

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	81
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx470f512l-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX330/350/370/430/450/470

		Pin Numb	er			
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description
RE0	60	93	B52	I/O	ST	
RE1	61	94	A64	I/O	ST	
RE2	62	98	A66	I/O	ST	
RE3	63	99	B56	I/O	ST	
RE4	64	100	A67	I/O	ST	PORTE is a hidiractional I/O part
RE5	1	3	B2	I/O	ST	PORTE IS a bidirectional i/O port
RE6	2	4	A4	I/O	ST	
RE7	3	5	B3	I/O	ST	
RE8	_	18	A11	I/O	ST	
RE9	_	19	B10	I/O	ST	
RF0	58	87	B49	I/O	ST	
RF1	59	88	A60	I/O	ST	
RF2	34(1)	52	A36	I/O	ST	
RF3	33	51	A35	I/O	ST	
RF4	31	49	B27	I/O	ST	
RF5	32	50	A32	I/O	ST	PORTF is a bidirectional I/O port
RF6	35(1)	55(1)	B30 ⁽¹⁾	I/O	ST	
RF7	_	54 ⁽¹⁾	A37 ⁽¹⁾	I/O	ST	
RF8	_	53	B29	I/O	ST	
RF12	_	40	A27	I/O	ST	
RF13	_	39	B22	I/O	ST	
RG0	_	90	A61	I/O	ST	
RG1	_	89	B50	I/O	ST	
RG2	37 ⁽¹⁾	57 ⁽¹⁾	B31	I/O	ST	
RG3	36(1)	56 ⁽¹⁾	A38	I/O	ST	
RG6	4	10	A7	I/O	ST	
RG7	5	11	B6	I/O	ST	
RG8	6	12	A8	I/O	ST	PORTG is a bidirectional 1/0 port
RG9	8	14	A9	I/O	ST	
RG12		96	A65	I/O	ST	
RG13	_	97	B55	I/O	ST	
RG14	_	95	B54	I/O	ST	
RG15	_	1	A2	I/O	ST	
T1CK	48	74	B40	I	ST	Timer1 External Clock Input
T2CK	PPS	PPS	PPS	I	ST	Timer2 External Clock Input
T3CK	PPS	PPS	PPS	I	ST	Timer3 External Clock Input
T4CK	PPS	PPS	PPS	I	ST	Timer4 External Clock Input
T5CK	PPS	PPS	PPS	I	ST	Timer5 External Clock Input
Legend:	CMOS = C	MOS compati	tible input or o	output	Ar	alog = Analog input P = Power

TABLE 1-1-PINOLIT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

Output

Input

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

	Pin Number		er				
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description	
PMD3	63	99	B56	I/O	TTL/ST		
PMD4	64	100	A67	I/O	TTL/ST		
PMD5	1	3	B2	I/O	TTL/ST		
PMD6	2	4	A4	I/O	TTL/ST		
PMD7	3	5	B3	I/O	TTL/ST		
PMD8	_	90	A61	I/O	TTL/ST	Parallel Master Port Data (Demultiplexed Master	
PMD9	_	89	B50	I/O	TTL/ST	mode) or Address/Data (Multiplexed Master modes)	
PMD10	_	88	A60	I/O	TTL/ST	······································	
PMD11	_	87	B49	I/O	TTL/ST	-	
PMD12		79	B43	I/O	TTL/ST		
PMD13	_	80	A54	I/O	TTL/ST	-	
PMD14	_	83	B45	I/O	TTL/ST	-	
PMD15	_	84	A56	I/O	TTL/ST		
PMRD	53	82	A55	0	—	Parallel Master Port Read Strobe	
PMWR	52	81	B44	0	—	Parallel Master Port Write Strobe	
VBUS ⁽²⁾	34	54	A37	I	Analog	USB Bus Power Monitor	
VUSB3V3 (2)	35	55	B30	Р	_	USB internal transceiver supply. If the USB module is not used, this pin must be connected to VDD.	
VBUSON ⁽²⁾	11	20	A12	0		USB Host and OTG bus power control Output	
D+ ⁽²⁾	37	57	B31	I/O	Analog	USB D+	
D- ⁽²⁾	36	56	A38	I/O	Analog	USB D-	
USBID ⁽²⁾	33	51	A35	I	ST	USB OTG ID Detect	
PGED1	16	25	B14	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1	
PGEC1	15	24	A15	I	ST	Clock Input pin for Programming/Debugging Communication Channel 1	
PGED2	18	27	B16	I/O	ST	Data I/O Pin for Programming/Debugging Communication Channel 2	
PGEC2	17	26	A20	I	ST	Clock Input Pin for Programming/Debugging Communication Channel 2	
PGED3	13	22	A13	I/O	ST	Data I/O Pin for Programming/Debugging Communication Channel 3	
PGEC3	14	23	B13	I	ST	Clock Input Pin for Programming/Debugging Communication Channel 3	
TRCLK	_	91	B51	0	_	Trace clock	
TRD0	_	97	B55	0	_	Trace Data bit 0	
TRD1		96	A65	0		Trace Data bit 1	
TRD2		95	B54	0	_	Trace Data bit 2	
TRD3	—	92	A62	0	—	Trace Data bit 3	
CTED1	—	17	B9	I	ST	CTMU External Edge Input 1	
CTED2	—	38	A26	I	ST	CTMU External Edge Input 2	
CTED3	18	27	B16	I	ST	CTMU External Edge Input 3	
Legend:	CMOS = CI		tible input or ou	itout	Δn	alog - Analog input D - Dower	

TARI E 1-1. PINOLIT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels

O = Output

I = Input

TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

This pin is only available on devices with a USB module. 2:

This pin is not available on 64-pin devices. 3:

		Pin Numb	er			
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description
CTED4	22	33	B19	I	ST	CTMU External Edge Input 4
CTED5	29	43	B24	I	ST	CTMU External Edge Input 5
CTED6	30	44	A29	I	ST	CTMU External Edge Input 6
CTED7	—	9	B5	I	ST	CTMU External Edge Input 7
CTED8	—	92	A62	I	ST	CTMU External Edge Input 8
CTED9	—	60	A40	I	ST	CTMU External Edge Input 9
CTED10	21	32	A23	I	ST	CTMU External Edge Input 10
CTED11	23	34	A24	I	ST	CTMU External Edge Input 11
CTED12	15	24	A15	I	ST	CTMU External Edge Input 12
CTED13	14	23	B13	I	ST	CTMU External Edge Input 13
MCLR	7	13	B7	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVdd	19	30	A22	Р	Р	Positive supply for analog modules. This pin must be connected at all times.
AVss	20	31	B18	Р	Р	Ground reference for analog modules
Vdd	10, 26, 38, 57	2, 16, 37, 46, 62, 86	B1, A10, A14, B21, A30, A41, A48, A59, B53	Ρ	_	Positive supply for peripheral logic and I/O pins
VCAP	56	85	B48	Р	_	Capacitor for Internal Voltage Regulator
Vss	9, 25, 41	15, 36, 45, 65, 75	A3, B8, B12, A25, B25, A43, B41, A63	Ρ	_	Ground reference for logic and I/O pins
VREF+	16	29	B17	Ι	Analog	Analog Voltage Reference (High) Input
VREF-	15	28	A21	Ι	Analog	Analog Voltage Reference (Low) Input
Legend:	CMOS = C	MOS compa	tible input or ou	itput	An	alog = Analog input P = Power

TARI E 1-1. PINOLIT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = TTL input buffer

Analog = Analog input O = Output

I = Input

Note 1: This pin is only available on devices without a USB module.

This pin is only available on devices with a USB module. 2:

3: This pin is not available on 64-pin devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R	R	R	R	R	R	R	R	
31:24				BMXPFN	ISZ<31:24>				
22:16	R	R	R	R	R	R	R	R	
23.10	BMXPFMSZ<23:16>								
45.0	R	R	R	R	R	R	R	R	
15:8	BMXPFMSZ<15:8>								
7.0	R	R	R	R	R	R	R	R	
7:0				BMXPF	MSZ<7:0>				

REGISTER 4-7: BMXPFMSZ: PROGRAM FLASH (PFM) SIZE REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 BMXPFMSZ<31:0>: Program Flash Memory (PFM) Size bits

Static value that indicates the size of the PFM in bytes: 0x00010000 = Device has 64 KB Flash 0x00020000 = Device has 128 KB Flash 0x00040000 = Device has 256 KB Flash 0x00080000 = Device has 512 KB Flash

REGISTER 4-8: BMXBOOTSZ: BOOT FLASH (IFM) SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R	R	R	R	R	R	R	R		
31.24				BMXBOO	TSZ<31:24>					
00.40	R	R	R	R	R	R	R	R		
23:10	BMXBOOTSZ<23:16>									
15.0	R	R	R	R	R	R	R	R		
10.0	BMXBOOTSZ<15:8>									
7.0	R	R	R	R	R	R	R	R		
7:0				BMXBO	OTSZ<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **BMXBOOTSZ<31:0>:** Boot Flash Memory (BFM) Size bits Static value that indicates the size of the Boot PFM in bytes: 0x00003000 = Device has 12 KB Boot Flash

PIC32MX330/350/370/430/450/470

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	-	—	—			—	
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	-	—	—			—	
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	-	—	—			—	
7.0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7.0	UACTPND			USLPGRD	USBBUSY ⁽¹⁾		USUSPEND	USBPWR

REGISTER 11-5: U1PWRC: USB POWER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB bus activity has been detected; but an interrupt is pending, it has not been generated yet
 0 = An interrupt is not pending
- bit 6-5 Unimplemented: Read as '0'
- bit 4 USLPGRD: USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry
- bit 3 USBBUSY: USB Module Busy bit⁽¹⁾
 - 1 = USB module is active or disabled, but not ready to be enabled
 - 0 = USB module is not active and is ready to be enabled
 - **Note:** When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.
- bit 2 Unimplemented: Read as '0'
- bit 1 USUSPEND: USB Suspend Mode bit
 - 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
 - 0 = USB module operates normally
- bit 0 USBPWR: USB Operation Enable bit
 - 1 = USB module is turned on
 - 0 = USB module is disabled

(Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31.24	—	—	—	—	—	—	—	_
22:16	U-0	U-0						
23.10	—	_	—	—	—	—	—	
15.0	U-0	U-0						
15.0	_	_	_	_	_	—	_	
	R/W-0	R/W-0						
7:0	BTSEE	BMXEE		BTOFE		CRC16EE	CRC5EE ⁽¹⁾	PIDEE
	DIGLE	DIVIALE	DIMALL	BIOLL	DINOLL	ONCIDEL	EOFEE ⁽²⁾	TIDEE

REGISTER 11-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

hit 7	BTSEE . Bit Stuff Error Interrupt Enable bit

- 1 = BTSEF interrupt is enabled
- 0 = BTSEF interrupt is disabled
- bit 6 BMXEE: Bus Matrix Error Interrupt Enable bit
 - 1 = BMXEF interrupt is enabled
 - 0 = BMXEF interrupt is disabled
- bit 5 **DMAEE:** DMA Error Interrupt Enable bit
 - 1 = DMAEF interrupt is enabled
 - 0 = DMAEF interrupt is disabled
- bit 4 BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
 - 1 = BTOEF interrupt is enabled
 - 0 = BTOEF interrupt is disabled
- bit 3 **DFN8EE:** Data Field Size Error Interrupt Enable bit
 - 1 = DFN8EF interrupt is enabled
 - 0 = DFN8EF interrupt is disabled
- bit 2 CRC16EE: CRC16 Failure Interrupt Enable bit
 - 1 = CRC16EF interrupt is enabled
 - 0 = CRC16EF interrupt is disabled
- bit 1 CRC5EE: CRC5 Host Error Interrupt Enable bit⁽¹⁾
 - 1 = CRC5EF interrupt is enabled
 - 0 = CRC5EF interrupt is disabled
 - EOFEE: EOF Error Interrupt Enable bit⁽²⁾
 - 1 = EOF interrupt is enabled
 - 0 = EOF interrupt is disabled
- bit 0 PIDEE: PID Check Failure Interrupt Enable bit
 - 1 = PIDEF interrupt is enabled
 - 0 = PIDEF interrupt is disabled

Note 1: Device mode.

2: Host mode.

Note: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

PIC32MX330/350/370/430/450/470

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:10	—	—	—	—	—	—	—	—		
15:0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
15:8	ON ^(1,3)	—	SIDL ⁽⁴⁾	—	—	—	—	—		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0		
7:0	TGATE ⁽³⁾	Т	CKPS<2:0>(3)	T32 ⁽²⁾	—	TCS ⁽³⁾	—		

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 **Unimplemented:** Read as '0'

- bit 15 **ON:** Timer On bit^(1,3)
 - 1 = Module is enabled
 - 0 = Module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit⁽⁴⁾
 - 1 = Discontinue operation when device enters Idle mode 0 = Continue operation even in Idle mode

bit 12-8 Unimplemented: Read as '0'

- bit 7 **TGATE:** Timer Gated Time Accumulation Enable bit⁽³⁾
 - When TCS = 1:

This bit is ignored and is read as '0'.

When TCS = 0:

- 1 = Gated time accumulation is enabled
- 0 = Gated time accumulation is disabled

bit 6-4 TCKPS<2:0>: Timer Input Clock Prescale Select bits⁽³⁾

- 111 = 1:256 prescale value
- 110 = 1:64 prescale value
- 101 = 1:32 prescale value
- 100 = 1:16 prescale value
- 011 = 1:8 prescale value
- 010 = 1:4 prescale value
- 001 = 1:2 prescale value
- 000 = 1:1 prescale value
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: This bit is available only on even numbered timers (Timer2 and Timer4).
 - **3:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer3 and Timer5). All timer functions are set through the even numbered timers.
 - 4: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.

19.0 INTER-INTEGRATED CIRCUIT (I²C)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/ pic32). The I^2C module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard. Figure 19-1 illustrates the I^2C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- · Provides support for address bit masking

REGISTE	ER 19-1: I2CxCON: I ² C CONTROL REGISTER (CONTINUED)
bit 7	 GCEN: General Call Enable bit (when operating as I²C slave) 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception) 0 = General call address disabled
bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master) 1 = Enables Receive mode for I ² C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receive sequence not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence. 0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

Note 1: When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

NOTES:

20.1 **Control Registers**

TABLE 20-1: UART1 THROUGH UART5 REGISTER MAP

ress		e								Bi	ts								s
Virtual Addi (BF80_#	Register Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
6000		31:16	_	-	-	—	—	—	-	-	—	—	—	—	-	—	—	—	0000
6000	UTWODE /	15:0	ON	—	SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6010	111STA(1)	31:16	—	_	_	_	_	_	_	ADM_EN				ADDF	R<7:0>				0000
0010	UISIA	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6020		31:16	—	_	_	—	_	_	_	—		—	—		_	_	_	—	0000
0020	15:0		—	_	_	—	_	_	_	TX8				Transmit	t Register				0000
6030		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0030	UIKARLO	15:0	—	—	—	—	—	—	—	RX8				Receive	Register				0000
6040		31:16	_	—	—	_	—	—	—	—	—	—	_	—	—	_	—	—	0000
0040	OTBICO	15:0	Baud Rate Generator Prescaler							0000									
6200		31:16	_	—	—	—	—	—	—	—	_		—	_	—	_	—	—	0000
0200	02INODL.	15:0	ON	—	SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6210	LI2STA(1)	31:16	_	—		_				ADM_EN				ADDF	R<7:0>				0000
0210	02017	15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6220	U2TXREG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0220	OLIVILLO	15:0	—	—	—	—	—	—	—	TX8				Transmit	Register			•	0000
6230	U2RXREG	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0200	U LIVITED	15:0	_	—	—	—	—	—	—	RX8				Receive	Register			-	0000
6240	U2BRG(1)	31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
	025.00	15:0							Bau	d Rate Gen	erator Pres	caler							0000
6400		31:16	_	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0100	COMODE	15:0	ON	—	SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	L<1:0>	STSEL	0000
6410	ADDR<7:0>						1	1	0000										
00		15:0	UTXISE	EL<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	FFFF
6420	U3TXREG	31:16	_	—	_	—	—	—	—	-	—	—	—	—	—	—	—	—	0000
0.20	CONTREC	15:0	—	_	-	—	—	—	—	TX8				Transmit	Register				0000
6430	U3RXREG	31:16	—	—	—	—	—	—	—	-	—	—	—	—	—	—	—	—	0000
0.00	CONTREC	15:0	—	—	—	—	—	—	—	RX8				Receive	Register				0000

x = unknown value on Reset; ---- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV registers" for more informa-Note 1: tion.

NOTES:

22.1 Control Registers

TABLE 22-1: RTCC REGISTER MAP

ess				Bits															
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
0200	PTCCON	31:16	—	—	—	—	_	—					CAL<	9:0>					0000
0200 KICCON	15:0	ON	_	SIDL	—	_	—	-		RTSECSEL	RTCCLKON	—	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	0000	
0210		31:16		_	_	—		_			_	_	_	_	_	_	_	—	0000
0210	RICALNI	15:0	ALRMEN	CHIME	PIV	ALRMSYNC		AMASI	< <3:0>					ARPT	<7:0>				0000
0220	DTOTIME	31:16	HR10<3:0>				HR01<3:0>				MIN10<	3:0>			MIN01	<3:0>		xxxx	
0220	RICHWL	15:0		SEC	10<3:0>			SEC0 ²	1<3:0>		_	_	_	_	_	_	_	—	xx00
0230	DTODATE	31:16		YEAR	10<3:0>			YEAR0	1<3:0>		MONTH10<3:0>					MONTH	01<3:0>		xxxx
0230	RICDAIL	15:0		DAY1	0<3:0>			DAY01	1<3:0>		_	_	_	_		WDAY0	1<3:0>		xx00
0240		31:16		HR1	0<3:0>			HR01	<3:0>		MIN10<3:0>				MIN01<3:0>			xxxx	
0240		15:0		SEC	10<3:0>			SEC0 ²	1<3:0>		_	_	_	_	_	_	_	—	xx00
0250	0250 ALRMDATE			_	_	—		_				MONTH10)<3:0>			MONTH	01<3:0>		00xx
0230				DAY1	0<3:0>			DAY01	1<3:0>		_	_	—	_		WDAY0	1<3:0>		xx0x

PIC32MX330/350/370/430/450/470

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	—	CSSL30	CSSL29	CSSL28	CSSL27	CSSL26	CSSL25	CSSL24
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	CSSL23	CSSL21	CSSL21	CSSL20	CSSL19	CSSL18	CSSL17	CSSL16
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0

REGISTER 23-5: AD1CSSL: ADC INPUT SCAN SELECT REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15-0 CSSL<30:0>: ADC Input Pin Scan Selection bits^(1,2)
 - 1 = Select ANx for input scan
 - 0 = Skip ANx for input scan
- **Note 1:** CSSL = ANx, where x = 0-27; CSSL30 selects Vss for scan; CSSL29 selects CTMU input for scan; CSSL28 selects IVREF for scan.
 - 2: On devices with less than 28 analog inputs, all CSSLx bits can be selected; however, inputs selected for scan without a corresponding input on the device will convert to VREFL.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
51.24	EDG1MOD	EDG1POL		EDG1S	EDG2STAT	EDG1STAT		
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
23.10	EDG2MOD	EDG2POL		EDG2S	—	—		
15.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	ON	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0			IRNG<1:0>					

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 EDG1MOD: Edge 1 Edge Sampling Select bit

1 = Input is edge-sensitive

0 = Input is level-sensitive

bit 30 EDG1POL: Edge 1 Polarity Select bit

1 = Edge 1 programmed for a positive edge response

0 = Edge 1 programmed for a negative edge response

bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits

1111 = Reserved

1110 = C2OUT pin is selected

- 1101 = C1OUT pin is selected
- 1100 = IC3 Capture Event is selected
- 1011 = IC2 Capture Event is selected
- 1010 = IC1 Capture Event is selected
- 1001 = CTED8 pin is selected
- 1000 = CTED7 pin is selected
- 0111 = CTED6 pin is selected
- 0110 = CTED5 pin is selected
- 0101 = CTED4 pin is selected
- 0100 = CTED3 pin is selected
- 0011 = CTED1 pin is selected
- 0010 = CTED2 pin is selected
- 0001 = OC1 Compare Event is selected

0000 = Timer1 Event is selected

bit 25 EDG2STAT: Edge 2 Status bit

Indicates the status of Edge 2 and can be written to control edge source

- 1 = Edge 2 has occurred
- 0 = Edge 2 has not occurred
- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

31.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MX330/350/370/430/450/470 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MX330/350/370/430/450/470 devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +105°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 2.3V$ (Note 3)	-0.3V to +6.0V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 2.3V (Note 3)	-0.3V to +3.6V
Voltage on D+ or D- pin with respect to VUSB3V3	0.3V to (VUSB3V3 + 0.3V)
Voltage on VBUS with respect to VSS	-0.3V to +5.5V
Maximum current out of Vss pin(s)	200 mA
Maximum current into VDD pin(s) (Note 2)	200 mA
Maximum output current sourced/sunk by any 4x I/O pin	15 mA
Maximum output current sourced/sunk by any 8x I/O pin	25 mA
Maximum current sunk by all ports	150 mA
Maximum current sourced by all ports (Note 2)	150 mA

Note 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).
- 3: See the "Device Pin Tables" section for the 5V tolerant pins.

AC CH4	ARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions			
Clock P	arameter	S								
AD50	TAD	ADC Clock Period ⁽²⁾	65	—	_	ns	See Table 31-36			
Conver	sion Rate									
AD55	ΤΟΟΝΛ	Conversion Time	—	12 Tad	_		—			
AD56	FCNV	Throughput Rate	—	—	1000	ksps	AVDD = 3.0V to 3.6V			
		(Sampling Speed) ⁽⁴⁾	—	—	400	ksps	AVDD = 2.5V to 3.6V			
AD57	TSAMP	Sample Time	2 TAD	—	—	_	—			
Timing	Paramete	rs								
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾	_	1.0 Tad	—	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected			
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 Tad		1.5 TAD	_	—			
AD62	Tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	—	0.5 TAD	_		_			
AD63	Tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽³⁾	—	—	2	μS	—			

TABLE 31-37: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

4: Refer to Table 31-36 for detailed conditions.

64-Terminal Plastic Quad Flat Pack, No Lead (RG) 9x9x0.9 mm Body [QFN] Saw Singulated

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Terminals	Ν	64			
Pitch	е	0.50 BSC			
Overall Height	Α	0.80	0.85	0.90	
Standoff	A1	0.00	0.02	0.05	
Standoff	A3	0.20 REF			
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	4.60	4.70	4.80	
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	4.60	4.70	4.80	
Terminal Width	b	0.15	0.20	0.25	
Terminal Length	Ĺ	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	1.755 REF			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-260A Sheet 2 of 2

124-Very Thin Leadless Array Package (TL) – 9x9x0.9 mm Body [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Pad Clearance	G1	0.20		
Pad Clearance	G2	0.20		
Pad Clearance	G3	0.20		
Pad Clearance	G4	0.20		
Contact to Center Pad Clearance (X4)	G5	0.30		
Optional Center Pad Width	T2			6.60
Optional Center Pad Length	W2			6.60
Optional Center Pad Chamfer (X4)	W3		0.10	
Contact Pad Spacing	C1		8.50	
Contact Pad Spacing	C2		8.50	
Contact Pad Width (X124)	X1			0.30
Contact Pad Length (X124)	X2			0.30

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2193A

PIC32MX330/350/370/430/450/470

NOTES: