Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | etails | | |---------------------------|--| | roduct Status | Obsolete | | ore Processor | MIPS32® M4K™ | | ore Size | 32-Bit Single-Core | | peed | 120MHz | | Connectivity | I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG | | eripherals | Brown-out Detect/Reset, DMA, POR, PWM, WDT | | lumber of I/O | 85 | | rogram Memory Size | 512KB (512K x 8) | | rogram Memory Type | FLASH | | EPROM Size | - | | AM Size | 128K x 8 | | oltage - Supply (Vcc/Vdd) | 2.3V ~ 3.6V | | ata Converters | A/D 28x10b | | scillator Type | Internal | | perating Temperature | 0°C ~ 70°C (TA) | | lounting Type | Surface Mount | | ackage / Case | 124-VFTLA Dual Rows, Exposed Pad | | upplier Device Package | 124-VTLA (9x9) | | urchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx470f512l-120-tl | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### TO OUR VALUED CUSTOMERS It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced. If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback. #### **Most Current Data Sheet** To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at: #### http://www.microchip.com You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000). #### **Errata** An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies. To determine if an errata sheet exists for a particular device, please check with one of the following: - · Microchip's Worldwide Web site; http://www.microchip.com - · Your local Microchip sales office (see last page) When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using. #### **Customer Notification System** Register on our web site at www.microchip.com to receive the most current information on all of our products. FIGURE 4-4: MEMORY MAP FOR DEVICES WITH 512 KB OF PROGRAM MEMORY #### REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | | | | | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|--| | 31:24 | W-0 | | | | | | 31.24 | | NVMKEY<31:24> | | | | | | | | | | | | | 00.40 | W-0 | | | | | | 23:16 | NVMKEY<23:16> | | | | | | | | | | | | | | 45.0 | W-0 | | | | | | 15:8 | | NVMKEY<15:8> | | | | | | | | | | | | | 7:0 | W-0 | | | | | | 7:0 | | NVMKEY<7:0> | | | | | | | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-0 NVMKEY<31:0>: Unlock Register bits These bits are write-only, and read as '0' on any read Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM. #### REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | | | | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--| | 24.24 | R/W-0 | | | | | 31:24 | NVMADDR<31:24> | | | | | | | | | | | | | 22.40 | R/W-0 | | | | | 23:16 | NVMADDR<23:16> | | | | | | | | | | | | | 45.0 | R/W-0 | | | | | 15:8 | | | | NVMAD | DR<15:8> | | | | | | | | | 7.0 | R/W-0 | | | | | 7:0 | NVMADDR<7:0> | | | | | | | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-0 NVMADDR<31:0>: Flash Address bits Bulk/Chip/PFM Erase: Address is ignored Page Erase: Address identifies the page to erase Row Program: Address identifies the row to program Word Program: Address identifies the word to program #### REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|----------------------| | 21.24 | U-0 | 31:24 | _ | _ | _ | _ | _ | _ | _ | _ | | 22:16 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | U-0 | 15:8 | _ | _ | _ | _ | _ | _ | _ | _ | | 7.0 | U-0 W-0, HC | | 7:0 | _ | _ | _ | _ | _ | _ | _ | SWRST ⁽¹⁾ | **Legend:** HC = Cleared by hardware R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-1 Unimplemented: Read as '0' bit 0 **SWRST:** Software Reset Trigger bit⁽¹⁾ 1 = Enable software Reset event 0 = No effect **Note 1:** The system unlock sequence must be performed before the SWRST bit can be written. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details. #### 7.0 INTERRUPT CONTROLLER Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 8. "Interrupt Controller"** (DS60001108), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). PIC32MX330/350/370/430/450/470 devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU. The PIC32MX330/350/370/430/450/470 interrupt module includes the following features: - · Up to 76 interrupt sources - · Up to 46 interrupt vectors - · Single and multi-vector mode operations - · Five external interrupts with edge polarity control - · Interrupt proximity timer - Seven user-selectable priority levels for each vector - Four user-selectable subpriority levels within each priority - Dedicated shadow set configurable for any priority level (see the FSRSSEL<2:0> bits (DEVCFG3<18:16>) in 28.0 "Special Features" for more information) - · Software can generate any interrupt - User-configurable interrupt vector table location - · User-configurable interrupt vector spacing FIGURE 7-1: INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM #### REGISTER 10-2: DMASTAT: DMA STATUS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------| | 24.04 | U-0 | 31:24 | | _ | - | - | _ | - | _ | _ | | 22.40 | U-0 | 23:16 | _ | _ | _ | _ | _ | _ | _ | _ | | 45.0 | U-0 | 15:8 | _ | _ | _ | _ | _ | _ | _ | _ | | 7.0 | U-0 | U-0 | U-0 | U-0 | R-0 | R-0 | R-0 | R-0 | | 7:0 | _ | _ | _ | _ | RDWR | | DMACH<2:0> | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-4 **Unimplemented:** Read as '0' bit 3 **RDWR:** Read/Write Status bit 1 = Last DMA bus access was a read0 = Last DMA bus access was a write bit 2-0 DMACH<2:0>: DMA Channel bits These bits contain the value of the most recent active DMA channel. #### REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | | | | | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|--| | 24.24 | R-0 | | | | | | 31:24 | | DMAADDR<31:24> | | | | | | | | | | | | | 22.40 | R-0 | | | | | | 23:16 | DMAADDR<23:16> | | | | | | | | | | | | | | 45.0 | R-0 | | | | | | 15:8 | | | | DMAADDI | R<15:8> | | | | | | | | | | 7.0 | R-0 | | | | | | 7:0 | DMAADDR<7:0> | | | | | | | | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown #### bit 31-0 DMAADDR<31:0>: DMA Module Address bits These bits contain the address of the most recent DMA access. #### 12.0 **I/O PORTS** Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 12.** "I/O **Ports**" (DS60001120), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). General purpose I/O pins are the simplest of peripherals. They allow the PIC® MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin. Following are key features of this module: - Individual output pin open-drain enable/disable - Individual input pin weak pull-up and pull-down - Monitor selective inputs and generate interrupt when change in pin state is detected - · Operation during CPU Sleep and Idle modes - Fast bit manipulation using CLR, SET, and INV registers Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port. FIGURE 12-1: BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE TABLE 12-8: PORTD REGISTER MAP FOR PIC32MX330F064H, PIC32MX350F128H, PIC32MX350F256H, PIC32MX370F512H, PIC32MX430F064H, PIC32MX450F128H, PIC32MX450F256H, PIC32MX470F512H DEVICES ONLY | SS | | | | | | | | | | В | its | | | | | | | | | |-----------------------------|---------------------------------|-----------|-------|-------|-------|-------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------| | Virtual Address
(BF88_#) | Register
Name ⁽¹⁾ | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All
Resets | | 6300 | ANSELD | 31:16 | _ | _ | _ | _ | _ | _ | _ | | _ | _ | _ | _ | - | _ | _ | | 0000 | | | 7 11 10 2 2 2 | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | ANSELD3 | ANSELD2 | ANSELD1 | _ | 000E | | 6310 | TRISD | 31:16 | | | | | | | | | | | | | | | | | 0000 | | | | 15:0 | | | | | TRISD11 | TRISD10 | TRISD9 | TRISD8 | TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 | XXXX | | 5320 | PORTD | 31:16 | | | | | | | | | | | | | | | | | 0000 | | | | 15:0 | | | | | RD11 | RD10 | RD9 | RD8 | RD7 | RD6 | RD5 | RD4 | RD3 | RD2 | RD1 | RD0 | XXXX | | 6330 | LATD | 31:16 | | | | | | | | | | | | | | | | | 0000 | | | | 15:0 | | | | | LATD11 | LATD10 | LATD9 | LATD8 | LATD7 | LATD6 | LATD5 | LATD4 | LATD3 | LATD2 | LATD1 | LATD0 | XXXX | | 6340 | ODCD | 31:16 | _ | _ | _ | | | | | | | | _ | | | _ | _ | | 0000 | | | | 15:0 | _ | _ | _ | | ODCD11 | ODCD10 | ODCD9 | ODCD8 | ODCD7 | ODCD6 | ODCD5 | ODCD4 | ODCD3 | ODCD2 | ODCD1 | ODCD0 | XXXX | | 6350 | CNPUD | 31:16 | _ | _ | _ | | | | | | | | | | | | | | 0000 | | | | 15:0 | _ | _ | _ | | CNPUD11 | CNPUD10 | CNPUD9 | CNPUD8 | CNPUD7 | CNPUD6 | CNPUD5 | CNPUD4 | CNPUD3 | CNPUD2 | CNPUD1 | CNPUD0 | XXXX | | 6360 | CNPDD | 31:16 | _ | _ | _ | | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | | _ | 15:0 | _ | _ | _ | | CNPDD11 | CNPDD10 | CNPDD9 | CNPDD8 | CNPDD7 | CNPDD6 | CNPDD5 | CNPDD4 | CNPDD3 | CNPDD2 | CNPDD1 | CNPDD0 | xxxx | | 6370 | CNCOND | 31:16 | _ | _ | _ | | _ | _ | | _ | | _ | _ | | | | | | 0000 | | | | 15:0 | ON | _ | SIDL | | _ | _ | | | | _ | | | | | | | 0000 | | 6380 | CNEND | 31:16 | _ | _ | _ | | _ | _ | _ | _ | | _ | _ | | _ | _ | _ | _ | 0000 | | | 0.12.12 | 15:0 | _ | _ | _ | | CNIED11 | CNIED10 | CNIED9 | CNIED8 | CNIED7 | CNIED6 | CNIED5 | CNIED4 | CNIED3 | CNIED2 | CNIED1 | CNIED0 | xxxx | | | | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | 6390 | CNSTATD | 15:0 | _ | _ | _ | _ | CN
STATD11 | CN
STATD10 | CN
STATD9 | CN
STATD8 | CN
STATD7 | CN
STATD6 | CN
STATD5 | CN
STATD4 | CN
STATD3 | CN
STATD2 | CN
STATD1 | CN
STATD0 | xxxx | Legend: x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for #### TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED) | SS | | | | | | | | | | В | its | | | | | | | | | |-----------------------------|------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|------|-------|------|------------| | Virtual Address
(BF80_#) | Register
Name | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3 | 18/2 | 17/1 | 16/0 | All Resets | | F0.4.0 | DDCCD | 31:16 | _ | _ | _ | - | _ | _ | _ | | - | _ | _ | - | _ | _ | | - | 0000 | | FCAU | RPG8R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPG8 | <3:0> | | 0000 | | E0.4.4 | DDCCD | 31:16 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | FCA4 | RPG9R | 15:0 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | | RPG9 | <3:0> | | 0000 | Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: This register is not available on 64-pin devices. 2: This register is only available on devices without a USB module. 3: This register is not available on 64-pin devices with a USB module. | PIC32IVIX | PIC32MX330/350/370/430/450/470 | | | | | | | | | | | |-----------|--------------------------------|--|--|--|--|--|--|--|--|--|--| | NOTES: | #### **REGISTER 18-3: SPIXSTAT: SPI STATUS REGISTER** | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | | |--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--| | 24.24 | U-0 | U-0 | U-0 | R-0 | R-0 | R-0 | R-0 | R-0 | | | 31:24 | | _ | _ | RXBUFELM<4:0> | | | | | | | 22.46 | U-0 | U-0 | U-0 | R-0 | R-0 | R-0 | R-0 | R-0 | | | 23:16 | _ | _ | _ | TXBUFELM<4:0> | | | | | | | 45.0 | U-0 | U-0 | U-0 | R/C-0, HS | R-0 | U-0 | U-0 | R-0 | | | 15:8 | _ | _ | _ | FRMERR | SPIBUSY | _ | _ | SPITUR | | | 7.0 | R-0 | R/W-0 | R-0 | U-0 | R-1 | U-0 | R-0 | R-0 | | | 7:0 | SRMT | SPIROV | SPIRBE | _ | SPITBE | _ | SPITBF | SPIRBF | | | Legend: | C = Clearable bit | HS = Set in hardware | | |-------------------|-------------------|--------------------------|--------------------| | R = Readable bit | W = Writable bit | U = Unimplemented bit, r | ead as '0' | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | bit 31-29 Unimplemented: Read as '0' bit 28-24 RXBUFELM<4:0>: Receive Buffer Element Count bits (valid only when ENHBUF = 1) bit 23-21 Unimplemented: Read as '0' bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1) bit 15-13 Unimplemented: Read as '0' bit 12 FRMERR: SPI Frame Error status bit 1 = Frame error is detected 0 = No Frame error is detected This bit is only valid when FRMEN = 1. bit 11 SPIBUSY: SPI Activity Status bit 1 = SPI peripheral is currently busy with some transactions 0 = SPI peripheral is currently idle bit 10-9 Unimplemented: Read as '0' bit 8 SPITUR: Transmit Under Run bit 1 = Transmit buffer has encountered an underrun condition 0 = Transmit buffer has no underrun condition This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or writing a '0' to SPITUR. bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1) 1 = When SPI module shift register is empty 0 = When SPI module shift register is not empty bit 6 **SPIROV:** Receive Overflow Flag bit 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register. 0 = No overflow has occurred This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or by writing a '0' to SPIROV. bit 5 SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR ≠ SWPTR) bit 4 Unimplemented: Read as '0' REGISTER 21-1: PMCON: PARALLEL PORT CONTROL REGISTER | Bit
Range | Bit
31/23/15/7 | Bit
30/22/14/6 | Bit
29/21/13/5 | Bit
28/20/12/4 | Bit
27/19/11/3 | Bit
26/18/10/2 | Bit
25/17/9/1 | Bit
24/16/8/0 | |--------------|-------------------------|-------------------|--------------------|---------------------|---------------------|-------------------|------------------|------------------| | 31:24 | U-0 | 31.24 | _ | _ | _ | _ | _ | | _ | _ | | 23:16 | U-0 | 23.10 | _ | _ | _ | _ | _ | _ | _ | _ | | 15:8 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | | 15.6 | ON ⁽¹⁾ | _ | SIDL | ADRMU | JX<1:0> | PMPTTL | PTWREN | PTRDEN | | 7:0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | | 7:0 | CSF<1:0> ⁽²⁾ | | ALP ⁽²⁾ | CS2P ⁽²⁾ | CS1P ⁽²⁾ | | WRSP | RDSP | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 31-16 Unimplemented: Read as '0' bit 15 **ON:** Parallel Master Port Enable bit⁽¹⁾ 1 = PMP is enabled 0 = PMP is disabled, no off-chip access performed bit 14 **Unimplemented:** Read as '0' bit 13 SIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits 11 = Lower 8 bits of address are multiplexed on PMD<15:0> pins 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<15:8> 00 = Address and data appear on separate pins bit 10 PMPTTL: PMP Module TTL Input Buffer Select bit 1 = PMP module uses TTL input buffers 0 = PMP module uses Schmitt Trigger input buffer bit 9 **PTWREN:** Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is disabled bit 7-6 CSF<1:0>: Chip Select Function bits(2) 11 = Reserved 10 = PMCS1 and PMCS2 function as Chip Select 01 = PMCS1 functions as address bit 14; PMCS2 functions as Chip Select 00 = PMCS1 and PMCS2 function as address bits 14 and 15, respectively bit 5 ALP: Address Latch Polarity bit⁽²⁾ 1 = Active-high (PMALL and PMALH) $0 = Active-low (\overline{PMALL} \text{ and } \overline{PMALH})$ bit 4 **CS2P:** Chip Select 0 Polarity bit⁽²⁾ 1 = Active-high (PMCS2) $0 = Active-low (\overline{PMCS2})$ **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit. 2: These bits have no effect when their corresponding pins are used as address lines. #### REGISTER 23-1: AD1CON1: ADC CONTROL REGISTER 1 (CONTINUED) - bit 4 CLRASAM: Stop Conversion Sequence bit (when the first ADC interrupt is generated) - 1 = Stop conversions when the first ADC interrupt is generated. Hardware clears the ASAM bit when the ADC interrupt is generated. - 0 = Normal operation, buffer contents will be overwritten by the next conversion sequence - bit 3 **Unimplemented:** Read as '0' - bit 2 ASAM: ADC Sample Auto-Start bit - 1 = Sampling begins immediately after last conversion completes; SAMP bit is automatically set. - 0 = Sampling begins when SAMP bit is set - bit 1 SAMP: ADC Sample Enable bit⁽²⁾ - 1 = The ADC sample and hold amplifier is sampling - 0 = The ADC sample/hold amplifier is holding When ASAM = 0, writing '1' to this bit starts sampling. When SSRC = 000, writing '0' to this bit will end sampling and start conversion. - bit 0 **DONE**: Analog-to-Digital Conversion Status bit⁽³⁾ - 1 = Analog-to-digital conversion is done - 0 = Analog-to-digital conversion is not done or has not started Clearing this bit will not affect any operation in progress. - Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit. - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ 0, this bit is automatically cleared by hardware to end sampling and start conversion. - 3: This bit is automatically set by hardware when ADC is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion. # REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED) bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled The state of s bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits 11 = PBCLK is SYSCLK divided by 8 10 = PBCLK is SYSCLK divided by 4 01 = PBCLK is SYSCLK divided by 2 00 = PBCLK is SYSCLK divided by 1 bit 11 Reserved: Write '1' bit 10 OSCIOFNC: CLKO Enable Configuration bit 1 = CLKO output is disabled 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00) bit 9-8 **POSCMOD<1:0>:** Primary Oscillator Configuration bits 11 = Primary Oscillator is disabled 10 = HS Oscillator mode is selected 01 = XT Oscillator mode is selected 00 = External Clock mode is selected bit 7 IESO: Internal External Switchover bit 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled) 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled) bit 6 Reserved: Write '1' bit 5 FSOSCEN: Secondary Oscillator Enable bit 1 = Enable Secondary Oscillator 0 = Disable Secondary Oscillator bit 4-3 **Reserved:** Write '1' bit 2-0 FNOSC<2:0>: Oscillator Selection bits 111 = Fast RC Oscillator with divide-by-N (FRCDIV) 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (Sosc) 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL) 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾ 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL) 000 = Fast RC Oscillator (FRC) **Note 1:** Do not disable the Posc (POSCMOD = 11) when using this oscillator source. #### 30.0 DEVELOPMENT SUPPORT The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools: - · Integrated Development Environment - MPLAB® X IDE Software - · Compilers/Assemblers/Linkers - MPLAB XC Compiler - MPASMTM Assembler - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian - MPLAB Assembler/Linker/Librarian for Various Device Families - Simulators - MPLAB X SIM Software Simulator - Emulators - MPLAB REAL ICE™ In-Circuit Emulator - · In-Circuit Debuggers/Programmers - MPLAB ICD 3 - PICkit™ 3 - · Device Programmers - MPLAB PM3 Device Programmer - Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits - · Third-party development tools # 30.1 MPLAB X Integrated Development Environment Software The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface. With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users. #### Feature-Rich Editor: - · Color syntax highlighting - Smart code completion makes suggestions and provides hints as you type - Automatic code formatting based on user-defined rules - Live parsing User-Friendly, Customizable Interface: - Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc. - Call graph window Project-Based Workspaces: - · Multiple projects - · Multiple tools - · Multiple configurations - · Simultaneous debugging sessions File History and Bug Tracking: - · Local file history feature - · Built-in support for Bugzilla issue tracker #### TABLE 31-10: ELECTRICAL CHARACTERISTICS: BOR | DC CHARACTERISTICS | | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp | | | | | |--------------------|--------|---|---|---------|------|-------|------------| | Param.
No. | Symbol | Characteristics | Min. ⁽¹⁾ | Typical | Max. | Units | Conditions | | BO10 | VBOR | BOR Event on VDD transition high-to-low | 2.0 | _ | 2.3 | V | _ | Note 1: Parameters are for design guidance only and are not tested in manufacturing. #### TABLE 31-11: ELECTRICAL CHARACTERISTICS: HVD | DC CHARACTERISTICS | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp | | | | | | |------------------------------|--------|--|------|---------|------|-------|------------| | Param.
No. ⁽¹⁾ | Symbol | Characteristics | Min. | Typical | Max. | Units | Conditions | | HV10 | VHVD | High Voltage Detect on VCAP pin | _ | 2.5 | | ٧ | _ | Note 1: Parameters are for design guidance only and are not tested in manufacturing. TABLE 31-12: DC CHARACTERISTICS: PROGRAM MEMORY⁽³⁾ | DC CHARACTERISTICS | | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp | | | | | | | |--------------------|--------|---------------------------------------|--|-----|-----|------|---|--|--| | Param.
No. | Symbol | Characteristics | Min. Typical ⁽¹⁾ Max. Units Conditions | | | | | | | | D130 | ЕР | Cell Endurance | 20,000 | _ | | E/W | _ | | | | D131 | VPR | VDD for Read | 2.3 | _ | 3.6 | V | _ | | | | D132 | VPEW | VDD for Erase or Write | 2.3 | _ | 3.6 | V | _ | | | | D134 | TRETD | Characteristic Retention | 20 | _ | _ | Year | Provided no other specifications are violated | | | | D135 | IDDP | Supply Current during
Programming | _ | 10 | _ | mA | _ | | | | D138 | Tww | Word Write Cycle Time ⁽⁴⁾ | 44 | _ | 59 | μs | _ | | | | D136 | Trw | Row Write Cycle Time ^(2,4) | 2.8 | 3.3 | 3.8 | ms | _ | | | | D137 | TPE | Page Erase Cycle Time ⁽⁴⁾ | 22 | | 29 | ms | | | | | D139 | TCE | Chip Erase Cycle Time ⁽⁴⁾ | 86 | _ | 116 | ms | _ | | | - **Note 1:** Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. - 2: The minimum SYSCLK for row programming is 8 MHz. Care should be taken to minimize bus activities during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default Arbitration mode is mode 1 (CPU has lowest priority). - **3:** Refer to the "PIC32 Flash Programming Specification" (DS60001145) for operating conditions during programming and erase cycles. - **4:** This parameter depends on the FRC accuracy (see Table 31-20) and the FRC tuning values (see Register 8-2). TABLE 31-13: DC CHARACTERISTICS: PROGRAM FLASH MEMORY WAIT STATE | DC CHARACTERISTICS | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature 0°C ≤ TA ≤ +70°C for Commercial -40°C < TA < +85°C for Industrial | | | | | | | |----------------------------------|---|-------|-----------------|--|--|--|--| | -40 °C ≤ TA ≤ +105 °C for V-temp | | | | | | | | | Required Flash Wait States | SYSCLK | Units | Conditions | | | | | | 0 Wait State | 0-40 | MHz | -40°C to +85°C | | | | | | o wait state | 0-30 | MHz | -40°C to +105°C | | | | | | 1 Wait State | 41-80 | MHz | -40°C to +85°C | | | | | | i Wait State | 31-60 | MHz | -40°C to +105°C | | | | | | 2 Mait States | 81-100 | MHz | -40°C to +85°C | | | | | | 2 Wait States | 61-80 | MHz | -40°C to +105°C | | | | | | 3 Wait States | 101-120 | MHz | 0°C to +70°C | | | | | FIGURE 31-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS TABLE 31-32: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS | AC CHARACTERISTICS | | | Standard Operating Conditions: 2.3V to 3.6V (unless otherwise stated) Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp | | | | | |--------------------|-----------------------|--|--|------------------------|------|-------|--------------------| | Param.
No. | Symbol | Characteristics ⁽¹⁾ | Min. | Typical ⁽²⁾ | Max. | Units | Conditions | | SP70 | TscL | SCKx Input Low Time (Note 3) | Tsck/2 | _ | | ns | _ | | SP71 | TscH | SCKx Input High Time (Note 3) | Tsck/2 | _ | _ | ns | _ | | SP72 | TscF | SCKx Input Fall Time | _ | 5 | 10 | ns | _ | | SP73 | TscR | SCKx Input Rise Time | _ | 5 | 10 | ns | _ | | SP30 | TDOF | SDOx Data Output Fall Time (Note 4) | _ | | 1 | ns | See parameter DO32 | | SP31 | TDOR | SDOx Data Output Rise Time (Note 4) | _ | _ | _ | ns | See parameter DO31 | | SP35 | TscH2DoV, | • | _ | _ | 20 | ns | VDD > 2.7V | | | TscL2DoV | SCKx Edge | _ | _ | 30 | ns | VDD < 2.7V | | SP40 | TDIV2scH,
TDIV2scL | Setup Time of SDIx Data Input to SCKx Edge | 10 | _ | _ | ns | _ | | SP41 | TscH2DIL,
TscL2DIL | Hold Time of SDIx Data Input to SCKx Edge | 10 | _ | _ | ns | _ | Note 1: These parameters are characterized, but not tested in manufacturing. - Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested. - 3: The minimum clock period for SCKx is 40 ns. - 4: Assumes 50 pF load on all SPIx pins. # 64-Terminal Plastic Quad Flat Pack, No Lead (RG) 9x9x0.9 mm Body [QFN] Saw Singulated **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | | MILLIMETERS | | | | |-------------------------|-------------|----------|----------|-------------|--|--|--| | Dimension | Limits | MIN | NOM | MAX | | | | | Number of Terminals | N | 64 | | | | | | | Pitch | е | | 0.50 BSC | | | | | | Overall Height | Α | 0.80 | 0.85 | 0.90 | | | | | Standoff | A1 | 0.00 | 0.02 | 0.05 | | | | | Standoff | A3 | 0.20 REF | | | | | | | Overall Width | Е | 9.00 BSC | | | | | | | Exposed Pad Width | E2 | 4.60 | 4.70 | 4.80 | | | | | Overall Length | D | 9.00 BSC | | | | | | | Exposed Pad Length | D2 | 4.60 | 4.70 | 4.80 | | | | | Terminal Width | b | 0.15 | 0.20 | 0.25 | | | | | Terminal Length | L | 0.30 | 0.40 | 0.50 | | | | | Terminal-to-Exposed-Pad | K 1.755 REF | | | | | | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated - 3. Dimensioning and tolerancing per ASME Y14.5M $\,$ BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-260A Sheet 2 of 2 #### **INDEX** | A | | CPU Module2 | 7, 35 | |---|--------|--|-------| | AC Characteristics | 205 | CTMU | | | 10-Bit Conversion Rate Parameters | | Registers | . 253 | | ADC Specifications | | Customer Change Notification Service | . 359 | | Analog-to-Digital Conversion Requirements | | Customer Notification Service | . 359 | | EJTAG Timing Requirements | | Customer Support | . 359 | | Internal FRC Accuracy | | D | | | Internal RC Accuracy | | _ | | | OTG Electrical Specifications | | DC and AC Characteristics | 000 | | Parallel Master Port Read Requirements | | Graphs and Tables | | | Parallel Master Port Write | | DC Characteristics | | | Parallel Master Port Write Requirements | | I/O Pin Input Specifications | | | Parallel Slave Port Requirements | | I/O Pin Output Specifications | | | PLL Clock Timing | 297 | Idle Current (IDLE) | | | Analog-to-Digital Converter (ADC) | 233 | Power-Down Current (IPD) | | | Assembler | | Program Memory | | | MPASM Assembler | 276 | Temperature and Voltage Specifications | | | D | | Development Support | | | В | | Direct Memory Access (DMA) Controller | 93 | | Block Diagrams | | E | | | ADC Module | 233 | Electrical Characteristics | 279 | | Comparator I/O Operating Modes | | AC | | | Comparator Voltage Reference | | Errata | | | Connections for On-Chip Voltage Regulator | | External Clock | 17 | | CPU | 35 | Timer1 Timing Requirements | 301 | | CTMU Configurations | | Timer2, 3, 4, 5 Timing Requirements | | | Time Measurement | | Timing Requirements | | | DMA | | | 00 | | I2C Circuit | | F | | | Input Capture | | Flash Program Memory | 53 | | Interrupt Controller | | RTSP Operation | | | JTAG Programming, Debugging and Trace Ports | | | | | Output Compare Module | | Н | | | PMP Pinout and Connections to External Devices | | High Voltage Detect (HVD)61, 272 | , 291 | | Prefetch Module | | 1 | | | Reset System | | ı | | | RTCC | | I/O Ports | | | SPI Module | | Parallel I/O (PIO) | | | Timer1 | | Write/Read Timing | | | Timer2/3/4/5 (16-Bit) | | Input Change Notification | | | Typical Multiplexed Port Structure | | Instruction Set | | | UART | | Inter-Integrated Circuit (I2C | | | WDT and Power-up Timer | 177 | Internal Voltage Reference Specifications | | | Brown-out Reset (BOR) and On-Chip Voltage Regulator | 272 | Internet Address | | | and On-Onip Voltage Regulator | 212 | Interrupt Controller | | | C | | IRG, Vector and Bit Location | 64 | | C Compilers | | M | | | MPLAB C18 | 276 | | | | Charge Time Measurement Unit. See CTMU. | 270 | Memory Maps | 44 | | Clock Diagram | 74 | Devices with 128 KB of Program Memory | | | Comparator | | Devices with 256 KB of Program Memory | | | Specifications2 | 93 294 | Devices with 512 KB of Program Memory | | | Comparator Module | | Devices with 64 KB of Program Memory | | | Comparator Voltage Reference (CVref | | Memory Organization
Layout | | | Configuration Bit | | • | | | Configuring Analog Port Pins | | Microchip Internet Web Site | | | CPU | | MPLAB ASM30 Assembler, Linker, Librarian | | | Architecture Overview | 36 | MPLAB Integrated Development Environment Software. | | | Coprocessor 0 Registers | | MPLAB PM3 Device Programmer | | | Core Exception Types | | MPLAB REAL ICE In-Circuit Emulator System | | | EJTAG Debug Support | | MPLINK Object Linker/MPLIB Object Librarian | . 210 | | Power Management | 38 | | |