

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	49
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx470f512ht-120-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

124	-PIN VTLA (BOTTOM VIEW) ^(1,2,3,4)	17			A34	
	A	17		B13 B29		nductive ermal Pad
	PIC32MX430F064L PIC32MX450F128L PIC32MX450F256L PIC32MX470F512L			B1 B56	B41	A51
		y Indica	A1 tor	A68		
Package Bump #	Full Pin Name		Package Bump #		Full Pin Name	
B7	MCLR		B32	SDA2/RA3		
B8	Vss		B33	TDO/RA5		
B9	TMS/CTED1/RA0		B34	OSC1/CLKI/RC12	2	
B10	RPE9/RE9		B35	No Connect		
B11	AN4/C1INB/RB4		B36	SCL1/RPA14/RA	14	
B12	Vss		B37	RPD8/RTCC/RD8	8	
B13	PGEC3/AN2/C2INB/RPB2/CTED13/RB2		B38	RPD10/SCK1/PM	CS2/RD10	
B14	PGED1/AN0/RPB0/RB0		B39	RPD0/INT0/RD0		
B15	No Connect		B40	SOSCO/RPC14/T	1CK/RC14	
B16	PGED2/AN7/RPB7/CTED3/RB7		B41	Vss		
B17	VREF+/CVREF+/PMA6/RA10		B42	AN25/RPD2/RD2		
B18	AVss		B43	RPD12/PMD12/R	D12	
B19	AN9/RPB9/CTED4/RB9		B44	RPD4/PMWR/RD	4	
B20	AN11/PMA12/RB11		B45	PMD14/RD6		
B21	Vdd		B46	No Connect		
B22	RPF13/RF13		B47	No Connect		
B23	AN12/PMA11/RB12		B48	VCAP		
B24	AN14/RPB14/CTED5/PMA1/RB14		B49	RPF0/PMD11/RF	0	
B25	Vss		B50	RPG1/PMD9/RG	1	
B26	RPD14/RD14		B51	TRCLK/RA6		
B27	RPF4/PMA9/RF4		B52	PMD0/RE0		
B28	No Connect		B53	VDD		
B29	RPF8/RF8		B54	TRD2/RG14		
B30	VUSB3V3		B55	TRD0/RG13		
B31	D+		B56	RPE3/CTPLS/PM	D3/RE3	

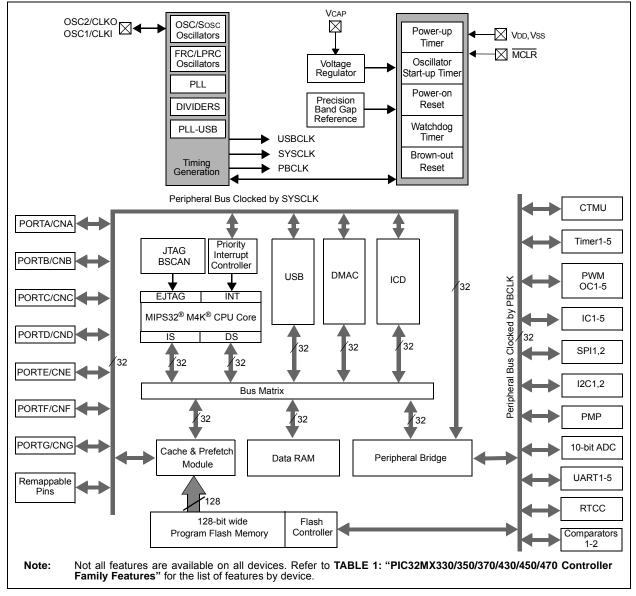
Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: Shaded package bumps are 5V tolerant.

4: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

1.0 DEVICE OVERVIEW


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

This document contains device-specific information for PIC32MX330/350/370/430/450/470 devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MX330/350/ 370/430/450/470 family of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: PIC32MX330/350/370/430/450/470 BLOCK DIAGRAM

		Pin Numb	ESCRIPTIO er			
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description
PMD3	63	99	B56	I/O	TTL/ST	
PMD4	64	100	A67	I/O	TTL/ST	
PMD5	1	3	B2	I/O	TTL/ST	
PMD6	2	4	A4	I/O	TTL/ST	
PMD7	3	5	B3	I/O	TTL/ST	
PMD8		90	A61	I/O	TTL/ST	Devellet Mester Dert Dete (Demultipleyed Mester
PMD9		89	B50	I/O	TTL/ST	Parallel Master Port Data (Demultiplexed Master mode) or Address/Data (Multiplexed Master modes)
PMD10		88	A60	I/O	TTL/ST	
PMD11		87	B49	I/O	TTL/ST	
PMD12		79	B43	I/O	TTL/ST	
PMD13		80	A54	I/O	TTL/ST	
PMD14		83	B45	I/O	TTL/ST	
PMD15	_	84	A56	I/O	TTL/ST	
PMRD	53	82	A55	0	_	Parallel Master Port Read Strobe
PMWR	52	81	B44	0	_	Parallel Master Port Write Strobe
VBUS ⁽²⁾	34	54	A37	I	Analog	USB Bus Power Monitor
VUSB3V3 (2)	35	55	B30	Р	—	USB internal transceiver supply. If the USB module is not used, this pin must be connected to VDD.
VBUSON ⁽²⁾	11	20	A12	0	—	USB Host and OTG bus power control Output
D+ ⁽²⁾	37	57	B31	I/O	Analog	USB D+
D- ⁽²⁾	36	56	A38	I/O	Analog	USB D-
USBID ⁽²⁾	33	51	A35	I	ST	USB OTG ID Detect
PGED1	16	25	B14	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1
PGEC1	15	24	A15	I	ST	Clock Input pin for Programming/Debugging Communication Channel 1
PGED2	18	27	B16	I/O	ST	Data I/O Pin for Programming/Debugging Communication Channel 2
PGEC2	17	26	A20	I	ST	Clock Input Pin for Programming/Debugging Communication Channel 2
PGED3	13	22	A13	I/O	ST	Data I/O Pin for Programming/Debugging Communication Channel 3
PGEC3	14	23	B13	I	ST	Clock Input Pin for Programming/Debugging Communication Channel 3
TRCLK	—	91	B51	0	—	Trace clock
TRD0	—	97	B55	0	—	Trace Data bit 0
TRD1	—	96	A65	0	—	Trace Data bit 1
TRD2	—	95	B54	0	—	Trace Data bit 2
TRD3	—	92	A62	0	—	Trace Data bit 3
CTED1	_	17	B9	1	ST	CTMU External Edge Input 1
CTED2	_	38	A26	I	ST	CTMU External Edge Input 2
CTED3	18	27	B16	I	ST	CTMU External Edge Input 3
	CMOS = CI	MOS compat	ible input or o	utput	An	alog = Analog input P = Power

TADIE 4 4. DINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels

O = Output

I = Input

TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

This pin is only available on devices with a USB module. 2:

This pin is not available on 64-pin devices. 3:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	_	_	_	_	—		—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	_	_	—	_	_	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0		
15:8	BMXDKPBA<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				BMXDK	PBA<7:0>					

REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 **BMXDKPBA<15:10>:** DRM Kernel Program Base Address bits When non-zero, this value selects the relative base address for kernel program space in RAM

bit 9-0 BMXDKPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

5.1 Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ess	Bits									6									
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
E400	NVMCON ⁽¹⁾	31:16			—	—	_		—	—		—	—	—	—	—	—		0000
1400	NVINCON /	15:0	WR	WREN	WRERR	LVDERR	LVDSTAT		_	_		_	_	_		NVMO	P<3:0>		0000
F410	NVMKEY	31:16								NVMKE	V<31·0>								0000
		15:0									1 51.02								0000
E420	NVMADDR ⁽¹⁾	31:16								NVMADE	D-31.05								0000
1 420	NVINADDIX	15:0								INVINADL	11-31.02								0000
F430	NVMDATA	31:16								NVMDAT	A-21:0>								0000
F430	NVINDATA	15:0								INVIVIDAI	A<31.0>								0000
F440	NVMSRC	31:16								VMSRCA	221.05								0000
F440	ADDR	15:0							I	NVIVISRCA	JUK<31:0>	•							0000

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

PIC32MX330/350/370/430/450/470

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
31:24	—	—	BYTC	<1:0>	WBO ⁽¹⁾	_	_	BITO ⁽¹⁾
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	_	_	_	-
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	_	_			PLEN<4:0>		
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP		_	(CRCCH<2:0>	

Legend:

Legena.						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-30 Unimplemented: Read as '0'

- bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits
 - 11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
 - 10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
 - 01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
 - 00 = No swapping (i.e., source byte order)
- bit 27 **WBO:** CRC Write Byte Order Selection bit⁽¹⁾
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered
- bit 26-25 Unimplemented: Read as '0'
- bit 24 BITO: CRC Bit Order Selection bit⁽¹⁾

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)

bit 23-13 Unimplemented: Read as '0'

bit 12-8 **PLEN<4:0>:** Polynomial Length bits⁽¹⁾

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): These bits are unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Denotes the length of the polynomial - 1.

- bit 7 CRCEN: CRC Enable bit
 - 1 = CRC module is enabled and channel transfers are routed through the CRC module
 - 0 = CRC module is disabled and channel transfers proceed normally
- Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

11.0 USB ON-THE-GO (OTG)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "USB On-The-Go (OTG)" (DS60001126), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device or OTG implementation with a minimum of external components. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCI or OHCI controller.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), a dedicated USB DMA controller, pull-up and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is presented in Figure 11-1.

The clock generator provides the 48 MHz clock required for USB full-speed and low-speed communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the hardware protocol for data transfers. The USB DMA controller transfers data between the data buffers in RAM and the SIE. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module. The PIC32 USB module includes the following features:

- USB full-speed support for host and device
- Low-speed host support
- USB OTG support
- · Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- · Transaction handshaking performed by hardware
- · Endpoint buffering anywhere in system RAM
- · Integrated DMA to access system RAM and Flash
- The implementation and use of the USB Note: specifications, and other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.

PIC32MX330/350/370/430/450/470

REGISTER 11-10: U1STAT: USB STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—				_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—				_	_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		—				_	_	_
7:0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0
7:0		ENDP	T<3:0>		DIR	PPBI		_

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7-4 **ENDPT<3:0>:** Encoded Number of Last Endpoint Activity bits (Represents the number of the BDT, updated by the last USB transfer.)
 - 1111 = Endpoint 15 1110 = Endpoint 14 . . 0001 = Endpoint 1 0000 = Endpoint 0
- bit 3 **DIR:** Last BD Direction Indicator bit
 - 1 = Last transaction was a transmit transfer (TX)
 - 0 = Last transaction was a receive transfer (RX)
- bit 2 PPBI: Ping-Pong BD Pointer Indicator bit
 - 1 = The last transaction was to the ODD BD bank
 - 0 = The last transaction was to the EVEN BD bank
- bit 1-0 Unimplemented: Read as '0'

Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF bit (U1IR<3>) is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit = 0.

REGIST	ER 18-1:	SPIxCON: S	SPI CONTROL REGISTER (CONTINUED)
bit 17			e Edge Select bit (Framed SPI mode only)
			on pulse coincides with the first bit clock
h:+ 40			on pulse precedes the first bit clock fer Enable bit ⁽²⁾
bit 16		ed Buffer mo	
		ed Buffer mod	
bit 15		ripheral On bi	
		ripheral is ena	
		ripheral is dis	
bit 14	Unimpleme	ented: Read a	as '0'
bit 13	SIDL: Stop	in Idle Mode b	pit
		•	n when CPU enters in Idle mode
		ue operation i	
bit 12		isable SDOx	
			d by the module. Pin is controlled by associated PORT register ed by the module
bit 11-10			t Communication Select bits
	When AUD		Communication Select bits
	MODE32	MODE16	Communication
	1	1	24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
	1	0	32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
	0	1	16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame
	0	0	16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame
	When AUD	FN = 0:	
	MODE32	MODE16	Communication
	1	x	32-bit
	0	1	16-bit
	0	0	8-bit
bit 9			nple Phase bit
		<u>le (MSTEN =</u> ata sampled a	\pm). at end of data output time
			at middle of data output time
		• (MSTEN = 0	
		-	en SPI is used in Slave mode. The module always uses SMP = 0.
bit 8		lock Edge Se	
			anges on transition from active clock state to Idle clock state (see CKP bit) anges on transition from Idle clock state to active clock state (see CKP bit)
bit 7		-	ble (Slave mode) bit
		n used for Sla	
			Slave mode, pin controlled by port function.
bit 6		Polarity Sele	
	1 = Idle sta	te for clock is	a high level; active state is a low level
			a low level; active state is a high level
bit 5		aster Mode Er	hable bit
	1 = Master 0 = Slave r		
		lieue	
Note 1:	When using	g the 1:1 PBC	LK divisor, the user software should not read or write the peripheral's SFRs in the
		-	ely following the instruction that clears the module's ON bit.
2:	This bit car	n only be writte	en when the ON bit = 0.
3:	This bit is r mode (FRN		e Framed SPI mode. The user should program this bit to '0' for the Framed SPI
4:	-	-	PI module functions as if the CKP bit is equal to '1', regardless of the actual value
	of CKP.	<u> </u>	

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	_	_	_	_
02:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	_	—	_
15:8	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.0	ON ⁽¹⁾	—	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7:0	CSF<1:0> ⁽²⁾		ALP ⁽²⁾	CS2P ⁽²⁾	CS1P ⁽²⁾		WRSP	RDSP

REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Parallel Master Port Enable bit⁽¹⁾
 - 1 = PMP is enabled
 - 0 = PMP is disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
 - 11 = Lower 8 bits of address are multiplexed on PMD<15:0> pins
 - 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
 - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8>
 - 00 = Address and data appear on separate pins
- bit 10 PMPTTL: PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port is enabled
 - 0 = PMWR/PMENB port is disabled
- bit 8 **PTRDEN:** Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port is enabled
 - 0 = PMRD/PMWR port is disabled
- bit 7-6 **CSF<1:0>:** Chip Select Function bits⁽²⁾
 - 11 = Reserved
 - 10 = PMCS1 and PMCS2 function as Chip Select
 - 01 = PMCS1 functions as address bit 14; PMCS2 functions as Chip Select
 - 00 = PMCS1 and PMCS2 function as address bits 14 and 15, respectively
- bit 5 ALP: Address Latch Polarity bit⁽²⁾
 - 1 = Active-high (PMALL and PMALH)
 - $0 = \text{Active-low} (\overline{\text{PMALL}} \text{ and } \overline{\text{PMALH}})$
- bit 4 **CS2P:** Chip Select 0 Polarity bit⁽²⁾
 - 1 = Active-high (PMCS2)
 - $0 = \text{Active-low}(\overline{PMCS2})$
 - **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

28.0 SPECIAL FEATURES

This data sheet summarizes the features Note: of the PIC32MX330/350/370/430/450/470 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Configuration" Section 32. (DS60001124) and Section 33. "Programming and **Diagnostics**" (DS60001129), which are available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32MX330/350/370/430/450/470 family of devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are:

- · Flexible device configuration
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])

28.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- · CFGCON: Configuration Control Register

In addition, the DEVID register (Register 28-6) provides device and revision information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	r-0	r-1	r-1	R/P	r-1	r-1	r-1	R/P		
31:24	_	—	—	CP	—	—	—	BWP		
00.40	r-1	r-1	r-1	r-1	R/P	R/P	R/P	R/P		
23:16	—	—	—	—		PWP	<7:4>	4>		
45.0	R/P	R/P	R/P	R/P	r-1	r-1	r-1	r-1		
15:8		PWP<	<3:0>		—	—	_	—		
7.0	r-1	r-1	r-1	R/P	R/P	R/P	R/P	R/P		
7:0		_	—	ICESE	L<1:0> JTAGEN ⁽¹⁾ DEBUG<1			G<1:0>		

REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0

Legend:	r = Reserved bit	served bit P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31 **Reserved:** Write '0'

bit 30-29 Reserved: Write '1'

bit 28 **CP:** Code-Protect bit

Prevents boot and program Flash memory from being read or modified by an external programming device.

1 = Protection is disabled

0 = Protection is enabled

bit 27-25 Reserved: Write '1'

bit 24 BWP: Boot Flash Write-Protect bit

Prevents boot Flash memory from being modified during code execution.

1 = Boot Flash is writable

0 = Boot Flash is not writable

bit 23-20 Reserved: Write '1'

bit 19-12 **PWP<7:0>:** Program Flash Write-Protect bits

Prevents selected program Flash memory pages from being modified during code execution. The PWP bits represent the one's compliment of the number of write protected program Flash memory pages.

11111111 = Disabled
11111110 = 0xBD00_0FFF
11111101 = 0xBD00_1FFF
11111100 = 0xBD00_2FFF
11111011 = 0xBD00_3FFF
11111010 = 0xBD00_4FFF
11111001 = 0xBD00 5FFF
11111000 = 0xBD00 6FFF
11110111 = 0xBD00_7FFF
11110110 = 0xBD00 8FFF
11110101 = 0xBD00 9FFF
11110100 = 0xBD00 AFFF
11110011 = 0xBD00 BFFF
11110010 = 0xBD00 CFFF
11110001 = 0xBD00 DFFF
11110000 = 0xBD00 EFFF
11101111 = 0xBD00 FFFF
. –
01111111 = 0xBD07 FFFF

Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.

REGISTER 28-1: DEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

- bit 11-5 **Reserved:** Write '1'
- bit 4-3 ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits
 - 11 = PGEC1/PGED1 pair is used
 - 10 = PGEC2/PGED2 pair is used
 - 01 = PGEC3/PGED3 pair is used
 - 00 = Reserved
- bit 2 JTAGEN: JTAG Enable bit⁽¹⁾ 1 = JTAG is enabled 0 = JTAG is disabled
- bit 1-0 **DEBUG<1:0>:** Background Debugger Enable bits (forced to '11' if code-protect is enabled)
 - 1x = Debugger is disabled0x = Debugger is enabled
- Note 1: This bit sets the value for the JTAGEN bit in the CFGCON register.

PIC32MX330/350/370/430/450/470

INE OIOTE								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	-		_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	-	-	_	_		-	_
45.0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
15:8	_		IOLOCK ⁽¹⁾	PMDLOCK ⁽¹⁾	_			_
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-1
7:0	_	_	_	_	JTAGEN	TROEN	_	TDOEN

REGISTER 28-5: CFGCON: CONFIGURATION CONTROL REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

- bit 13 **IOLOCK:** Peripheral Pin Select Lock bit⁽¹⁾
 - 1 = Peripheral Pin Select is locked. Writes to PPS registers is not allowed
 - 0 = Peripheral Pin Select is not locked. Writes to PPS registers is allowed
- bit 12 PMDLOCK: Peripheral Module Disable bit⁽¹⁾
 - 1 = Peripheral module is locked. Writes to PMD registers is not allowed
 - 0 = Peripheral module is not locked. Writes to PMD registers is allowed

bit 11-4 Unimplemented: Read as '0'

- bit 3 JTAGEN: JTAG Port Enable bit
 - 1 = Enable the JTAG port
 - 0 = Disable the JTAG port

bit 2 TROEN: Trace Output Enable bit

- 1 = Enable trace outputs and start trace clock (trace probe must be present)
- 0 = Disable trace outputs and stop trace clock
- bit 1 Unimplemented: Read as '0'
- bit 0 TDOEN: TDO Enable for 2-Wire JTAG
 - 1 = 2-wire JTAG protocol uses TDO
 - 0 = 2-wire JTAG protocol does not use TDO
- Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

NOTES:

TABLE 31-15: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHARACTERISTICS			Standard (unless of Operating	therwise	ture 0°C ≤ T4 -40°C ≤	a ≤ +70° Ta ≤ +8	5 3.6V C for Commercial 5°C for Industrial 55°C for V-temp
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time.	_		10	μs	See Note 1
D313	DACREFH	CVREF Input Voltage	AVss		AVDD	V	CVRSRC with CVRSS = 0
		Reference Range	VREF-		VREF+	V	CVRSRC with CVRSS = 1
D314	DVREF	CVREF Programmable Output Range	0	_	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size
			0.25 x DACREFH	—	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/ 32 step size
D315	DACRES	Resolution	_	_	DACREFH/24		CVRCON <cvrr> = 1</cvrr>
			—		DACREFH/32		CVRCON <cvrr> = 0</cvrr>
D316	DACACC	Absolute Accuracy ⁽²⁾	—	_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>
			_		1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.

TABLE 31-16: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments
D321	Cefc	External Filter Capacitor Value	8	10		μF	Capacitor must be low series resistance (3 ohm). Typical voltage on the VCAP pin is 1.8V.

TABLE 31-18: EXTERNAL CLOCK TIMING REQUIREMENTS

			Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated)					
AC CHA	-40°C ≤ TA ≤ ·			≤ +85°C	70°C for Commercial +85°C for Industrial +105°C for V-temp			
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions	
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC 4	_	50 50	MHz MHz	EC (Note 4) ECPLL (Note 3)	
OS11		Oscillator Crystal Frequency	3		10	MHz	XT (Note 4)	
OS12			4		10	MHz	XTPLL (Notes 3,4)	
OS13			10		25	MHz	HS (Note 4)	
OS14			10	_	25	MHz	HSPLL (Notes 3,4)	
OS15			32	32.768	100	kHz	Sosc (Note 4)	
OS20	Tosc	Tosc = 1/Fosc = Tcy (Note 2)	_	—	_	_	See parameter OS10 for Fosc value	
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.45 x Tosc		_	ns	EC (Note 4)	
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	—	_	0.05 x Tosc	ns	EC (Note 4)	
OS40	Tost	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, XT, XTPLL and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 4)	
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	—	2	—	ms	(Note 4)	
OS42	Gм	External Oscillator Transconductance (Primary Oscillator only)	_	12	_	mA/V	VDD = 3.3V, TA = +25°C (Note 4)	

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are characterized but are not tested.

- 2: Instruction cycle period (TCY) equals the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin.
- **3:** PLL input requirements: 4 MHz \leq FPLLIN \leq 5 MHz (use PLL prescaler to reduce Fosc). This parameter is characterized, but tested at 10 MHz only at manufacturing.
- 4: This parameter is characterized, but not tested in manufacturing.

TABLE 31-32: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)

AC CHA		ГICS	(unless o	I Operating otherwise st g temperatur	t ated) re 0°C -40°	≤ TA ≤ + °C ≤ TA ≤	3V to 3.6V 70°C for Commercial 5 +85°C for Industrial 5 +105°C for V-temp
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175			ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 4)	5		25	ns	_
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	Тscк + 20	_	_	ns	_
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge			25	ns	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

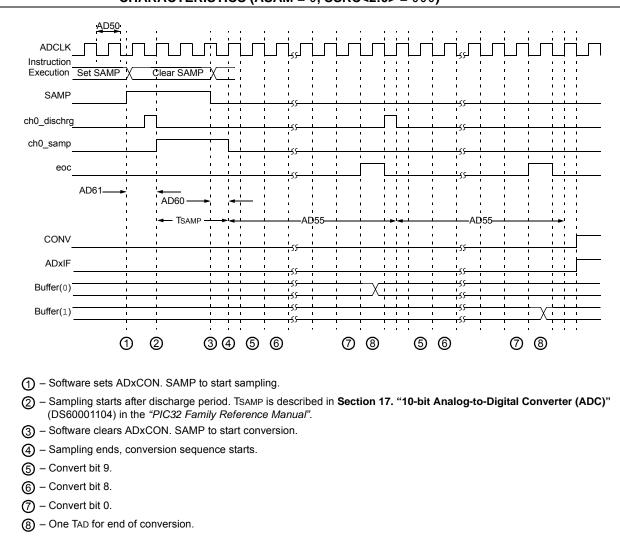
3: The minimum clock period for SCKx is 40 ns.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS ⁽⁵⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions	
ADC Ac	curacy – N	leasurements with Inter	nal VREF+/VR	EF-				
AD20d	Nr	Resolution		10 data bits		bits	(Note 3)	
AD21d	INL	Integral Nonlinearity	> -1	_	< 1	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD22d	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)	
AD23d	Gerr	Gain Error	> -4	_	< 4	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD24d	Eoff	Offset Error	> -2	_	< 2	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)	
AD25d	_	Monotonicity	_	—		—	Guaranteed	
Dynami	c Performa	ince	•	•		•	•	
AD31b	SINAD	Signal to Noise and Distortion	55	58	_	dB	(Notes 3,4)	
AD34b	ENOB	Effective Number of Bits	9	9.5	_	bits	(Notes 3,4)	

TABLE 31-35: ADC MODULE SPECIFICATIONS (CONTINUED)

Note 1: These parameters are not characterized or tested in manufacturing.


2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for VBORMIN values.

PIC32MX330/350/370/430/450/470

FIGURE 31-18: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)