulse I/O		
SCK2	4	10	A7	I/O	ST	Synchronous Serial Clock Input/Output for SPI2		
SDI2	PPS	PPS	PPS	0		SPI2 Data In		
SDO2	PPS	PPS	PPS	I/O	ST	SPI2 Data Out		
SS2	PPS	PPS	PPS	I/O	—	SPI2 Slave Synchronization for Frame Pulse I/O		
SCL1			B31 ⁽¹⁾ , B36 ⁽²⁾	I/O	ST	Synchronous Serial Clock Input/Output for I2C1		
SDA1	36 ⁽¹⁾ , 43 ⁽²⁾	56 ⁽¹⁾ , 67 ⁽²⁾	A38 ⁽¹⁾ , A44 ⁽²⁾	I/O	ST	Synchronous Serial Data Input/Output for I2C1		
SCL2	32	58	A39	I/O	ST	Synchronous Serial Clock Input/Output for I2C2		
SDA2	31	59	B32	I/O	ST	Synchronous Serial Data Input/Output for I2C2		
TMS	23	17	B9		ST	JTAG Test Mode Select Pin		
ТСК	27	38	A26	I	ST	JTAG Test Clock Input Pin		
TDI	28	60	A40	I	_	JTAG Test Clock Input Pin		
TDO	24	61	B33	0	—	JTAG Test Clock Output Pin		
RTCC	42	68	B37	0	—	Real-Time Clock Alarm Output		

ST = Schmitt Trigger input with CMOS levels

O = Output

I = Input

TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

5.1 Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ess		0		Bits									6						
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E400	NVMCON ⁽¹⁾	31:16			—	—	_		—	—		—	—	—	—	—	—		0000
1400	NVINCON /	15:0	WR	WR WRERR LVDERR LVDSTAT — — — — — — O000															
F410	NVMKEY	31:16		NVMKEY<31:0>									0000						
		15:0									1 51.02								0000
E420	NVMADDR ⁽¹⁾	31:16								NVMADE	D-31.05								0000
1 420	NVINADDIX	15:0								INVINADL	11-31.02								0000
F430	NVMDATA	31:16								NVMDAT	A-21:0>								0000
F430	NVINDATA	15:0								INVIVIDAI	A<31.0>								0000
F440	NVMSRC	31:16									221.05								0000
F440	ADDR	15:0		NVMSRCADDR<31:0>							0000								

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24	
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS9	IFS8	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	IFS7	IFS6	IFS5	IFS4	IFS3	IFS2	IFS1	IFS0	

REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IFS31-IFS0: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit definitions.

REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC9	IEC8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	IEC7	IEC6	IEC5	IEC4	IEC3	IEC2	IEC1	IEC0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IEC31-IEC0: Interrupt Enable bits

1 = Interrupt is enabled

0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit definitions.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 2 UFRCEN: USB FRC Clock Enable bit⁽¹⁾
 - 1 = Enable FRC as the clock source for the USB clock source
 - 0 = Use the Primary Oscillator or USB PLL as the USB clock source
- bit 1 SOSCEN: Secondary Oscillator (Sosc) Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 0 **OSWEN:** Oscillator Switch Enable bit
 - 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: This bit is available on PIC32MX4XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	—		—	—	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	—	—	-	—	_	-	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	_	—	—	-	—	_	-	—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				BDTPTR	H<23:16>			

REGISTER 11-18: U1BDTP2: USB BDT PAGE 2 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **BDTPTRH<23:16>:** BDT Base Address bits This 8-bit value provides address bits 23 through 16 of the BDT base address, which defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

	Cedister 11-19. UTBDTF3: USB BDT FAGE 3 REGISTER								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	—	_	—	-	_	—	—	
02:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	_	—	-	_	—	—	
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	—	—	_	—	-	_	—	—	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				BDTPTR	U<31:24>				

REGISTER 11-19: U1BDTP3: USB BDT PAGE 3 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 BDTPTRU<31:24>: BDT Base Address bits

This 8-bit value provides address bits 31 through 24 of the BDT base address, defines the starting location of the BDT in system memory.

The 32-bit BDT base address is 512-byte aligned.

	-							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		—				
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	—	-	-	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	_	—	-	-	—	—
7:0	R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
7:0	UTEYE	UOEMON		USBSIDL	_		_	UASUSPND

REGISTER 11-20: U1CNFG1: USB CONFIGURATION 1 REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 UTEYE: USB Eye-Pattern Test Enable bit

- 1 = Eye-Pattern Test is enabled
- 0 = Eye-Pattern Test is disabled

bit 6 **UOEMON:** USB OE Monitor Enable bit

1 = OE signal is active; it indicates intervals during which the D+/D- lines are driving
0 = OE signal is inactive

bit 5 Unimplemented: Read as '0'

- bit 4 USBSIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode

bit 3-1 Unimplemented: Read as '0'

bit 0 UASUSPND: Automatic Suspend Enable bit

- 1 = USB module automatically suspends upon entry to Sleep mode. See the USUSPEND bit (U1PWRC<1>) in Register 11-5.
- 0 = USB module does not automatically suspend upon entry to Sleep mode. Software must use the USUSPEND bit (U1PWRC<1>) to suspend the module, including the USB 48 MHz clock

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_	-	_				-
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		_	-	_				—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		_	-	_				—
7:0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	LSPD	RETRYDIS		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK

REGISTER 11-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)
 - 1 = Direct connection to a low-speed device is enabled
 - 0 = Direct connection to a low-speed device is disabled; hub required with PRE_PID
- bit 6 **RETRYDIS:** Retry Disable bit (Host mode and U1EP0 only)
 - 1 = Retry NAKed transactions is disabled
 - 0 = Retry NAKed transactions is enabled; retry done in hardware

bit 5 Unimplemented: Read as '0'

bit 4 **EPCONDIS:** Bidirectional Endpoint Control bit

If EPTXEN = 1 and EPRXEN = 1:

1 = Disable Endpoint n from Control transfers; only TX and RX transfers allowed

0 = Enable Endpoint n for Control (SETUP) transfers; TX and RX transfers also allowed Otherwise, this bit is ignored.

- bit 3 **EPRXEN:** Endpoint Receive Enable bit
 - 1 = Endpoint n receive is enabled
 - 0 = Endpoint n receive is disabled
- bit 2 EPTXEN: Endpoint Transmit Enable bit
 - 1 = Endpoint n transmit is enabled
 - 0 = Endpoint n transmit is disabled
- bit 1 EPSTALL: Endpoint Stall Status bit
 - 1 = Endpoint n was stalled
 - 0 = Endpoint n was not stalled
- bit 0 EPHSHK: Endpoint Handshake Enable bit
 - 1 = Endpoint Handshake is enabled
 - 0 = Endpoint Handshake is disabled (typically used for isochronous endpoints)

12.1 Parallel I/O (PIO) Ports

All port pins have ten registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

12.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the presence of outputs higher than VDD (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Device Pin Tables"** section for the available pins and their functionality.

12.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

12.1.3 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP.

12.1.4 INPUT CHANGE NOTIFICATION

The input change notification function of the I/O ports allows the PIC32MX330/350/370/430/450/470 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.

Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit.

Each I/O pin also has a weak pull-up and every I/O pin has a weak pull-down connected to it. The pullups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on change notifi- cation pins should always be disabled when the port pin is configured as a digital
	output. They should also be disabled on
	5V tolerant pins when the pin voltage can
	exceed VDD.

An additional control register (CNCONx) is shown in Register 12-3.

12.2 CLR, SET, and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

TABLE 12-4: PORTB REGISTER MAP

ess		0								Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6100	ANSELB	31:16	—	—	-	-	—	_	-	_	_	_	—		—	— ·	-	—	0000
0100	ANOLLD	15:0	ANSELB15	ANSELB14	ANSELB13	ANSELB12	ANSELB11	ANSELB10	ANSELB9	ANSELB8	ANSELB7	ANSELB6	ANSELB5	ANSELB4	ANSELB3	ANSELB2	ANSELB1	ANSELB0	FFFF
6110	TRISB	31:16	_	—	_	—	—	_	_	_	_	—	—	_	—	_	_	—	0000
0110	INIOD	15:0	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	$_{\rm XXXX}$
6120	PORTB	31:16	_	—	_	—	—	_	_	_	_	—	—	_	—	_	_	—	0000
0120	TORTD	15:0	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	$_{\rm XXXX}$
6130	LATB	31:16	_	—	_	—	—	_	_	_	_	—	—	_	—	_	_	—	0000
0130	LAID	15:0	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	$_{\rm XXXX}$
6140	ODCB	31:16	_	—	_	—	—	_	_	_	_	—	—	_	—	_	_	—	0000
0140	ODOD	15:0	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	$_{\rm XXXX}$
6150	CNPUB	31:16	_	—	_	—	—	_	_	_	_	—	—	_	—	_	_	—	0000
0150		15:0	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	$_{\rm XXXX}$
6160	CNPDB	31:16	_	—	_	—	—	_	_	_	_	—	—	_	—	_	_	—	0000
0100		15:0	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	xxxx
6170	CNCONB	31:16	—	_					_		_	_	—	_					0000
0170	ONCOME	15:0	ON	_	SIDL	_	—	_	_	_	_	_	_	_	_	_	_	_	0000
6180	CNENB	31:16	_	—	_	_	—	_	_		_	_	—	_	_	—	_	_	0000
0100	CINEIND	15:0	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	xxxx
		31:16	—	—	_	_	—	_	_		_	_	—	_	_	—	_	_	0000
6190	CNSTATB	15:0	CN STATB15	CN STATB14	CN STATB13	CN STATB12	CN STATB11	CN STATB10	CN STATB9	CN STATB8	CN STATB7	CN STATB6	CN STATB5	CN STATB4	CN STATB3	CN STATB2	CN STATB1	CN STATB0	xxxx

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

19.0 INTER-INTEGRATED CIRCUIT (I²C)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/ pic32). The I²C module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard. Figure 19-1 illustrates the I²C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- · Provides support for address bit masking

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	_	_	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_		_	_	_	_	_
45.0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAITB	<1:0> (1)		WAITM	<3:0>(1)		WAITE	<1:0> (1)

REGISTER 21-2: PMMODE: PARALLEL PORT MODE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **BUSY:** Busy bit (Master mode only)
 - 1 = Port is busy
 - 0 = Port is not busy

bit 14-13 IRQM<1:0>: Interrupt Request Mode bits

- 11 = Reserved, do not use
- 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
- 01 = Interrupt generated at the end of the read/write cycle
- 00 = No Interrupt generated
- bit 12-11 INCM<1:0>: Increment Mode bits
 - 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
 - 10 = Decrement ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 01 = Increment ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 00 = No increment or decrement of address
- bit 10 **MODE16:** 8/16-bit Mode bit
 - 1 = 16-bit mode: a read or write to the data register invokes a single 16-bit transfer
 - 0 = 8-bit mode: a read or write to the data register invokes a single 8-bit transfer
- bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
 - 11 = Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMA<x:0>, PMD<7:0> and PMD<8:15>⁽³⁾)
 - 10 = Master mode 2 (PMCSx, PMRD, PMWR, PMA<x:0>, PMD<7:0> and PMD<8:15>⁽³⁾)
 - 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>)
 - 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS and PMD<7:0>)

bit 7-6 WAITB<1:0>: Data Setup to Read/Write Strobe Wait States bits⁽¹⁾

- 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
- 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
- 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB
- 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPB cycle for a write operation; WAITB = 1 TPB cycle, WAITE = 0 TPB cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - 3: These pins are active when MODE16 = 1 (16-bit mode).

23.1 **Control Registers**

TABLE 23-1: ADC REGISTER MAP

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9000	AD1CON1 ⁽¹⁾	31:16		_						_		_							000
		15:0	ON	_	SIDL	_	_		FORM<2:0>			SSRC<2:0>		CLRASAM	_	ASAM	SAMP	DONE	000
9010	AD1CON2 ⁽¹⁾	31:16	_	—	—	—	_	—	—	—	-	—	—	-	—	—	—	—	000
		15:0		VCFG<2:0>		OFFCAL		CSCNA	_		BUFS	_		SMPI	<3:0>		BUFM	ALTS	000
9020	AD1CON3 ⁽¹⁾	31:16	-	_	_	—	_	—	_	—	_	_	_		—	—	—		0000
		15:0										0000							
9040	AD1CHS(1)	31:16	CH0NB	—				CH0SB<4:0			CH0NA					CH0SA<4:0			0000
		15:0		-	—	—	-	-	-	-	-	-	—	—	-	-	-	-	0000
9050	AD1CSSL ⁽¹⁾	31:16	-	CSSL30	CSSL29	CSSL28	CSSL27	CSSL26	CSSL25	CSSL24	CSSL23	CSSL22	CSSL21	CSSL20	CSSL19	CSSL18	CSSL17	CSSL16	_
		15:0	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000
9070	ADC1BUF0	31:16 15:0	ADC Result Word 0 (ADC1BLIE0<31:0>)																
			0000																
9080	ADC1BUF1	31:16 15:0							ADC Res	sult Word 1	(ADC1BUF	1<31:0>)							0000
																			0000
9090	ADC1BUF2	31:16 15:0							ADC Res	sult Word 2	(ADC1BUF	2<31:0>)							0000
		31:16																	0000
90A0	ADC1BUF3	15:0							ADC Res	sult Word 3	(ADC1BUF	3<31:0>)							0000
		31:16																	0000
90B0	ADC1BUF4	15:0							ADC Res	sult Word 4	(ADC1BUF	4<31:0>)							0000
		31:16																	0000
90C0	ADC1BUF5	15:0							ADC Res	sult Word 5	(ADC1BUF	5<31:0>)							0000
		31:16																	0000
90D0	ADC1BUF6	15:0							ADC Res	sult Word 6	(ADC1BUF	6<31:0>)							0000
		31:16																	0000
90E0	ADC1BUF7	15:0							ADC Res	sult Word 7	(ADC1BUF	7<31:0>)							0000
		31:16																	0000
90F0	ADC1BUF8	15:0							ADC Res	sult Word 8	(ADC1BUF	8<31:0>)							0000
		31:16																	0000
9100	ADC1BUF9	15:0							ADC Res	sult Word 9	(ADC1BUF	9<31:0>)							0000

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for details. Note 1:

30.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

30.7 MPLAB REAL ICE In-Circuit Emulator System

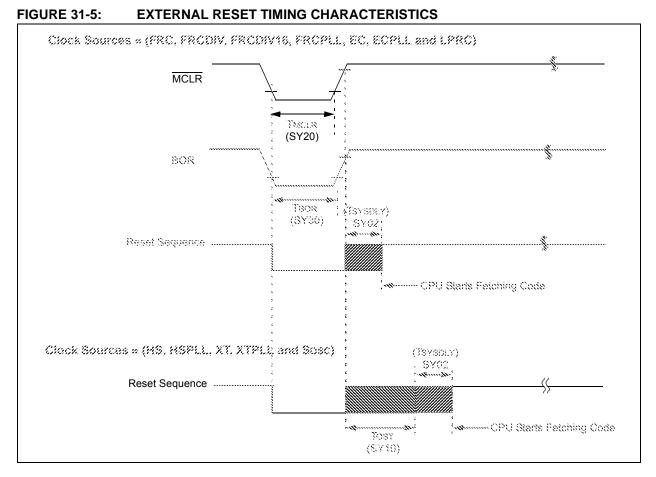
The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

30.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

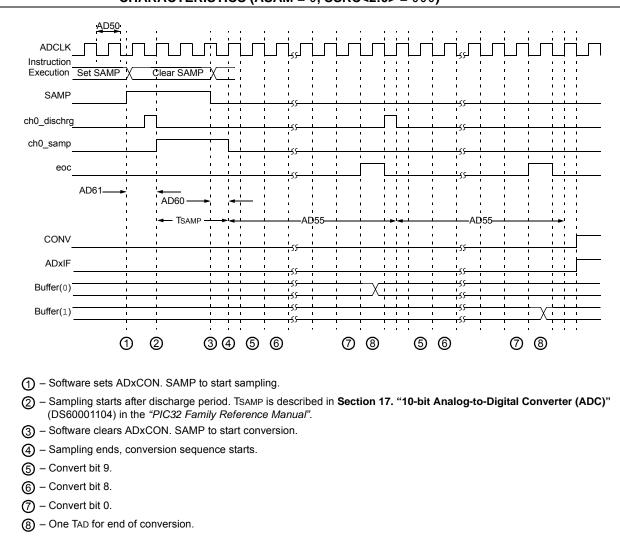

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

30.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

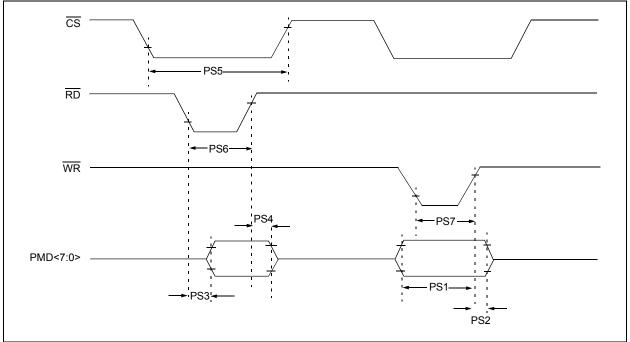
30.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.



AC CHA	RACTERI	STICS	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$							
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions			
SY00	Τρυ	Power-up Period Internal Voltage Regulator Enabled	—	400	600	μS	_			
SY02	TSYSDLY	System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.	_	1 μs + 8 SYSCLK cycles	_	_	_			
SY20	TMCLR	MCLR Pulse Width (low)	2	—		μS	_			
SY30	TBOR	BOR Pulse Width (low)		1	_	μS	_			

TABLE 31-23: RESETS TIMING


Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Characterized by design but not tested.

FIGURE 31-18: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)

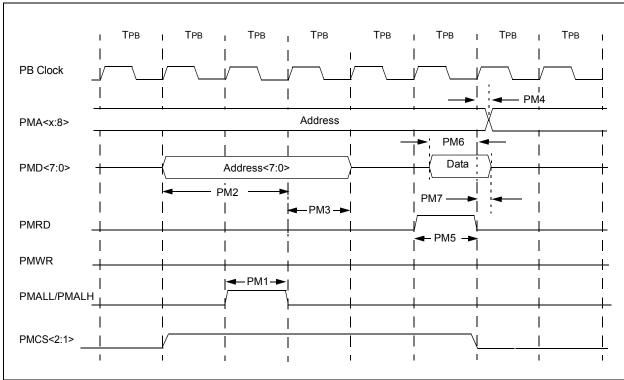

FIGURE 31-20: PARALLEL SLAVE PORT TIMING

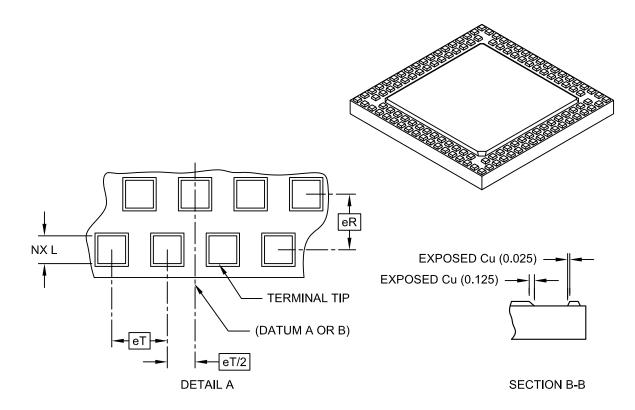
TABLE 31-38: PARALLEL SLAVE PORT REQUIREMENTS

AC CH	ARACTE	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Para m.No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions			
PS1	TdtV2wr H	Data In Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20			ns	_			
PS2	TwrH2dt I	WR or CS Inactive to Data-In Invalid (hold time)	40	—	_	ns	_			
PS3	TrdL2dt V	RD and CS Active to Data-Out Valid	_		60	ns	_			
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	0		10	ns	_			
PS5	Tcs	CS Active Time	Трв + 40		_	ns	_			
PS6	Twr	WR Active Time	Трв + 25			ns	_			
PS7	Trd	RD Active Time	Трв + 25		_	ns	_			

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 31-21: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 31-39: PARALLEL MASTER PORT READ TIMING REQUIREMENTS


AC CHA	ARACTER	ISTICS	(unless o	d Operating (otherwise sta g temperature	ated) ∋ 0°C ≤ T -40°C ≤	Ta ≤ +70°C ≤ Ta ≤ +85	3.6V c for Commercial °C for Industrial 5°C for V-temp
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
PM1	TLAT	PMALL/PMALH Pulse Width	—	1 Трв	_	—	_
PM2	Tadsu	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	_	2 Трв	—		—
PM3	Tadhold	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	_	1 Трв	—		
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	—	—	ns	_
PM5	Trd	PMRD Pulse Width	—	1 Трв	_	—	—
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	—	ns	—
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	1 Трв	—	—	—	PMP Clock

Note 1: These parameters are characterized, but not tested in manufacturing.

NOTES:

124-Terminal Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	124		
Pitch	еT	0.50 BSC		
Pitch (Inner to outer terminal ring)	eR	0.50 BSC		
Overall Height	Α	0.80	0.85	0.90
Standoff	A1	0.00	-	0.05
Overall Width	E	9.00 BSC		
Exposed Pad Width	E2	6.40	6.55	6.70
Overall Length	D	9.00 BSC		
Exposed Pad Length	D2	6.40	6.55	6.70
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.20	0.25	0.30
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-193A Sheet 2 of 2