

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	49
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx470f512h-v-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)
------------	-------------------------	-------------

		Pin Numb	er						
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description			
U1CTS	PPS	PPS	PPS	I	ST	UART1 Clear to Send			
U1RTS	PPS	PPS	PPS	0	_	UART1 Ready to Send			
U1RX	PPS	PPS	PPS	I	ST	UART1 Receive			
U1TX	PPS	PPS	PPS	0	_	UART1 Transmit			
U2CTS	PPS	PPS	PPS	I	ST	UART2 Clear to Send			
U2RTS	PPS	PPS	PPS	0	_	UART2 Ready to Send			
U2RX	PPS	PPS	PPS	I	ST	UART2 Receive			
U2TX	PPS	PPS	PPS	0	_	UART2 Transmit			
U3CTS	PPS	PPS	PPS	I	ST	UART3 Clear to Send			
U3RTS	PPS	PPS	PPS	0		UART3 Ready to Send			
U3RX	PPS	PPS	PPS		ST	UART3 Receive			
U3TX	PPS	PPS	PPS	0	_	UART3 Transmit			
U4CTS	PPS	PPS	PPS	I	ST	UART4 Clear to Send			
U4RTS	PPS	PPS	PPS	0	_	UART4 Ready to Send			
U4RX	PPS	PPS	PPS	I	ST	UART4 Receive			
U4TX	PPS	PPS	PPS	0	_	UART4 Transmit			
U5CTS ⁽³⁾	_	PPS	PPS		ST	UART5 Clear to Send			
U5RTS ⁽³⁾	_	PPS	PPS	0		UART5 Ready to Send			
U5RX ⁽³⁾	_	PPS	PPS	I	ST	UART5 Receive			
U5TX ⁽³⁾	_	PPS	PPS	0	_	UART5 Transmit			
SCK1	35 ⁽¹⁾ , 50 ⁽²⁾	55 ⁽¹⁾ , 70 ⁽²⁾	B30 ⁽¹⁾ , B38 ⁽²⁾	I/O	ST	Synchronous Serial Clock Input/Output for SPI1			
SDI1	PPS	PPS	PPS	0		SPI1 Data In			
SDO1	PPS	PPS	PPS	I/O	ST	SPI1 Data Out			
SS1	PPS	PPS	PPS	I/O	—	SPI1 Slave Synchronization for Frame Pulse I/O			
SCK2	4	10	A7	I/O	ST	Synchronous Serial Clock Input/Output for SPI2			
SDI2	PPS	PPS	PPS	0		SPI2 Data In			
SDO2	PPS	PPS	PPS	I/O	ST	SPI2 Data Out			
SS2	PPS	PPS	PPS	I/O	—	SPI2 Slave Synchronization for Frame Pulse I/O			
SCL1			B31 ⁽¹⁾ , B36 ⁽²⁾	I/O	ST	Synchronous Serial Clock Input/Output for I2C1			
SDA1	36 ⁽¹⁾ , 43 ⁽²⁾	56 ⁽¹⁾ , 67 ⁽²⁾	A38 ⁽¹⁾ , A44 ⁽²⁾	I/O	ST	Synchronous Serial Data Input/Output for I2C1			
SCL2	32	58	A39	I/O	ST	Synchronous Serial Clock Input/Output for I2C2			
SDA2	31	59	B32	I/O	ST	Synchronous Serial Data Input/Output for I2C2			
TMS	23	17	B9		ST	JTAG Test Mode Select Pin			
ТСК	27	38	A26	I	ST	JTAG Test Clock Input Pin			
TDI	28	60	A40	I	_	JTAG Test Clock Input Pin			
TDO	24	61	B33	0	—	JTAG Test Clock Output Pin			
RTCC	42	68	B37	0	—	Real-Time Clock Alarm Output			

ST = Schmitt Trigger input with CMOS levels

O = Output

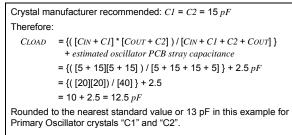
I = Input

TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

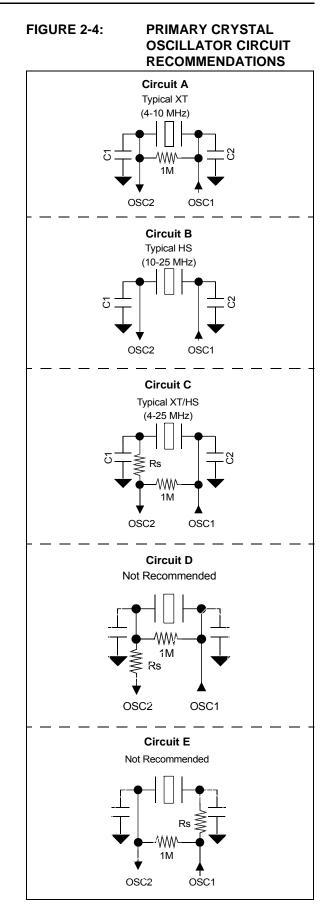

PIC32MX330/350/370/430/450/470

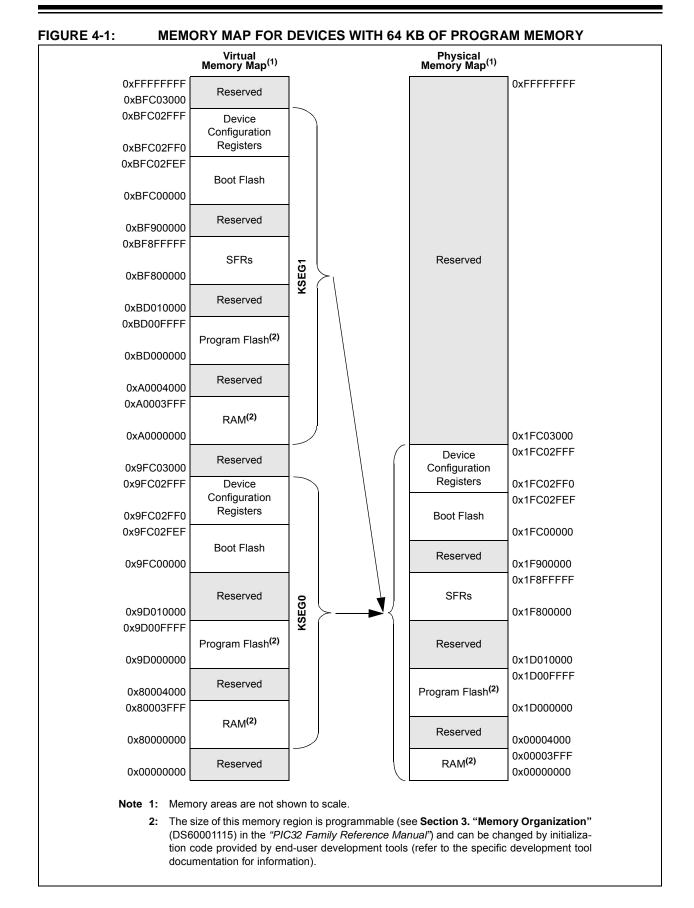
2.8.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION

The following example assumptions are used to calculate the Primary Oscillator loading capacitor values:

- CIN = PIC32_OSC2_Pin Capacitance = ~4-5 pF
- COUT = PIC32_OSC1_Pin Capacitance = ~4-5 pF
- C1 and C2 = XTAL manufacturing recommended loading capacitance
- Estimated PCB stray capacitance, (i.e.,12 mm length) = 2.5 pF

EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR CALCULATION




The following tips are used to increase oscillator gain, (i.e., to increase peak-to-peak oscillator signal):

- Select a crystal with a lower "minimum" power drive rating
- Select an crystal oscillator with a lower XTAL manufacturing "ESR" rating.
- Add a parallel resistor across the crystal. The smaller the resistor value the greater the gain. It is recommended to stay in the range of 600k to 1M
- C1 and C2 values also affect the gain of the oscillator. The lower the values, the higher the gain.
- C2/C1 ratio also affects gain. To increase the gain, make C1 slightly smaller than C2, which will also help start-up performance.
- Note: Do not add excessive gain such that the oscillator signal is clipped, flat on top of the sine wave. If so, you need to reduce the gain or add a series resistor, RS, as shown in circuit "C" in Figure 2-4. Failure to do so will stress and age the crystal, which can result in an early failure. Adjust the gain to trim the max peak-to-peak to ~VDD-0.6V. When measuring the oscillator signal you must use a FET scope probe or a probe with ≤ 1.5 pF or the scope probe itself will unduly change the gain and peak-to-peak levels.

2.8.1.1 Additional Microchip References

- AN588 "PICmicro[®] Microcontroller Oscillator Design Guide"
- AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849 "Basic PICmicro[®] Oscillator Design"

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.04	U-0	U-0	U-0	U-0	U-0	U-0 U-0		U-0					
31:24		_	_	—	_	—		—					
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
23:16	_	—	—	—		—	—	—					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0					
15:8	BMXDUPBA<15:8>												
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
7:0				BMXDU	PBA<7:0>								

REGISTER 4-4: BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits

When non-zero, the value selects the relative base address for User mode program space in RAM, BMXDUPBA must be greater than BMXDUDBA.

bit 9-0 BMXDUPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

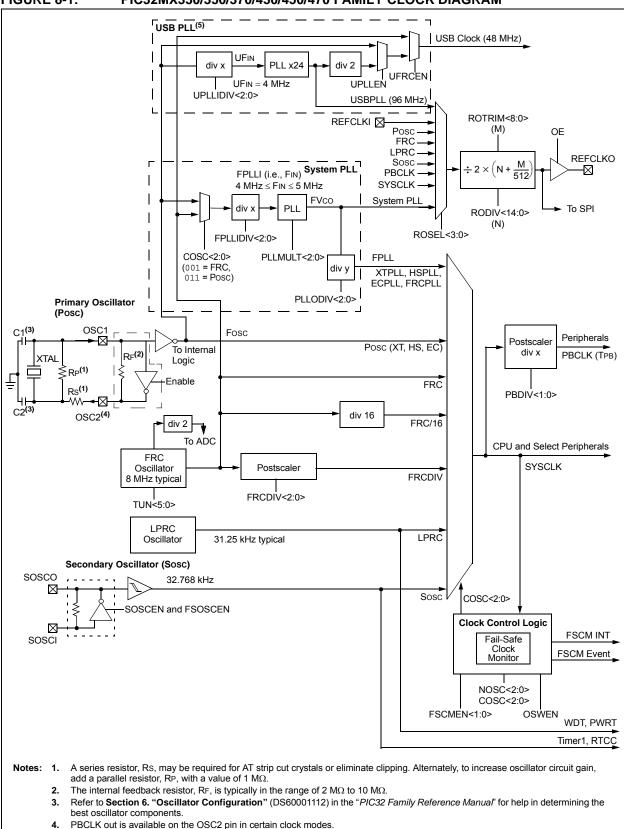
5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/ 470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Memory" (DS60001121), Program which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX330/350/370/430/450/470 devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.


EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the *"PIC32 Flash Programming Specification"* (DS60001145), which can be downloaded from the Microchip web site.

Note: On PIC32MX330/350/370/430/450/470 devices, the Flash page size is 4 KB and the row size is 512 bytes (1024 IW and 128 IW, respectively).

PIC32MX330/350/370/430/450/470

FIGURE 8-1: PIC32MX330/350/370/430/450/470 FAMILY CLOCK DIAGRAM

5. USB PLL is available on PIC32MX4XX devices only.

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

Bit Range Bit 31/23/15/7 31:24 U-0 U-0		Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24 -						—	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10						—	/2 25/17/9/1 24/16/8 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	-	-	—	—	-	—	—	_
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 11-4: U10TGCON: USB OTG CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	DPPULUP: D+ Pull-Up Enable bit

- 1 = D+ data line pull-up resistor is enabled
- 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- 1 = D- data line pull-up resistor is enabled
- 0 = D- data line pull-up resistor is disabled

bit 5 **DPPULDWN:** D+ Pull-Down Enable bit

- 1 = D+ data line pull-down resistor is enabled
- 0 = D+ data line pull-down resistor is disabled

bit 4 DMPULDWN: D- Pull-Down Enable bit

- 1 = D- data line pull-down resistor is enabled
- 0 = D- data line pull-down resistor is disabled
- bit 3 **VBUSON:** VBUS Power-on bit
 - 1 = VBUS line is powered
 - 0 = VBUS line is not powered
- bit 2 OTGEN: OTG Functionality Enable bit
 - 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
 - 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control

bit 1 VBUSCHG: VBUS Charge Enable bit

- 1 = VBUS line is charged through a pull-up resistor
- 0 = VBUS line is not charged through a resistor

bit 0 VBUSDIS: VBUS Discharge Enable bit

- 1 = VBUS line is discharged through a pull-down resistor
- 0 = VBUS line is not discharged through a resistor

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	-	-	-	-	—		—					
23:16	U-0	U-0 U-0		U-0	U-0	U-0	U-0	U-0				
23.10	-		-				—					
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15.6	-	-	-	-	—	—	—	-				
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS				
7:0	BTSEF	BMXEF	DMAEF ⁽¹⁾	BTOEF ⁽²⁾	DFN8EF	CRC16EF	CRC5EF ⁽⁴⁾	PIDEF				
	DISEF	DIVIAEF	DIVIAEL, ,	BIVEF	DENOER	GRUIDEF	EOFEF ^(3,5)					

REGISTER 11-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable b	it
R = Readable bit	W = Writable bit	bit U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 BTSEF: Bit Stuff Error Flag bit
 - 1 = Packet is rejected due to bit stuff error
 - 0 = Packet is accepted
- bit 6 BMXEF: Bus Matrix Error Flag bit
 1 = The base address, of the BDT, or the address of an individual buffer pointed to by a BDT entry, is invalid.
 0 = No address error
- bit 5 **DMAEF:** DMA Error Flag bit⁽¹⁾ 1 = USB DMA error condition detected
 - 0 = No DMA error
- bit 4 **BTOEF:** Bus Turnaround Time-Out Error Flag bit⁽²⁾
 - 1 = Bus turnaround time-out has occurred
 - 0 = No bus turnaround time-out

bit 3 **DFN8EF:** Data Field Size Error Flag bit

- 1 = Data field received is not an integral number of bytes
- 0 = Data field received is an integral number of bytes

bit 2 CRC16EF: CRC16 Failure Flag bit

- 1 = Data packet rejected due to CRC16 error
- 0 = Data packet accepted
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - **2:** This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Periphera Selection
RPD2	RPD2R	RPD2R<3:0>	0000 = No Connect
RPG8	RPG8R	RPG8R<3:0>	0001 = U3TX
RPF4	RPF4R	RPF4R<3:0>	0010 = U4RTS 0011 = Reserved
RPD10	RPD10R	RPD10R<3:0>	0100 = Reserved
RPF1	RPF1R	RPF1R<3:0>	0101 = Reserved
RPB9	RPB9R	RPB9R<3:0>	0110 = SDO2
RPB10	RPB10R	RPB10R<3:0>	0111 = Reserved 1000 = Reserved
RPC14	RPC14R	RPC14R<3:0>	1000 = Reserved
RPB5	RPB5R	RPB5R<3:0>	1010 = Reserved
RPC1 ⁽⁴⁾	RPC1R	RPC1R<3:0>	1011 = OC3
RPD14 ⁽⁴⁾	RPD14R	RPD14R<3:0>	1100 = Reserved 1101 = C2OUT
RPG1 ⁽⁴⁾	RPG1R	RPG1R<3:0>	1110 = Reserved
RPA14 ⁽⁴⁾	RPA14R	RPA14R<3:0>	1111 = Reserved
RPD3	RPD3R	RPD3R<3:0>	0000 = No Connect
RPG7	RPG7R	RPG7R<3:0>	0001 = U2TX
RPF5	RPF5R	RPF5R<3:0>	0010 = Reserved
RPD11	RPD11R	RPD11R<3:0>	
RPF0	RPF0R	RPF0R<3:0>	0100 = 05RTS(*)
RPB1	RPB1R	RPB1R<3:0>	0110 = SDO2
RPE5	RPE5R	RPE5R<3:0>	0111 = Reserved
RPC13	RPC13R	RPC13R<3:0>	1000 = SDO1
RPB3	RPB3R	RPB3R<3:0>	1001 = Reserved
RPF3 ⁽²⁾	RPF3R	RPF3R<3:0>	1010 = Reserved
RPC4 ⁽⁴⁾	RPC4R	RPC4R<3:0>	1011 = OC4 1100 = Reserved
RPD15 ⁽⁴⁾	RPD15R	RPD15R<3:0>	1100 - Reserved
RPG0 ⁽⁴⁾	RPG0R	RPG0R<3:0>	1110 = Reserved
RPA15 ⁽⁴⁾	RPA15R	RPA15R<3:0>	1111 = Reserved

TABLE 12-2: OUTPUT PIN SELECTION

Note 1: This selection is only available on General Purpose devices.

2: This selection is only available on 64-pin General Purpose devices.

3: This selection is only available on 100-pin General Purpose devices.

4: This selection is only available on 100-pin USB and General Purpose devices.

5: This selection is not available on 64-pin USB devices.

TABLE 12-10: PORTE REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H, PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, AND PIC32MX470F512H DEVICES ONLY

ess										E	Bits								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Decete
6400	ANSELE	31:16	_	-	-	—	_	-	-	-	—	_	_	-	_	—	—		000
0400 ANGLEL	15:0	—	_	_	—	—	_	_	_	ANSELE7	ANSELE6	ANSELE5	ANSELE4	—	ANSELE2	—	_	00F	
6410	TRISE	31:16	—	—	—	—	_	—	—	—	—	—	—	—	-	—	—	_	000
0110	HUGE	15:0	—	_	_	—	—	_	_	_	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	xxx
6420	PORTE	31:16	—	_	_	—	—	_	_	_	—	—	—	—	—	—	—	—	000
0120	TORIE	15:0	—	_	_	—	—	_	_	_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	XXX
6440	LATE	31:16	—	_	_	—	—	_	_	_	—	—	—	—	—	—	—	—	000
		15:0	—	_	_	—	—	_	_	_	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	XXX
6440	ODCE	31:16	—	—	_	—	_	—	—	—	—	—	—	—	_	—	—	—	000
00		15:0	—	-	_	—	-	_	_	_	ODCE7	ODCE6	ODCE5	ODCE4	ODCE3	ODCE2	ODCE1	ODCE0	xxx
6450	CNPUE	31:16	—	-	_	—	-	_	_	_	—	—	—	—	-	—	—	—	000
0.00	0.11 02	15:0	—	-	_	—	-	_	_	_	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPDE3	CNPUE2	CNPUE1	CNPUE0	xxx
6460	CNPDE	31:16	—	-	_	—	-	_	_	_	—	—	—	—	-	—	—	—	000
0.00	0.11.02	15:0	—	-	_	—	-	_	_	_	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	_
6470	CNCONE	31:16	—	-	-	—	-	_	_	_	—	—	—	—	-	—	—	—	000
00	0.100112	15:0	ON	-	SIDL	—	-	_	_	_	—	—	—	—	-	—	—	—	000
6480	CNENE	31:16	_	_	_	_	_	_	_	_	—	—	—	—	—	—	—	—	000
		15:0	_	—	_	_	—	_	_	_	CNIEE7	CNIEE6	CNIEE5	CNIEE4	CNIEE3	CNIEE2	CNIEE1	CNIEE0	xxx
		31:16	_	_	_	_	_	_	_	_	—	—	—	—	—	—	—	—	000
6490	CNSTATE	15:0	—	—	—	—	_	_	—	_	CN STATE7	CN STATE6	CN STATE5	CN STATE4	CN STATE3	CN STATE2	CN STATE1	CN STATE0	xxx

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_		_	_	_	_	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_			_	_	—	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	U-0	U-0
15:8	0N ⁽¹⁾	_	SIDL	TWDIS	TWIP	_	_	—
7.0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
7:0	TGATE		TCKPS	S<1:0>	_	TSYNC	TCS	_

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Unimplemented: Read as 0
ON: Timer On bit ⁽¹⁾
1 = Timer is enabled
0 = Timer is disabled
Unimplemented: Read as '0'
SIDL: Stop in Idle Mode bit
1 = Discontinue operation when device enters Idle mode0 = Continue operation even in Idle mode
TWDIS: Asynchronous Timer Write Disable bit
1 = Writes to TMR1 are ignored until pending write operation completes0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)
TWIP: Asynchronous Timer Write in Progress bit
In Asynchronous Timer mode:
1 = Asynchronous write to TMR1 register in progress0 = Asynchronous write to TMR1 register complete
In Synchronous Timer mode: This bit is read as '0'
Unimplemented: Read as '0'
TGATE: Timer Gated Time Accumulation Enable bit
When $TCS = 1$:
This bit is ignored.
When TCS = 0:
1 = Gated time accumulation is enabled
0 = Gated time accumulation is disabled
Unimplemented: Read as '0'
TCKPS<1:0>: Timer Input Clock Prescale Select bits
11 = 1:256 prescale value 10 = 1:64 prescale value
01 = 1:8 prescale value
00 = 1:1 prescale value
Unimplemented: Read as '0'

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

REGIST	ER 18-1:	SPIxCON: S	SPI CONTROL REGISTER (CONTINUED)
bit 17			e Edge Select bit (Framed SPI mode only)
			on pulse coincides with the first bit clock
h:+ 40			on pulse precedes the first bit clock fer Enable bit ⁽²⁾
bit 16		ed Buffer mo	
		ed Buffer mod	
bit 15		ripheral On bi	
		ripheral is ena	
		ripheral is dis	
bit 14	Unimpleme	ented: Read a	as '0'
bit 13	SIDL: Stop	in Idle Mode b	pit
		•	n when CPU enters in Idle mode
		ue operation i	
bit 12		isable SDOx	
			d by the module. Pin is controlled by associated PORT register ed by the module
bit 11-10			t Communication Select bits
	When AUD		Communication Select bits
	MODE32	MODE16	Communication
	1	1	24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
	1	0	32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
	0	1	16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame
	0	0	16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame
	When AUD	EN = 0:	
	MODE32	MODE16	Communication
	1	x	32-bit
	0	1	16-bit
	0	0	8-bit
bit 9		0ata Input Sar le (MSTEN =	nple Phase bit
			\pm). at end of data output time
			at middle of data output time
	Slave mode	e (MSTEN = 0	<u>):</u>
		-	en SPI is used in Slave mode. The module always uses SMP = $0.$
bit 8		lock Edge Se	
			anges on transition from active clock state to Idle clock state (see CKP bit) anges on transition from Idle clock state to active clock state (see CKP bit)
bit 7		-	ble (Slave mode) bit
		n used for Sla	
			Slave mode, pin controlled by port function.
bit 6		Polarity Sele	
	1 = Idle sta	te for clock is	a high level; active state is a low level
			a low level; active state is a high level
bit 5		aster Mode Er	hable bit
	1 = Master 0 = Slave r		
		lieue	
Note 1:	When using	g the 1:1 PBC	LK divisor, the user software should not read or write the peripheral's SFRs in the
		-	ely following the instruction that clears the module's ON bit.
2:	This bit car	n only be writte	en when the ON bit = 0.
3:	This bit is r mode (FRN		e Framed SPI mode. The user should program this bit to '0' for the Framed SPI
4:	-	-	PI module functions as if the CKP bit is equal to '1', regardless of the actual value
	of CKP.	<u> </u>	

REGISTER 18-1: SPIxCON: SPI CONTROL REGISTER (CONTINUED)

- bit 4 **DISSDI:** Disable SDI bit 1 = SDI pin is not used by the SPI module (pin is controlled by PORT function)
 - 0 = SDI pin is controlled by the SPI module
- bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is not full (has one or more empty elements)
 - 10 = Interrupt is generated when the buffer is empty by one-half or more
 - 01 = Interrupt is generated when the buffer is completely empty
 - 00 = Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are complete
- bit 1-0 SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is full
 - 10 = Interrupt is generated when the buffer is full by one-half or more
 - 01 = Interrupt is generated when the buffer is not empty
 - 00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read or write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit can only be written when the ON bit = 0.
 - **3:** This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 4: When AUDEN = 1, the SPI module functions as if the CKP bit is equal to '1', regardless of the actual value of CKP.

	-	-						/
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	—	_	_	—	—
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	_	-	—	_	_	—	—
45.0	R-0	R/W-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	_	—	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF		_	OB3E	OB2E	OB1E	OB0E

REGISTER 21-5: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HS = Set by Hardware	SC = Cleared by software	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 IBF: Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)0 = No overflow occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
 0 = No underflow occurred
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

TABLE 23-1: ADC REGISTER MAP (CONTINUED)

ess		0								В	its								ŝ
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
9110	ADC1BUFA	31:16 15:0							ADC Res	ult Word A	(ADC1BUF	A<31:0>)							0000
9120	ADC1BUFB	31:16 15:0		ADC Result Word B (ADC1BUFB<31:0>)										0000					
9130	ADC1BUFC	31:16 15:0							ADC Res	ult Word C	(ADC1BUF	C<31:0>)							0000
9140	ADC1BUFD	31:16 15:0							ADC Res	ult Word D	(ADC1BUF	D<31:0>)							0000
9150	ADC1BUFE	31:16 15:0		ADC Result Word E (ADC1BUFE<31:0>)										0000					
9160	ADC1BUFF	31:16 15:0							ADC Res	ult Word F	(ADC1BUF	F<31:0>)							0000

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for details.

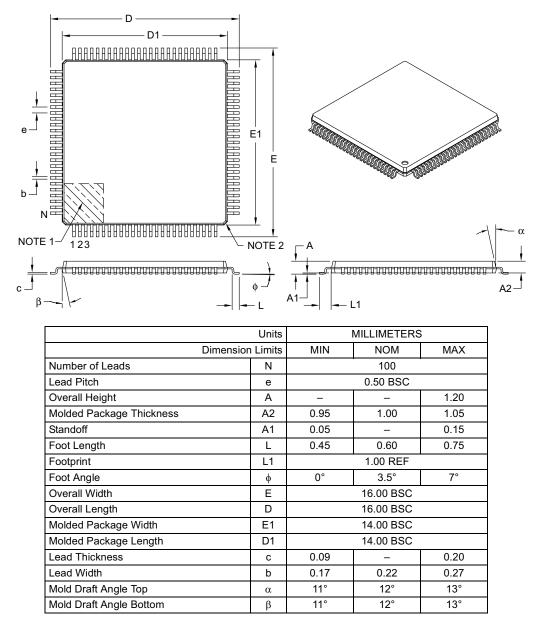
TABLE 28-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

ess										Bits									s
Virtual Addres (BFC0_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
2550	DEVCFG3	31:16	FVBUSONIO	FUSBIDIO	IOL1WAY	PMDL1WAY	_	_	_		—		_		—	FS	RSSEL<2:0	>	xxxx
2660	DEVCEGS	15:0								USERID<1	5:0>								xxxx
2554	DEVCFG2	31:16	—	—		—	—	—	—		—		—		-	FP	LLODIV<2:0	>	xxxx
2664	DEVCFGZ	15:0	UPLLEN ⁽¹⁾	—		_	—	UPL	LIDIV<2:0	(1)	—	FF	PLLMUL<2:	0>	—	FF	PLLIDIV<2:0>	>	xxxx
2550	DEVCFG1	31:16	—	_	_	—	_	_	FWDTWI	NSZ<1:0>	FWDTEN	WINDIS	_		١	NDTPS<4:0)>		xxxx
2660	DEVCEGI	15:0	FCKSM	<1:0>	FPBD	IV<1:0>	_	OSCIOFNC	POSCM	OD<1:0>	IESO	_	FSOSCEN	—	_	F	NOSC<2:0>		xxxx
2550	DEVCFG0	31:16	—	—	_	CP	—	_	—	BWP	_		_			PWP	<7:4>		xxxx
2650	DEVCEGO	15:0		PWP<	<3:0>		—	—		-	—	_	—	ICESE	L<1:0>	JTAGEN	DEBUG	<1:0>	xxxx

Legend: x = unknown value on Reset; - = reserved, write as '1'. Reset values are shown in hexadecimal.

Note 1: This bit is only available on devices with a USB module.

TABLE 28-2: DEVICE ID, REVISION, AND CONFIGURATION SUMMARY


ess		e								Bi	ts								ú
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000		31:16	_	_	—	—	_	—	—	_	—	_	—	_	—	_	_	—	0000
F200	CFGCON	15:0	_	—	IOLOCK	PMDLOCK	_	_	—	—	—	—	—	_	JTAGEN	TROEN	_	TDOEN	000B
F220	DEVID	31:16		VER	<3:0>							DEVID	<27:16>						xxxx ⁽¹⁾
F220	DEVID	15:0	DEVID<15:0> xxx											xxxx ⁽¹⁾					
E220	SYSKEY	31:16	1:16											0000					
F230	STORET	15:0								STORE	1~51.0~								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the device variant.

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

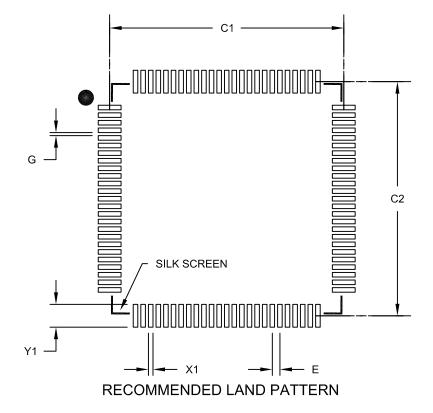
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-110B

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimensior	l Limits	MIN	NOM	MAX			
Contact Pitch	E		0.50 BSC	-			
Contact Pad Spacing	C1		15.40				
Contact Pad Spacing	C2		15.40				
Contact Pad Width (X100)	X1			0.30			
Contact Pad Length (X100)	Y1			1.50			
Distance Between Pads	G	0.20					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support