

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

2 0 0 0 0 0	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	81
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx470f512lt-v-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)
------------	-------------------------	-------------

		Pin Numb	er			Description		
Pin Name	64-pin QFN/ TQFP	100-pin TQFP	124-pin VTLA	Pin Type	Buffer Type			
U1CTS	PPS	PPS	PPS	I	ST	UART1 Clear to Send		
U1RTS	PPS	PPS	PPS	0	_	UART1 Ready to Send		
U1RX	PPS	PPS	PPS	I	ST	UART1 Receive		
U1TX	PPS	PPS	PPS	0	_	UART1 Transmit		
U2CTS	PPS	PPS	PPS	I	ST	UART2 Clear to Send		
U2RTS	PPS	PPS	PPS	0	_	UART2 Ready to Send		
U2RX	PPS	PPS	PPS	I	ST	UART2 Receive		
U2TX	PPS	PPS	PPS	0	_	UART2 Transmit		
U3CTS	PPS	PPS	PPS		ST	UART3 Clear to Send		
U3RTS	PPS	PPS	PPS	0		UART3 Ready to Send		
U3RX	PPS	PPS	PPS		ST	UART3 Receive		
U3TX	PPS	PPS	PPS	0	_	UART3 Transmit		
U4CTS	PPS	PPS	PPS	I	ST	UART4 Clear to Send		
U4RTS	PPS	PPS	PPS	0	_	UART4 Ready to Send		
U4RX	PPS	PPS	PPS	I	ST	UART4 Receive		
U4TX	PPS	PPS	PPS	0	_	UART4 Transmit		
U5CTS ⁽³⁾	_	PPS	PPS		ST	UART5 Clear to Send		
U5RTS ⁽³⁾	_	PPS	PPS	0		UART5 Ready to Send		
U5RX ⁽³⁾	_	PPS	PPS	I	ST	UART5 Receive		
U5TX ⁽³⁾	_	PPS	PPS	0	_	UART5 Transmit		
SCK1	35 ⁽¹⁾ , 50 ⁽²⁾	55 ⁽¹⁾ , 70 ⁽²⁾	B30 ⁽¹⁾ , B38 ⁽²⁾	I/O	ST	Synchronous Serial Clock Input/Output for SPI1		
SDI1	PPS	PPS	PPS	0		SPI1 Data In		
SDO1	PPS	PPS	PPS	I/O	ST	SPI1 Data Out		
SS1	PPS	PPS	PPS	I/O	—	SPI1 Slave Synchronization for Frame Pulse I/O		
SCK2	4	10	A7	I/O	ST	Synchronous Serial Clock Input/Output for SPI2		
SDI2	PPS	PPS	PPS	0		SPI2 Data In		
SDO2	PPS	PPS	PPS	I/O	ST	SPI2 Data Out		
SS2	PPS	PPS	PPS	I/O	—	SPI2 Slave Synchronization for Frame Pulse I/O		
SCL1			B31 ⁽¹⁾ , B36 ⁽²⁾	I/O	ST	Synchronous Serial Clock Input/Output for I2C1		
SDA1	36 ⁽¹⁾ , 43 ⁽²⁾	56 ⁽¹⁾ , 67 ⁽²⁾	A38 ⁽¹⁾ , A44 ⁽²⁾	I/O	ST	Synchronous Serial Data Input/Output for I2C1		
SCL2	32	58	A39	I/O	ST	Synchronous Serial Clock Input/Output for I2C2		
SDA2	31	59	B32	I/O	ST	Synchronous Serial Data Input/Output for I2C2		
TMS	23	17	B9		ST	JTAG Test Mode Select Pin		
ТСК	27	38	A26	I	ST	JTAG Test Clock Input Pin		
TDI	28	60	A40	I	_	JTAG Test Clock Input Pin		
TDO	24	61	B33	0	—	JTAG Test Clock Output Pin		
RTCC	42	68	B37	0	—	Real-Time Clock Alarm Output		

ST = Schmitt Trigger input with CMOS levels

O = Output

I = Input

TTL = TTL input buffer

Note 1: This pin is only available on devices without a USB module.

2: This pin is only available on devices with a USB module.

3: This pin is not available on 64-pin devices.

3.2 Architecture Overview

The MIPS32[®] M4K[®] processor core contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- Execution Unit
- Multiply/Divide Unit (MDU)
- System Control Coprocessor (CP0)
- Fixed Mapping Translation (FMT)
- Dual Internal Bus interfaces
- Power Management
- MIPS16e[®] Support
- Enhanced JTAG (EJTAG) Controller

3.2.1 EXECUTION UNIT

The MIPS32[®] M4K[®] processor core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. One additional register file shadow set (containing thirty-two registers) is added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction
 address
- Logic for branch determination and branch target address calculation
- · Load aligner
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results
- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing bitwise logical operations
- Shifter and store aligner

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

The MIPS32[®] M4K[®] processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x16 booth recoded multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x16) represents the *rs* operand. The second number ('16' of 32x16) represents the *rt* operand. The PIC32 core only checks the value of the latter (*rt*) operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic built into the MDU.

Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If *rs* is 8 bits wide, 23 iterations are skipped. For a 16-bit wide *rs*, 15 iterations are skipped and for a 24-bit wide *rs*, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation is completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the PIC32 core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

Divide UNIT LATENCIES AND REPEAT RATES									
Op code	Operand Size (mul <i>rt</i>) (div <i>rs</i>)	Latency	Repeat Rate						
MULT/MULTU, MADD/MADDU,	16 bits	1	1						
MSUB/MSUBU	32 bits	2	2						
MUL	16 bits	2	1						
	32 bits	3	2						
DIV/DIVU	8 bits	12	11						
	16 bits	19	18						
	24 bits	26	25						
	32 bits	33	32						

TABLE 3-1: MIPS32[®] M4K[®] PROCESSOR CORE HIGH-PERFORMANCE INTEGER MULTIPLY/ DIVIDE UNIT LATENCIES AND REPEAT RATES

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.04	R	R	R	R	R	R	R	R			
31:24	BMXPFMSZ<31:24>										
22:16	R	R	R	R	R	R	R	R			
23:16	BMXPFMSZ<23:16>										
45.0	R	R	R	R	R	R	R	R			
15:8	BMXPFMSZ<15:8>										
7.0	R	R	R	R	R	R	R	R			
7:0				BMXPF	MSZ<7:0>						

REGISTER 4-7: BMXPFMSZ: PROGRAM FLASH (PFM) SIZE REGISTER

Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

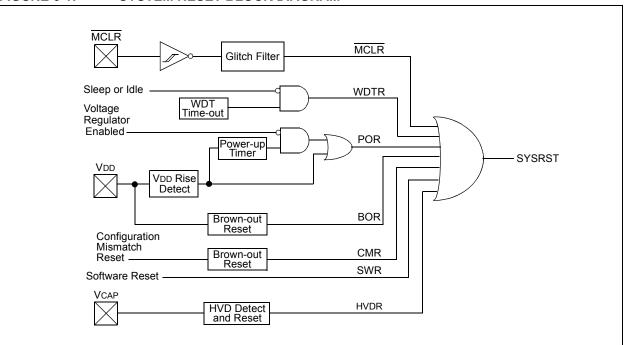
bit 31-0 BMXPFMSZ<31:0>: Program Flash Memory (PFM) Size bits

Static value that indicates the size of the PFM in bytes: 0x00010000 = Device has 64 KB Flash 0x00020000 = Device has 128 KB Flash 0x00040000 = Device has 256 KB Flash 0x00080000 = Device has 512 KB Flash

REGISTER 4-8: BMXBOOTSZ: BOOT FLASH (IFM) SIZE REGISTER

				. ,								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R	R	R	R	R	R	R	R				
31:24	BMXBOOTSZ<31:24>											
00.40	R	R	R	R	R	R	R	R				
23:16	BMXBOOTSZ<23:16>											
45.0	R	R	R	R	R	R	R	R				
15:8	BMXBOOTSZ<15:8>											
7.0	R	R	R	R	R	R	R	R				
7:0				BMXBO	OTSZ<7:0>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 31-0 **BMXBOOTSZ<31:0>:** Boot Flash Memory (BFM) Size bits Static value that indicates the size of the Boot PFM in bytes: 0x00003000 = Device has 12 KB Boot Flash

6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "**Resets**" (DS60001118), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Master Clear Reset pin
- · SWR: Software Reset
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CMR: Configuration Mismatch Reset
- HVDR: High Voltage Detect Reset

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM

6.1 Reset Control Registers

TABLE 6-1: SYSTEM CONTROL REGISTER MAP

ess		6	Bits												ts				
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
F600	RCON	31:16	_	—	HVDR	_	—	—	_	_	—	_	_	—	—	_	_	—	0000
FOUU	RCON	15:0	Ι	—		_	_	_	CMR	VREGS	EXTR	SWR	—	WDTO	SLEEP	IDLE	BOR	POR	xxxx ⁽²⁾
E610	RSWRST	31:16	Ι	—		_	_	_	—	_	—		—	—	—	_	_	—	0000
FUIU	ROWROI	15:0	_	_	_	-	_	_	_	-	_	_	-	_	_	-	_	SWRST	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

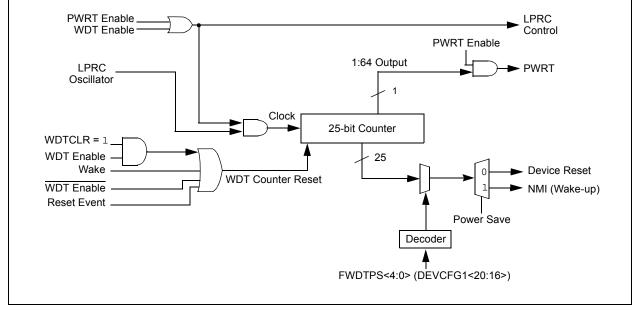
Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

- bit 2 UFRCEN: USB FRC Clock Enable bit⁽¹⁾
 - 1 = Enable FRC as the clock source for the USB clock source
 - 0 = Use the Primary Oscillator or USB PLL as the USB clock source
- bit 1 SOSCEN: Secondary Oscillator (Sosc) Enable bit
 - 1 = Enable Secondary Oscillator
 - 0 = Disable Secondary Oscillator
- bit 0 **OSWEN:** Oscillator Switch Enable bit
 - 1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- Note 1: This bit is available on PIC32MX4XX devices only.

Note: Writes to this register require an unlock sequence. Refer to **Section 6. "Oscillator"** (DS60001112) in the *"PIC32 Family Reference Manual"* for details.


15.0 WATCHDOG TIMER (WDT)

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32). The WDT, when enabled, operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

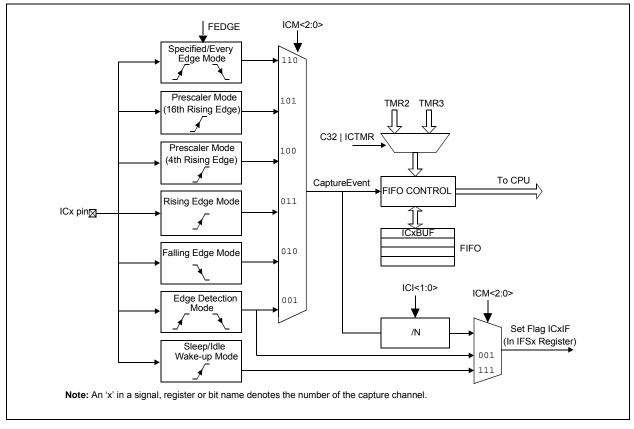
- · Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

16.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS60001122), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause capture events:


- Simple capture event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
 - Capture timer value on every edge (rising and falling)
 - Capture timer value on every edge (rising and falling), specified edge first.

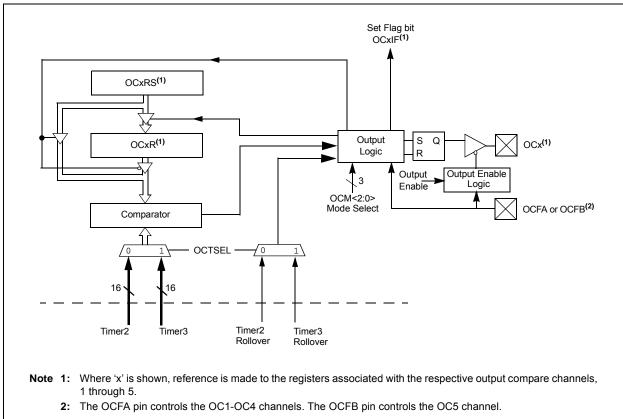
- Prescaler capture event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on input capture event
- 4-word FIFO buffer for capture values Interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

FIGURE 16-1: INPUT CAPTURE BLOCK DIAGRAM


17.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of this module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

FIGURE 17-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	-	-	_	_	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16			_	_	_	_	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	_	SIDL	_	_	_	—	—
7.0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		-	OC32	OCFLT ⁽²⁾	OCTSEL		OCM<2:0>	

REGISTER 17-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, i	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Output Compare Peripheral On bit⁽¹⁾
 - 1 = Output Compare peripheral is enabled
 - 0 = Output Compare peripheral is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters Idle mode
 - 0 = Continue operation in Idle mode
- bit 12-6 Unimplemented: Read as '0'
- bit 5 OC32: 32-bit Compare Mode bit
 - 1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisions to the 32-bit timer source 0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source
- bit 4 OCFLT: PWM Fault Condition Status bit⁽²⁾
 - 1 = PWM Fault condition has occurred (cleared in HW only)
 - 0 = No PWM Fault condition has occurred
- bit 3 OCTSEL: Output Compare Timer Select bit
 - 1 = Timer3 is the clock source for this Output Compare module
 - 0 = Timer2 is the clock source for this Output Compare module
- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = PWM mode on OCx; Fault pin is enabled
 - 110 = PWM mode on OCx; Fault pin is disabled
 - 101 = Initialize OCx pin low; generate continuous output pulses on OCx pin
 - 100 = Initialize OCx pin low; generate single output pulse on OCx pin
 - 011 = Compare event toggles OCx pin
 - 010 = Initialize OCx pin high; compare event forces OCx pin low
 - 001 = Initialize OCx pin low; compare event forces OCx pin high
 - 000 = Output compare peripheral is disabled but continues to draw current
- **Note 1:** When using the 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - **2:** This bit is only used when OCM<2:0> = '111'. It is read as '0' in all other modes.

REGISTER 19-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	—	—	-	-	—	_	-	_				
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23:16		—	_	_	_		_	-				
45.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC				
15:8	ACKSTAT	TRSTAT	-	_	_	BCL	GCSTAT	ADD10				
7:0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC				
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF				

Legend:	HS = Set in hardware	ware HSC = Hardware set/cleared	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit

(when operating as I²C master, applicable to master transmit operation)

- 1 = Acknowledge was not received from slave
- 0 = Acknowledge was received from slave

Hardware set or clear at end of slave Acknowledge.

- bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation)
 - 1 = Master transmit is in progress (8 bits + ACK)
 - 0 = Master transmit is not in progress

Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.

- bit 13-11 Unimplemented: Read as '0'
- bit 10 BCL: Master Bus Collision Detect bit

1 = A bus collision has been detected during a master operation

0 = No collision

Hardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module.

- bit 9 **GCSTAT:** General Call Status bit
 - 1 = General call address was received
 - 0 = General call address was not received

Hardware set when address matches general call address. Hardware clear at Stop detection.

bit 8 ADD10: 10-bit Address Status bit

1 = 10-bit address was matched

0 = 10-bit address was not matched

Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

- bit 7 IWCOL: Write Collision Detect bit
 - 1 = An attempt to write the I2CxTRN register failed because the I²C module is busy
 - 0 = No collision

Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).

bit 6 I2COV: Receive Overflow Flag bit

1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

- bit 5 **D_A:** Data/Address bit (when operating as I²C slave)
 - 1 = Indicates that the last byte received was data
 - 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

REGISTER 22-2: RTCALRM: RTC ALARM CONTROL REGISTER (CONTINUED)

bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits⁽³⁾ 11111111 = Alarm will trigger 256 times

0000000 = Alarm will trigger one time

The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.

- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.
 - 3: This assumes a CPU read will execute in less than 32 PBCLKs.

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
31:24		HR10	<3:0>			HR01	<3:0>	
23:16	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	MIN10<3:0>			MIN01<3:0>				
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8	SEC10<3:0>				SEC01<3:0>			
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	_		_	_		—
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at POR			'1' = Bit is se	t	'0' = Bit is cleared x = Bit is unknown			known

REGISTER 22-5: ALRMTIME: ALARM TIME VALUE REGISTER

bit 31-28 HR10<3:0>: Binary Coded Decimal value of hours bits, 10s place digits; contains a value from 0 to 2
bit 27-24 HR01<3:0>: Binary Coded Decimal value of hours bits, 1s place digit; contains a value from 0 to 9
bit 23-20 MIN10<3:0>: Binary Coded Decimal value of minutes bits, 10s place digits; contains a value from 0 to 5
bit 19-16 MIN01<3:0>: Binary Coded Decimal value of minutes bits, 1s place digit; contains a value from 0 to 9
bit 15-12 SEC10<3:0>: Binary Coded Decimal value of seconds bits, 10s place digits; contains a value from 0 to 5
bit 11-8 SEC01<3:0>: Binary Coded Decimal value of seconds bits, 1s place digit; contains a value from 0 to 9
bit 7-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	CH0NB	_	—	CH0SB<4:0>							
00.40	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	CH0NA ⁽³⁾	_	—	CH0SA<4:0>							
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15:8	—	-	—	_	_		_	_			
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
7:0	—	_	_	_	_	_	_	_			

REGISTER 23-4: AD1CHS: ADC INPUT SELECT REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31	CH0NB: Negative Input Select bit for Sample B
	1 = Channel 0 negative input is AN1
	0 = Channel 0 negative input is VREFL
bit 30-29	Unimplemented: Read as '0'
bit 28-24	CH0SB<4:0>: Positive Input Select bits for Sample B
	11110 = Channel 0 positive input is Open ⁽¹⁾
	11101 = Channel 0 positive input is CTMU temperature sensor (CTMUT) ⁽²⁾
	11100 = Channel 0 positive input is IVREF ⁽³⁾
	11011 = Channel 0 positive input is AN27
	•
	•
	•
	00001 = Channel 0 positive input is AN1
	00000 = Channel 0 positive input is AN0
bit 23	CH0NA: Negative Input Select bit for Sample A Multiplexer Setting ⁽³⁾
	1 = Channel 0 negative input is AN1
	0 = Channel 0 negative input is VREFL
bit 22-21	Unimplemented: Read as '0'
bit 20-16	CH0SA<4:0>: Positive Input Select bits for Sample A Multiplexer Setting
	11110 = Channel 0 positive input is Open ⁽¹⁾
	11101 = Channel 0 positive input is CTMU temperature sensor (CTMUT) ⁽²⁾
	11100 = Channel 0 positive input is IVREF ⁽³⁾
	11011 = Channel 0 positive input is AN27
	•
	•
	•
	00001 = Channel 0 positive input is AN1
	00000 = Channel 0 positive input is AN0
bit 15-0	Unimplemented: Read as '0'
Note 1:	This selection is only used with CTMU capacitive and time measurement.
2:	See Section 26.0 "Charge Time Measurement Unit (CTMU)" for more information.

3: See Section 25.0 "Comparator Voltage Reference (CVREF)" for more information.

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

REGIST	ER 26-1: CIMUCON: CIMU CONTROL REGISTER (CONTINUE
bit 24	EDG1STAT: Edge 1 Status bit
	Indicates the status of Edge 1 and can be written to control edge source
	1 = Edge 1 has occurred
	0 = Edge 1 has not occurred
bit 23	EDG2MOD: Edge 2 Edge Sampling Select bit
	1 = Input is edge-sensitive
	0 = Input is level-sensitive
bit 22	EDG2POL: Edge 2 Polarity Select bit
	1 = Edge 2 programmed for a positive edge response
	0 = Edge 2 programmed for a negative edge response
DIT 21-18	EDG2SEL<3:0>: Edge 2 Source Select bits
	1111 = Reserved
	1110 = C2OUT pin is selected 1101 = C1OUT pin is selected
	1100 = PBCLK clock is selected
	1011 = IC3 Capture Event is selected
	1010 = IC2 Capture Event is selected
	1001 = IC1 Capture Event is selected
	1000 = CTED13 pin is selected
	0111 = CTED12 pin is selected 0110 = CTED11 pin is selected
	0101 = CTED10 pin is selected
	0100 = CTED9 pin is selected
	0011 = CTED1 pin is selected
	0010 = CTED2 pin is selected
	0001 = OC1 Compare Event is selected
	0000 = Timer1 Event is selected
	Unimplemented: Read as '0'
bit 15	ON: ON Enable bit
	1 = Module is enabled
h:+ 4.4	0 = Module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	CTMUSIDL: Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12	TGEN: Time Generation Enable bit ⁽¹⁾
DIL 12	
	1 = Enables edge delay generation0 = Disables edge delay generation
bit 11	EDGEN: Edge Enable bit
	1 = Edges are not blocked
	$\Omega = Edges are blocked$

- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 31-42) in Section 31.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	r-1	r-1	r-1	r-1	r-1	r-1	R/P	R/P	
31:24		_	_	-	—	_	FWDTWINSZ<1:0>		
00.40	R/P	R/P	r-1	R/P	R/P	R/P	R/P	R/P	
23:16	FWDTEN	WINDIS		WDTPS<4:0>					
45.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P	
15:8	FCKSM	1<1:0>	FPBDI	V<1:0> — OSCIOFNC POSCMOD<1:0					
7.0	R/P	r-1	R/P	r-1	r-1	R/P	R/P	R/P	
7:0	IESO	_	FSOSCEN	_	—	F	NOSC<2:0>	•	

REGISTER 28-2: DEVCFG1: DEVICE CONFIGURATION WORD 1

Legend:	r = Reserved bit	it P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-26 Reserved: Write '1'

bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

bit 23 FWDTEN: Watchdog Timer Enable bit

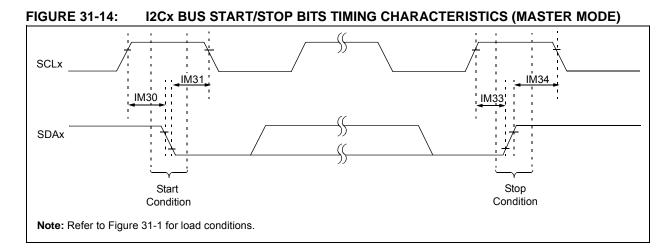
- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software

bit 22 WINDIS: Watchdog Timer Window Enable bit

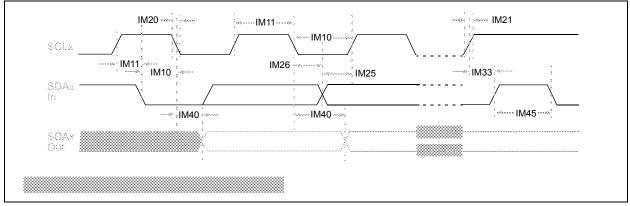
- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode

bit 21 Reserved: Write '1'

bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits

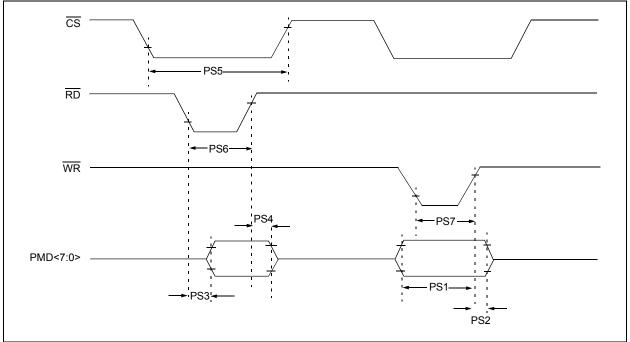

10100 = 1:1048576
10011 = 1:524288
10010 = 1:262144
10001 = 1:131072
10000 = 1:65536
01111 = 1:32768
01110 = 1:16384
01101 = 1:8192
01100 = 1:4096
01011 = 1:2048
01010 = 1:1024
01001 = 1:512
01000 = 1:256
00111 = 1:128
00110 = 1:64
00101 = 1:32
00100 = 1:16
00011 = 1:8
00010 = 1 :4
00001 = 1:2
00000 = 1:1
All other combinations not shown result in operation = 10100
···· · ··· · ··· · ··· · ··· · ···

Note 1: Do not disable the Posc (POSCMOD = 11) when using this oscillator source.


REGISTER 28-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)

- bit 2-0 **FPLLIDIV<2:0>:** PLL Input Divider bits
 - 111 = 12x divider
 - 110 = 10x divider
 - 101 = 6x divider
 - 100 = 5x divider
 - 011 = 4x divider
 - 010 = 3x divider
 - 001 = 2x divider
 - 000 = 1x divider
- Note 1: This bit is available on PIC32MX4XX devices only.

PIC32MX330/350/370/430/450/470



PIC32MX330/350/370/430/450/470

FIGURE 31-20: PARALLEL SLAVE PORT TIMING

TABLE 31-38: PARALLEL SLAVE PORT REQUIREMENTS

			$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$				
Para m.No.	Symbol Characteristics ¹ Min Typ Max Units Condi						Conditions
PS1	TdtV2wr H	Data In Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20		_	ns	_
PS2	TwrH2dt I	WR or CS Inactive to Data-In Invalid (hold time)	40	—	—	ns	_
PS3	TrdL2dt V	RD and CS Active to Data-Out Valid	_		60	ns	_
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	0		10	ns	_
PS5	Tcs	CS Active Time	Трв + 40		—	ns	—
PS6	Twr	WR Active Time	Трв + 25		_	ns	_
PS7	Trd	RD Active Time	Трв + 25	_	_	ns	_

Note 1: These parameters are characterized, but not tested in manufacturing.