

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	81
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx470f512lt-120-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Pin Tables

64-PIN QFN ^(1,2,3,4) AND TQFP ^(1,2,3,4) (TOP VIEW)									
Pl Pl	C32MX330F064H C32MX350F128H C32MX350F256H C32MX370F512H								
	64	1	64						
	QF	N ⁽⁴⁾	TQFP						
Pin #	Full Pin Name	Pin #	Full Pin Name						
1	AN22/RPE5/PMD5/RE5	33	RPF3/RF3						
2	AN23/PMD6/RE6	34	RPF2/RF2						
3	AN27/PMD7/RE7	35	RPF6/SCK1/INT0/RF6						
4	AN16/C1IND/RPG6/SCK2/PMA5/RG6	36	SDA1/RG3						
5	AN17/C1INC/RPG7/PMA4/RG7	37	SCL1/RG2						
6	AN18/C2IND/RPG8/PMA3/RG8	38	VDD						
7	MCLR	39	OSC1/CLKI/RC12						
8	AN19/C2INC/RPG9/PMA2/RG9	40	OSC2/CLKO/RC15						
9	Vss	41	Vss						
10	Vdd	42	RPD8/RTCC/RD8						
11	AN5/C1INA/RPB5/RB5	43	RPD9/RD9						
12	AN4/C1INB/RB4	44	RPD10/PMCS2/RD10						
13	PGED3/AN3/C2INA/RPB3/RB3	45	RPD11/PMCS1/RD11						
14	PGEC3/AN2/C2INB/RPB2/CTED13/RB2	46	RPD0/RD0						
15	PGEC1/VREF-/CVREF-/AN1/RPB1/CTED12/RB1	47	SOSCI/RPC13/RC13						
16	PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0	48	SOSCO/RPC14/T1CK/RC14						
17	PGEC2/AN6/RPB6/RB6	49	AN24/RPD1/RD1						
18	PGED2/AN7/RPB7/CTED3//RB7	50	AN25/RPD2/RD2						
19	AVDD	51	AN26/RPD3/RD3						
20	AVss	52	RPD4/PMWR/RD4						
21	AN8/RPB8/CTED10//RB8	53	RPD5/PMRD/RD5						
22	AN9/RPB9/CTED4/PMA7/RB9	54	RD6						
23	TMS/Cvrefout/AN10/RPB10/CTED11//PMA13/RB10	55	RD7						
24	TDO/AN11/PMA12/RB11	56	VCAP						
25	Vss	57	VDD						
26	Vdd	58	RPF0/RF0						
27	TCK/AN12/PMA11/RB12	59	RPF1/RF1						
28	TDI/AN13/PMA10/RB13	60	PMD0/RE0						
29	AN14/RPB14/CTED5/PMA1/RB14	61	PMD1/RE1						
30	AN15/RPB15/OCFB/CTED6/PMA0/RB15	62	AN20/PMD2/RE2						
31	RPF4/SDA2/PMA9/RF4	63	RPE3/CTPLS/PMD3/RE3						
32	RPF5/SCL2/PMA8/RF5	64	AN21/PMD4/RE4						

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

Every I/O port pin (RBx-RGx), with the exception of RF6, can be used as a change notification pin (CNBx-CNGx). See Section 12.0 "I/O 2: Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

RPF6 (pin 35) is only available for output functions. 4:

TABLE 3: PIN NAMES FOR 64-PIN DEVICES

64-PIN $QFN^{(1,2)}$ AND $TQFP^{(1,2)}$ (TOP VIEW) PIC32MX430F064H PIC32MX450F128H PIC32MX450F256H PIC32MX470F512H 64 1 64 QFN⁽³⁾ TQFP Pin # Full Pin Name Pin # **Full Pin Name** 1 AN22/RPE5/PMD5/RE5 33 USBID/RF3 2 AN23/PMD6/RE6 34 VBUS AN27/PMD7/RE7 3 35 VUSB3V3 4 AN16/C1IND/RPG6/SCK2/PMA5/RG6 D-36 5 AN17/C1INC/RPG7/PMA4/RG7 37 D+ AN18/C2IND/RPG8/PMA3/RG8 6 38 Vdd MCLR 7 OSC1/CLKI/RC12 39 AN19/C2INC/RPG9/PMA2/RG9 40 OSC2/CLKO/RC15 8 Vss 41 9 Vss RPD8/RTCC/RD8 10 VDD 42 AN5/C1INA/RPB5/VBUSON/RB5 11 43 RPD9/SDA1/RD9 12 AN4/C1INB/RB4 44 RPD10/SCL1/PMCS2/RD10 13 PGED3/AN3/C2INA/RPB3/RB3 45 RPD11/PMCS1/RD11 14 PGEC3/AN2/C2INB/RPB2/CTED13/RB2 46 RPD0/INT0/RD0 PGEC1/VREF-/CVREF-/AN1/RPB1/CTED12/RB1 47 SOSCI/RPC13/RC13 15 16 PGED1/VREF+/CVREF+/AN0/RPB0/PMA6/RB0 48 SOSCO/RPC14/T1CK/RC14 PGEC2/AN6/RPB6/RB6 17 49 AN24/RPD1/RD1 18 PGED2/AN7/RPB7/CTED3//RB7 AN25/RPD2/SCK1/RD2 50 AN26/RPD3/RD3 19 AVDD 51 20 52 RPD4/PMWR/RD4 AVss 21 AN8/RPB8/CTED10//RB8 RPD5/PMRD/RD5 53 22 AN9/RPB9/CTED4/PMA7/RB9 54 RD6 TMS/CVREFOUT/AN10/RPB10/CTED11//PMA13/RB10 RD7 23 55 TDO/AN11/PMA12/RB11 56 VCAP 24 Vss 25 57 Vdd 26 Vdd 58 RPF0/RF0 27 TCK/AN12/PMA11/RB12 59 RPF1/RF1 28 TDI/AN13/PMA10/RB13 60 PMD0/RE0 AN14/RPB14/CTED5/PMA1/RB14 61 PMD1/RE1 29 AN15/RPB15/OCFB/CTED6/PMA0/RB15 AN20/PMD2/RE2 30 62 RPF4/SDA2/PMA9/RF4 63 RPE3/CTPLS/PMD3/RE3 31 32 RPF5/SCL2/PMA8/RF5 64 AN21/PMD4/RE4

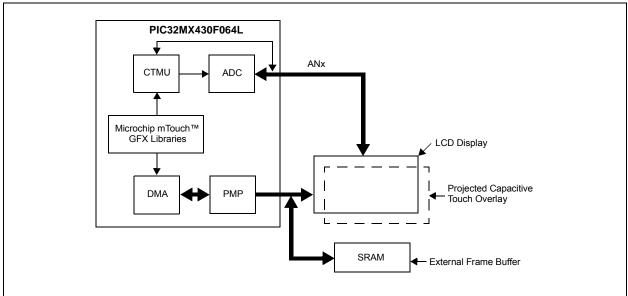
Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RBx-RGx) can be used as a change notification pin (CNBx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

TABLE 1-1: PINOUT I/O DESCRIPTIONS

		Pin Numb	er					
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type	Description		
AN0	16	25	B14		Analog			
AN1	15	24	A15	I	Analog			
AN2	14	23	B13	I	Analog			
AN3	13	22	A13	I	Analog			
AN4	12	21	B11	I	Analog			
AN5	11	20	A12	I	Analog			
AN6	17	26	A20	I	Analog			
AN7	18	27	B16	I	Analog			
AN8	21	32	A23	I	Analog			
AN9	22	33	B19	I	Analog			
AN10	23	34	A24	I	Analog			
AN11	24	35	B20	I	Analog			
AN12	27	41	B23	I	Analog			
AN13	28	42	A28	I	Analog	Analog input channels.		
AN14	29	43	B24	I	Analog			
AN15	30	44	A29	I	Analog			
AN16	4	10	A7	I	Analog			
AN17	5	11	B6	I	Analog			
AN18	6	12	A8	I	Analog			
AN19	8	14	A9	I	Analog			
AN20	62	98	A66	I	Analog			
AN21	64	100	A67	I	Analog			
AN22	1	3	B2	I	Analog			
AN23	2	4	A4	I	Analog			
AN24	49	76	A52	I	Analog			
AN25	50	77	B42	I	Analog			
AN26	51	78	A53	I	Analog			
AN27	3	5	B3	I	Analog			
CLKI	39	63	B34	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.		
CLKO	40	64	A42	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with the OSC2 pin function.		
OSC1	39	63	B34	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.		
OSC2	40	64	A42	0	_	Oscillator crystal output. Connects to crystal or reso- nator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.		
SOSCI	47	73	A47	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.		
SOSCO	48	74	B40	0	—	32.768 kHz low-power oscillator crystal output.		
-	ST = Schm		tible input or o out with CMOS			alog = Analog input P = Power = Output I = Input		


TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

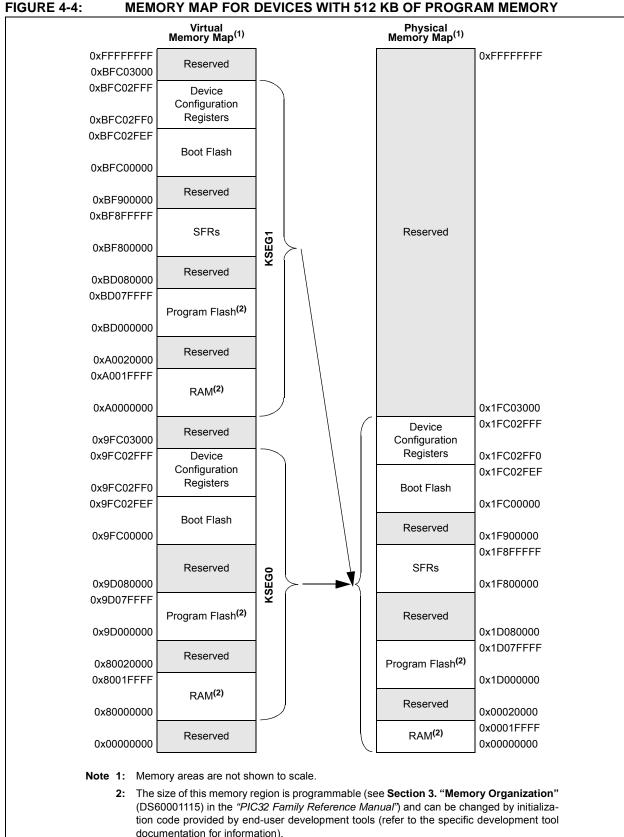
3: This pin is not available on 64-pin devices.

FIGURE 2-8: LOW-COST CONTROLLERLESS (LCC) GRAPHICS APPLICATION WITH PROJECTED CAPACITIVE TOUCH

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/ 470 family of devices. It is not intended to be a comprehensive reference source.For detailed information, refer to Section 3. "Memory Organization" (DS60001115), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX330/350/370/430/450/470 microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including program, data memory, SFRs and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, the data memory can be made executable, allowing PIC32MX330/350/370/430/450/470 devices to execute from data memory.


Key features include:

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/ KSEG1) mode address space
- · Flexible program Flash memory partitioning
- Flexible data RAM partitioning for data and program space
- Separate boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Simple memory mapping with Fixed Mapping Translation (FMT) unit
- Cacheable (KSEG0) and non-cacheable (KSEG1) address regions

4.1 Memory Layout

PIC32MX330/350/370/430/450/470 microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The memory maps for the PIC32MX330/350/370/430/ 450/470 devices are illustrated in Figure 4-1 through Figure 4-4.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	—	—	—	—	—	_
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	-	—	—	—		_
45.0	R/W-0	R/W-0	R-0	R-0	R-0	U-0	U-0	U-0
15:8	WR	WREN	WRERR ⁽¹⁾	LVDERR ⁽¹⁾	LVDSTAT ⁽¹⁾	—	—	_
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	—	—		—	NVMOP<3:0>			

REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER

Legend:

R = Readable bit	= Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

bit 15	WR: Write Control bit
	This bit is writable when WREN = 1 and the unlock sequence is followed.
	1 = Initiate a Flash operation. Hardware clears this bit when the operation completes
	0 = Flash operation complete or inactive
bit 14	WREN: Write Enable bit
	1 = Enable writes to WR bit and enables LVD circuit
	0 = Disable writes to WR bit and disables LVD circuit
	This is the only bit in this register reset by a device Reset.
bit 13	WRERR: Write Error bit ⁽¹⁾
	This bit is read-only and is automatically set by hardware.
	1 = Program or erase sequence did not complete successfully
	0 = Program or erase sequence completed normally
bit 12	LVDERR: Low-Voltage Detect Error bit (LVD circuit must be enabled) ⁽¹⁾
	This bit is read-only and is automatically set by hardware.
	1 = Low-voltage detected (possible data corruption, if WRERR is set)
	0 = Voltage level is acceptable for programming
bit 11	LVDSTAT: Low-Voltage Detect Status bit (LVD circuit must be enabled) ⁽¹⁾
	This bit is read-only and is automatically set, and cleared, by hardware.
	1 = Low-voltage event active
	0 = Low-voltage event NOT active
bit 10-4	Unimplemented: Read as '0'
bit 3-0	NVMOP<3:0>: NVM Operation bits
	These bits are writable when WREN = 0.
	1111 = Reserved
	•
	0111 = Reserved
	0110 = No operation
	0101 = Program Flash (PFM) erase operation: erases PFM, if all pages are not write-protected
	0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
	0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected 0010 = No operation
	0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected
	0000 = No operation

Note 1: This bit is cleared by setting NVMOP = 0000, and initiating a Flash operation (i.e., WR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	_	_	_	_	_	_	_	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	_	—	—	_	_	—	—	—	
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	—	_	_	_	_	—		—	
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC	
7:0				_		_	_	SWRST ⁽¹⁾	

REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER

Legend:	HC = Cleared by hardware					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

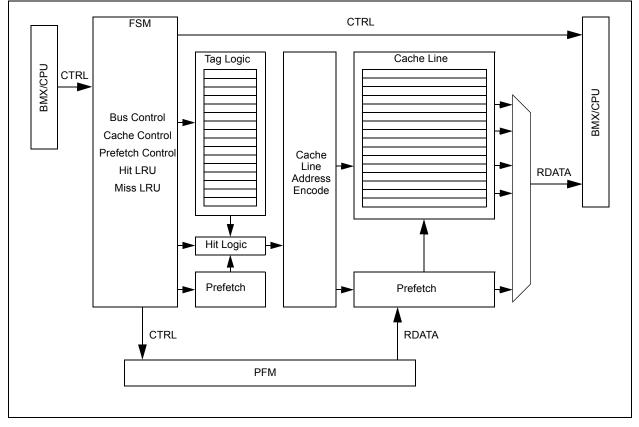
bit 31-1 Unimplemented: Read as '0'

- bit 0 SWRST: Software Reset Trigger bit⁽¹⁾
 - 1 = Enable software Reset event
 - 0 = No effect
- Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 6. "Oscillator" (DS60001112) in the "PIC32 Family Reference Manual" for details.

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits⁽¹⁾
 - 1111 = Reserved; do not use
 - 1001 = Reserved; do not use 1000 = REFCLKI 0111 = System PLL output 0110 = USB PLL output 0101 = Sosc 0100 = LPRC 0011 = FRC 0010 = POSC 0001 = PBCLK 0000 = SYSCLK
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
 - 2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
 - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

9.0 PREFETCH CACHE


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Prefetch Cache" (DS60001119), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

Prefetch cache increases performance for applications executing out of the cacheable program Flash memory regions by implementing instruction caching, constant data caching and instruction prefetching.

9.1 Features

- 16 fully associative lockable cache lines
- 16-byte cache lines
- Up to four cache lines allocated to data
- Two cache lines with address mask to hold repeated instructions
- · Pseudo LRU replacement policy
- · All cache lines are software writable
- · 16-byte parallel memory fetch
- · Predictive instruction prefetch

A simplified block diagram of the Prefetch Cache module is illustrated in Figure 9-1.

FIGURE 9-1: PREFETCH CACHE MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24					_		-	_
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	-	-	_	—	_	_
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8				LMASK<	<10:3>			
7:0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
7:0		_MASK<2:0>		_	_	_	_	—

REGISTER 9-4: CHEMSK: CACHE TAG MASK REGISTER

Legend:

Logonal				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Write '0'; ignore read

- bit 15-5 LMASK<10:0>: Line Mask bits
 - 1 = Enables mask logic to force a match on the corresponding bit position in the LTAG<19:0> bits (CHETAG<23:4>) and the physical address.
 - 0 = Only writeable for values of CHEIDX<3:0> bits (CHEACC<3:0>) equal to 0x0A and 0x0B. Disables mask logic.
- bit 4-0 Unimplemented: Write '0'; ignore read

			••••	•					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
31:24	CHEW0<31:24>								
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:16	CHEW0<23:16>								
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8	CHEW0<15:8>								
	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
7:0	CHEW0<7:0>								

REGISTER 9-5: CHEW0: CACHE WORD 0

Legend:					
R = Readable bit	W = Writable bit	= Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-0 **CHEW0<31:0>:** Word 0 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

TABLE 12-17: PERIPHERAL PIN SELECT INPUT REGISTER MAP

SSS			Bits																
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FA04	INT1R	31:16	_	—	—		—	_	—	_	_	—	—	—	_				0000
		15:0	_	—		_	_	_	—	—	_	—	—	_		INT1F	<3:0>		0000
FA08	INT2R	31:16	_	_			_			_		_			—			—	0000
		15:0		_	—		—		—		_	_	—	_		INT2F	(<3:0>		0000
FA0C	INT3R	31:16 15:0		_			_		_	_		_	_			INT3F		_	0000
		31:16		_			_		_			_	_	_	_			_	0000
FA10	INT4R	15:0	_												_	INT4F		_	0000
-		31:16													_		_	_	0000
FA18	T2CKR	15:0	_		_											T2CKF	२<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
FA1C	T3CKR	15:0	_	_	_			_				_				T3CKF	२<3:0>		0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		0000
FA20	T4CKR	15:0	_	—	_	-	—		—	_	_	—	—	_		T4CKF	R<3:0>		0000
5404	TEOKD	31:16	_	_	—	_	_	_	_	_		_	_	_	—	—	—		0000
FA24	T5CKR	15:0	—	—	—	_	—		—	_	_	—	—	—		T5CKF	२<3:0>		0000
FA28	IC1R	31:16	_	—	—		—		—	_		—	—	—	—				0000
FA20	ICIK	15:0	_	_		_		_		—	_	_				IC1R	<3:0>		0000
FA2C	IC2R	31:16	—	—	—	_	—	—	—	—	—	—	—	—	—	—	—		0000
1720	1021	15:0	_	_	—	_	—	_	—	—	_	_	—	—		IC2R	<3:0>		0000
FA30	IC3R	31:16		_		_	_		_	_	_	_	_	_	—	—	_	—	0000
		15:0	—	—		—	—	—	—	—	—	—	—	—		IC3R	<3:0>		0000
FA34	IC4R	31:16	_	—	—	_		—	—			—	—	—		—	—		0000
		15:0	_	—	_		—	_	—			—	—	—		IC4R	<3:0>		0000
FA38	IC5R	31:16		—		_	—		—		_	—	—	—	—		—		0000
		15:0	_			_				_	_					IC5R	<3:0>		0000
FA48	OCFAR	31:16	_			_				_	_				—	_	—		0000
		15:0		_	_	_	—		—		_	_	—	_		OCFA			0000
FA50	U1RXR	31:16	_	_	_		_		_			_	_	_		—	—		0000
	UIIIAN	15:0	_	_	—	_		_	—	-	_	_	—			U1RXI	<<3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is not available on 64-pin devices.

DS60001185F-page 159

PIC32MX330/350/370/430/450/470

REGISTER 19-1: I2CxCON: I²C CONTROL REGISTER

	-							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	_	—	—	—	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	_	_	—	_	_	_
45.0	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
15:8	0N ⁽¹⁾	—	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
7:0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN

Legend:	HC = Cleared in Hardwar	е	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** I²C Enable bit⁽¹⁾
 - 1 = Enables the I^2C module and configures the SDA and SCL pins as serial port pins
 - 0 = Disables the I^2 C module; all I^2 C pins are controlled by PORT functions
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
 - **SCLREL:** SCLx Release Control bit (when operating as I²C slave)
 - 1 = Release SCLx clock

bit 12

- 0 = Hold SCLx clock low (clock stretch)
- If STREN = 1:

Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.

If STREN = 0:

Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission.

- bit 11 STRICT: Strict I²C Reserved Address Rule Enable bit
 - 1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space.
 - 0 = Strict I²C Reserved Address Rule is not enabled

bit 10 A10M: 10-bit Slave Address bit

- 1 = I2CxADD is a 10-bit slave address
- 0 = I2CxADD is a 7-bit slave address
- bit 9 **DISSLW:** Disable Slew Rate Control bit
 - 1 = Slew rate control is disabled
 - 0 = Slew rate control is enabled
- bit 8 SMEN: SMBus Input Levels bit
 - 1 = Enable I/O pin thresholds compliant with SMBus specification
 - 0 = Disable SMBus input thresholds
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

27.0 POWER-SAVING FEATURES

Note:	This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. " Power- Saving Features " (DS60001130), which is available from the <i>Documentation</i> > <i>Reference Manual</i> section of the Microphin PIC22 work arite
	(www.microchip.com/pic32).

This section describes power-saving features for the PIC32MX330/350/370/430/450/470 family of devices. These PIC32 devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

27.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers.
- LPRC Run mode: the CPU is clocked from the LPRC clock source.
- Sosc Run mode: the CPU is clocked from the Sosc clock source.

In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

27.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as listed below:

- Posc Idle mode: the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.
- Sosc Idle mode: the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.
- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock

running.

• Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

27.3 Power-Saving Operation

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

27.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- The CPU is Halted.
- The system clock source is typically shutdown. See Section 27.3.3 "Peripheral Bus Scaling Method" for specific information.
- There can be a wake-up delay based on the oscillator selection.
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode.
- The BOR circuit remains operative during Sleep mode.
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode.
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep.
- The USB module can override the disabling of the Posc or FRC. Refer to the USB section for specific details.
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption.

DC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical ⁽¹⁾	Max.	Units	Conditions		
D130	Eр	Cell Endurance	20,000	—		E/W	—		
D131	Vpr	VDD for Read	2.3	—	3.6	V	—		
D132	VPEW	VDD for Erase or Write	2.3	—	3.6	V	—		
D134	TRETD	Characteristic Retention	20	_	_	Year	Provided no other specifications are violated		
D135	IDDP	Supply Current during Programming	—	10		mA	—		
D138	Tww	Word Write Cycle Time ⁽⁴⁾	44	_	59	μs	—		
D136	Trw	Row Write Cycle Time ^(2,4)	2.8	3.3	3.8	ms	—		
D137	TPE	Page Erase Cycle Time ⁽⁴⁾	22	—	29	ms	—		
D139	TCE	Chip Erase Cycle Time ⁽⁴⁾	86	—	116	ms	—		

TABLE 31-12: DC CHARACTERISTICS: PROGRAM MEMORY⁽³⁾

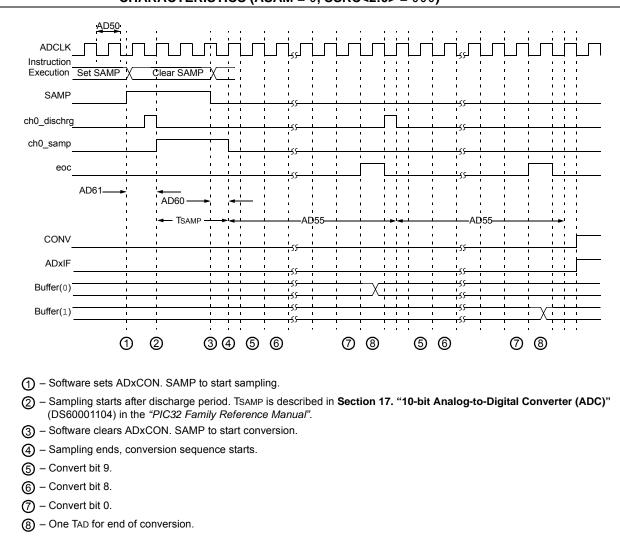
Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The minimum SYSCLK for row programming is 8 MHz. Care should be taken to minimize bus activities during row programming, such as suspending any memory-to-memory DMA operations. If heavy bus loads are expected, selecting Bus Matrix Arbitration mode 2 (rotating priority) may be necessary. The default Arbitration mode is mode 1 (CPU has lowest priority).

- **3:** Refer to the *"PIC32 Flash Programming Specification"* (DS60001145) for operating conditions during programming and erase cycles.
- 4: This parameter depends on the FRC accuracy (see Table 31-20) and the FRC tuning values (see Register 8-2).

DC CHARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^\circ C \leq TA \leq +70^\circ C \mbox{ for Commercial} \\ -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Required Flash Wait States	SYSCLK	Units	Conditions			
0 Wait State	0-40	MHz	-40°C to +85°C			
	0-30	MHz	-40°C to +105°C			
1 Wait State	41-80	MHz	-40°C to +85°C			
	31-60	MHz	-40°C to +105°C			
	81-100	MHz	-40°C to +85°C			
2 Wait States	61-80	MHz	-40°C to +105°C			
3 Wait States	101-120	MHz	0°C to +70°C			

AC CHARACTERISTICS				JIREMENTS (MASTER MODE)Standard Operating Conditions: 2.3V to 3.6V(unless otherwise stated)Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Symbol	Charact	eristics	Min. ⁽¹⁾	-40 Max.	$O^{\circ}C \le TA \le$ Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Трв * (BRG + 2)		μS		
	1201002		400 kHz mode	Трв * (BRG + 2)		μs	_	
			1 MHz mode (Note 2)	Трв * (BRG + 2)		μs	-	
IM11	THI:SCL	Clock High Time	100 kHz mode	Трв * (BRG + 2)		μS	_	
		_	400 kHz mode	Трв * (BRG + 2)		μS	—	
			1 MHz mode (Note 2)	Трв * (BRG + 2)	_	μs	_	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode (Note 2)	_	100	ns		
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be	
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode (Note 2)	—	300	ns		
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns	—	
			400 kHz mode	100	_	ns		
			1 MHz mode (Note 2)	100	—	ns		
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	μS	—	
			400 kHz mode	0	0.9	μS		
			1 MHz mode (Note 2)	0	0.3	μs		
IM30	TSU:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	—	μS	Only relevant for	
		Setup Time	400 kHz mode	Трв * (BRG + 2)		μS	Repeated Start	
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	—	μS	After this period, the	
		Hold Time	400 kHz mode	Трв * (BRG + 2)		μS	first clock pulse is	
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Трв * (BRG + 2)	—	μS	—	
		Setup Time	400 kHz mode	Трв * (BRG + 2)		μS		
			1 MHz mode (Note 2)	Трв * (BRG + 2)	_	μS		


TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l^2C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

PIC32MX330/350/370/430/450/470



FIGURE 31-18: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

64-Lead TQFP (10x10x1 mm)

100-Lead TQFP (14x14x1 mm)

Example PIC32MX330F 064H-I/PT @3 0510017 O

100-Lead TQFP (12x12x1 mm)

Example

Legend	: XXX	Customer-specific information				
	Y	Year code (last digit of calendar year)				
	ΥY	Year code (last 2 digits of calendar year)				
	WW	Week code (week of January 1 is week '01')				
	NNN	Alphanumeric traceability code				
		Pb-free JEDEC designator for Matte Tin (Sn)				
	*	This package is Pb-free. The Pb-free JEDEC designator (e3)				
		can be found on the outer packaging for this package.				
Note:	In the eve	nt the full Microchip part number cannot be marked on one line, it will				
	be carried over to the next line, thus limiting the number of available characters for customer-specific information.					

INDEX

Α	
AC Characteristics	295
10-Bit Conversion Rate Parameters	318
ADC Specifications	316
Analog-to-Digital Conversion Requirements	319
EJTAG Timing Requirements	327
Internal FRC Accuracy	297
Internal RC Accuracy	297
OTG Electrical Specifications	325
Parallel Master Port Read Requirements	323
Parallel Master Port Write	324
Parallel Master Port Write Requirements	324
Parallel Slave Port Requirements	322
PLL Clock Timing	297
Analog-to-Digital Converter (ADC)	233
Assembler	
MPASM Assembler	276

В

Block Diagrams	
ADC Module	233
Comparator I/O Operating Modes	243
Comparator Voltage Reference	247
Connections for On-Chip Voltage Regulator	272
CPU	35
CTMU Configurations	
Time Measurement	251
DMA	93
I2C Circuit	198
Input Capture	
Interrupt Controller	
JTAG Programming, Debugging and Trace Ports	
Output Compare Module	185
PMP Pinout and Connections to External Devices.	213
Prefetch Module	83
Reset System	59
RTCC	223
SPI Module	189
Timer1	
Timer2/3/4/5 (16-Bit)	
Typical Multiplexed Port Structure	7, 353
UART	205
WDT and Power-up Timer	177
Brown-out Reset (BOR)	
and On-Chip Voltage Regulator	272

С

C Compilers	
MPLAB C18	
Charge Time Measurement Unit. See CTMU.	
Clock Diagram	74
Comparator	
Specifications	293, 294
Comparator Module	
Comparator Voltage Reference (CVref	
Configuration Bit	
Configuring Analog Port Pins	
CPU	
Architecture Overview	
Coprocessor 0 Registers	
Core Exception Types	
EJTAG Debug Support	
Power Management	
-	

CPU Module CTMU	27, 35
Registers	253
Customer Change Notification Service	359
Customer Notification Service	359
Customer Support	359

D

DC and AC Characteristics	
Graphs and Tables	329
DC Characteristics	280
I/O Pin Input Specifications	287
I/O Pin Output Specifications	290
Idle Current (IIDLE)	283
Power-Down Current (IPD)	284
Program Memory	292
Temperature and Voltage Specifications	281
Development Support	275
Direct Memory Access (DMA) Controller	

Е

—	
Electrical Characteristics	279
AC	295
Errata	14
External Clock	
Timer1 Timing Requirements	301
Timer2, 3, 4, 5 Timing Requirements	302
Timing Requirements	296
F	
Flash Program Memory	53
RTSP Operation	53

Н

High Voltage Detect (I	HVD)	61,	272,	291
		,	,	

I

I/O Ports	137
Parallel I/O (PIO)	138
Write/Read Timing	138
Input Change Notification	138
Instruction Set	273
Inter-Integrated Circuit (I2C	197
Internal Voltage Reference Specifications	294
Internet Address	359
Interrupt Controller	63
IRG, Vector and Bit Location	64

Μ

Memory Maps	
Devices with 128 KB of Program Memory	41
Devices with 256 KB of Program Memory	42
Devices with 512 KB of Program Memory	43
Devices with 64 KB of Program Memory	40
Memory Organization	39
Layout	39
Microchip Internet Web Site	. 359
MPLAB ASM30 Assembler, Linker, Librarian	. 276
MPLAB Integrated Development Environment Software.	. 275
MPLAB PM3 Device Programmer	. 277
MPLAB REAL ICE In-Circuit Emulator System	. 277
MPLINK Object Linker/MPLIB Object Librarian	. 276

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2012-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0959-5