

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 3.6V
Data Converters	A/D 28x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	124-VFTLA Dual Rows, Exposed Pad
Supplier Device Package	124-VTLA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx470f512lt-v-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7: PIN NAMES FOR 124-PIN DEVICES (CONTINUED)

124	-PIN VTLA (BOTTOM VIEW) ^(1,2,3,4)	17			A34	
	A	17		B13 B29		nductive ermal Pad
	PIC32MX430F064L PIC32MX450F128L PIC32MX450F256L PIC32MX470F512L			B1 B56	B41	A51
		y Indica	A1 tor	A68		
Package Bump #	Full Pin Name		Package Bump #		Full Pin Name	
B7	MCLR		B32	SDA2/RA3		
B8	Vss		B33	TDO/RA5		
B9	TMS/CTED1/RA0		B34	OSC1/CLKI/RC12	2	
B10	RPE9/RE9		B35	No Connect		
B11	AN4/C1INB/RB4		B36	SCL1/RPA14/RA	14	
B12	Vss		B37	RPD8/RTCC/RD8	8	
B13	PGEC3/AN2/C2INB/RPB2/CTED13/RB2		B38	RPD10/SCK1/PM	CS2/RD10	
B14	PGED1/AN0/RPB0/RB0		B39	RPD0/INT0/RD0		
B15	No Connect		B40	SOSCO/RPC14/T	1CK/RC14	
B16	PGED2/AN7/RPB7/CTED3/RB7		B41	Vss		
B17	VREF+/CVREF+/PMA6/RA10		B42	AN25/RPD2/RD2		
B18	AVss		B43	RPD12/PMD12/R	D12	
B19	AN9/RPB9/CTED4/RB9		B44	RPD4/PMWR/RD	4	
B20	AN11/PMA12/RB11		B45	PMD14/RD6		
B21	Vdd		B46	No Connect		
B22	RPF13/RF13		B47	No Connect		
B23	AN12/PMA11/RB12		B48	VCAP		
B24	AN14/RPB14/CTED5/PMA1/RB14		B49	RPF0/PMD11/RF	0	
B25	Vss		B50	RPG1/PMD9/RG	1	
B26	RPD14/RD14		B51	TRCLK/RA6		
B27	RPF4/PMA9/RF4		B52	PMD0/RE0		
B28	No Connect		B53	VDD		
B29	RPF8/RF8		B54	TRD2/RG14		
B30	VUSB3V3		B55	TRD0/RG13		
B31	D+		B56	RPE3/CTPLS/PM	D3/RE3	

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and Section 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RGx) can be used as a change notification pin (CNAx-CNGx). See Section 12.0 "I/O Ports" for more information.

3: Shaded package bumps are 5V tolerant.

4: It is recommended that the user connect the printed circuit board (PCB) ground to the conductive thermal pad on the bottom of the package. And to not run non-Vss PCB traces under the conductive thermal pad on the same side of the PCB layout.

2.5 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 3 or MPLAB REAL ICE[™].

For more information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

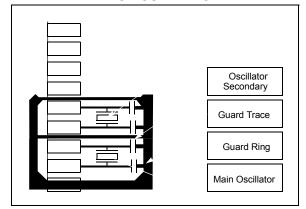
- "Using MPLAB[®] ICD 3" (poster) DS50001765
- "MPLAB[®] ICD 3 Design Advisory" DS50001764
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" DS50001616
- *"Using MPLAB[®] REAL ICE™ Emulator"* (poster) DS50001749

2.6 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.7 Trace


The trace pins can be connected to a hardware trace-enabled programmer to provide a compressed real-time instruction trace. When used for trace, the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22 Ohm series resistor between the trace pins and the trace connector.

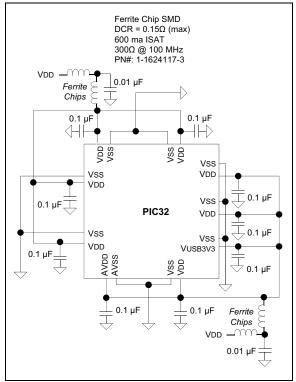
2.8 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

2.9 Unused I/Os


Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

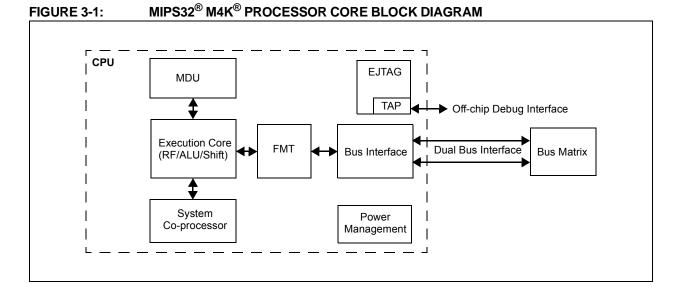
Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.10 EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations

The use of LDO regulators is preferred to reduce overall system noise and provide a cleaner power source. However, when utilizing switching Buck/ Boost regulators as the local power source for PIC32 devices, as well as in electrically noisy environments or test conditions required for IEC 61000-4-4 and IEC 61000-4-2, users should evaluate the use of T-Filters (i.e., L-C-L) on the power pins, as shown in Figure 2-5. In addition to a more stable power source, use of this type of T-Filter can greatly reduce susceptibility to EMI sources and events.

FIGURE 2-5: EMI/EMC/EFT SUPPRESSION CIRCUIT

3.0 CPU


Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS60001113), which is available from the *Documentation > Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). Resources for the MIPS32[®] M4K[®] Processor Core are available at http://www.imgtec.com.

The the MIPS32[®] M4K[®] Processor Core is the heart of the PIC32MX330/350/370/430/450/470 device processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations.

3.1 Features

- 5-stage pipeline
- · 32-bit address and data paths
- MIPS32[®] Enhanced Architecture (Release 2):
 - Multiply-accumulate and multiply-subtract instructions
 - Targeted multiply instruction
 - Zero/One detect instructions
 - WAIT instruction
 - Conditional move instructions (MOVN, MOVZ)
 - Vectored interrupts
 - Programmable exception vector base
 - Atomic interrupt enable/disable
 - GPR shadow registers to minimize latency for interrupt handlers
 - Bit field manipulation instructions

- MIPS16e[®] Code Compression:
 - 16-bit encoding of 32-bit instructions to improve code density
 - Special PC-relative instructions for efficient loading of addresses and constants
 - SAVE and RESTORE macro instructions for setting up and tearing down stack frames within subroutines
 - Improved support for handling 8 and 16-bit data types
- Simple Fixed Mapping Translation (FMT) Mechanism:
- Simple Dual Bus Interface:
 - Independent 32-bit address and data buses
 - Transactions can be aborted to improve interrupt latency
- Autonomous Multiply/Divide Unit (MDU):
 - Maximum issue rate of one 32x16 multiply per clock
 - Maximum issue rate of one 32x32 multiply every other clock
 - Early-in iterative divide. Minimum 11 and maximum 33 clock latency (dividend (*rs*) sign extension-dependent)
- · Power Control:
 - Minimum frequency: 0 MHz
 - Low-Power mode (triggered by WAIT instruction)
 - Extensive use of local gated clocks
- · EJTAG Debug and Instruction Trace:
 - Support for single stepping
 - Virtual instruction and data address/value
 - Breakpoints

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
31:24	_	_	_	_	_	—		—						
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
23:16	_	_	—	_	_	—	—	—						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0						
15:8	BMXDKPBA<15:8>													
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
7:0				BMXDK	PBA<7:0>									

REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER

Legend:

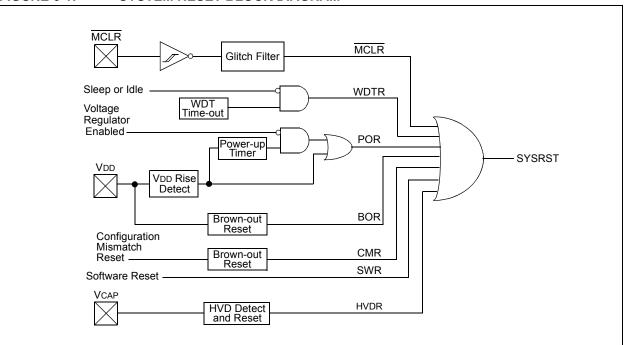
Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 **BMXDKPBA<15:10>:** DRM Kernel Program Base Address bits When non-zero, this value selects the relative base address for kernel program space in RAM

bit 9-0 BMXDKPBA<9:0>: Read-Only bits Value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernel mode data usage.


2: The value in this register must be less than or equal to BMXDRMSZ.

6.0 RESETS

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "**Resets**" (DS60001118), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32). The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Master Clear Reset pin
- · SWR: Software Reset
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- CMR: Configuration Mismatch Reset
- HVDR: High Voltage Detect Reset

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

FIGURE 6-1: SYSTEM RESET BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0						
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
31:24				R) 2010/2017/2017/2017/2017/2017/2017/2017</td <td>1,3)</td> <td></td> <td></td>	1,3)								
00.40	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
23:16	RODIV<7:0> ⁽³⁾													
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R-0, HS, HC						
15:8	ON	_	SIDL	OE	RSLP ⁽²⁾	_	DIVSWEN	ACTIVE						
	U-0	U-0 U-0		U-0	R/W-0	R/W-0	R/W-0 R/W-0							
7:0		_	_	_	ROSEL<3:0> ⁽¹⁾									

REGISTER 8-3: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

Legend:	HC = Hardware Clearable	HS = Hardware Settable					
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

- bit 31 Unimplemented: Read as '0'
- bit 30-16 **RODIV<14:0>:** Reference Clock Divider bits^(1,3) This value selects the Reference Clock Divider bits. See Figure 8-1 for more information. bit 15 **ON:** Output Enable bit 1 = Reference Oscillator Module is enabled 0 = Reference Oscillator Module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Peripheral Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 12 OE: Reference Clock Output Enable bit
 - 1 = Reference clock is driven out on REFCLKO pin
 - 0 = Reference clock is not driven out on REFCLKO pin
- bit 11 RSLP: Reference Oscillator Module Run in Sleep bit⁽²⁾
 - 1 = Reference Oscillator Module output continues to run in Sleep
 - 0 = Reference Oscillator Module output is disabled in Sleep
- bit 10 Unimplemented: Read as '0'
- bit 9 DIVSWEN: Divider Switch Enable bit
 - 1 = Divider switch is in progress
 - 0 = Divider switch is complete
- bit 8 ACTIVE: Reference Clock Request Status bit
 - 1 = Reference clock request is active
 - 0 = Reference clock request is not active
- bit 7-4 Unimplemented: Read as '0'
- **Note 1:** The ROSEL and RODIV bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.
 - **2:** This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.
 - 3: While the ON bit is set to '1', writes to these bits do not take effect until the DIVSWEN bit is also set to '1'.

REGISTER 10-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER (CONTINUED)

bit 4 **CHDHIF:** Channel Destination Half Full Interrupt Flag bit

- 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)
- 0 = No interrupt is pending
- bit 3 CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
 - 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
 - 0 = No interrupt is pending
- bit 2 CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
 - 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)
 - 0 = No interrupt is pending
- bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit
 - 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted
 - 0 = No interrupt is pending
- bit 0 CHERIF: Channel Address Error Interrupt Flag bit
 - 1 = A channel address error has been detected
 - Either the source or the destination address is invalid.
 - 0 = No interrupt is pending

NOTES:

PIC32MX330/350/370/430/450/470

REGISTER 11-7: U1IE: USB INTERRUPT ENABLE REGISTER

		•						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24	-	—	—	-	—	—	-	—
23:16	U-0	U-0						
23.10	-	—	—	-	—	—	-	—
15:8	U-0	U-0						
15.0	_	_	—	_	—	_	_	—
	R/W-0	R/W-0						
7:0	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE ⁽¹⁾	URSTIE ⁽²⁾
	STALLIE	ALIACHIE	RESUMEIE	IDLEIE		SOFIE	UERRIE' /	DETACHIE ⁽³⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	STALLIE: STALL Handshake Interrupt Enable bit 1 = STALL interrupt is enabled 0 = STALL interrupt is disabled
bit 6	ATTACHIE: ATTACH Interrupt Enable bit 1 = ATTACH interrupt is enabled 0 = ATTACH interrupt is disabled
bit 5	RESUMEIE: RESUME Interrupt Enable bit 1 = RESUME interrupt is enabled 0 = RESUME interrupt is disabled
bit 4	IDLEIE: Idle Detect Interrupt Enable bit 1 = Idle interrupt is enabled 0 = Idle interrupt is disabled
bit 3	TRNIE: Token Processing Complete Interrupt Enable bit 1 = TRNIF interrupt is enabled 0 = TRNIF interrupt is disabled
bit 2	SOFIE: SOF Token Interrupt Enable bit 1 = SOFIF interrupt is enabled 0 = SOFIF interrupt is disabled
bit 1	UERRIE: USB Error Interrupt Enable bit ⁽¹⁾ 1 = USB Error interrupt is enabled

- 1 = USB Error interrupt is enabled 0 = USB Error interrupt is disabled
- bit 0 URSTIE: USB Reset Interrupt Enable bit⁽²⁾
 - 1 = URSTIF interrupt is enabled
 - 0 = URSTIF interrupt is disabled
 - DETACHIE: USB Detach Interrupt Enable bit⁽³⁾
 - 1 = DATTCHIF interrupt is enabled
 - 0 = DATTCHIF interrupt is disabled

Note 1: For an interrupt to propagate USBIF, the UERRIE bit (U1IE<1>) must be set.

- 2: Device mode.
- 3: Host mode.

	PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY																		
ess										Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6210	210 TRISC	31:16	_	—	_	—	_	—	_	_	_	—	—	—	_	_	—	—	0000
0210	11100	15:0	TRISC15	TRISC14	TRISC13	TRISC12	—	—	—	—	—	—	—	TRISC4	TRISC3	TRISC2	TRISC1	—	xxxx
6220	PORTC	31:16		_	_		_	—			_		—	—	_	_	—	_	0000
0220	1 OKTO	15:0	RC15	RC14	RC13	RC12	_	—	_	—	—	—	—	RC4	RC3	RC2	RC1	—	xxxx
6230	LATC	31:16	_	_	_	_	-	—	_	_	_	_	—	—	_	_	—	—	0000
0230	LAIO	15:0	LATC15	LATC14	LATC13	LATC12	_	—	_	_	_	_	_	LATC4	LATC3	LATC2	LATC1	—	xxxx
6240	ODCC	31:16	_	—	_	—		_				_	_	_	-	-	_	—	0000
0240	ODCC	15:0	ODCC15	ODCC14	ODCC13	ODCC12		—			_	—	—	ODCC4	ODCC3	ODCC2	ODCC1	—	xxxx
6250	CNPUC	31:16		-	-	_		—			_	—	—	-	-	-	_	—	0000
0250	CINFUC	15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	—	—	—	—	—	-	-	CNPUC4	CNPUC3	CNPUC2	CNPUC1	—	xxxx
6260	CNPDC	31:16	-	_	_	—	—	—	—	—	—	-	-	-	—	—	_	—	0000
0200	CINFDC	15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	—	—	—	—	—	-	-	CNPDC4	CNPDC3	CNPDC2	CNPDC1	—	xxxx
6270	CNCONC	31:16	-	_	_	—	—	—	—	—	—	-	-	-	—	—	_	—	0000
0270	CINCOINC	15:0	ON	_	SIDL	—	—	—	—	—	—	-	-	-	—	—	_	—	0000
6280	CNENC	31:16	_	_		_	_	—	—	_				_	_	_	_	—	0000
0200	GNEING	15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	_	—	—	_				CNIEC4	CNIEC3	CNIEC2	CNIEC1	—	xxxx
6200	CNETATO	31:16	_			_	_	—	—	_				_	_	_	_	—	0000
0290	290 CNSTATC	15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12		_		-	_		_	CNSTATC4	CNSTATC3	CNSTATC2	CNSTATC1	—	xxxx

TABLE 12-5: PORTC REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,

Legend:

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for Note 1: more information.

	PIC32MX430F064L, PIC32MX450F128L, PIC32MX450F256L, AND PIC32MX470F512L DEVICES ONLY																		
ess										Bit	s								
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6600 ANSELG	31:16	—	—	—	—	_	_			_			—		_	—	—	0000	
0000	ANOLLO	15:0	—	—	—	—	—	_	ANSELG9	ANSELG8	ANSELG7	ANSELG6	—	—		_	—	—	01C0
6610	TRISG	31:16	—	—	—	—	—	—	—	—	—	—	—	—		—	—	—	0000
00.0		15:0	TRISG15	TRISG14	TRISG13	TRISG12	—	—	TRISG9	TRISG8	TRISG7	TRISG6	—	—	TRISG3	TRISG2	TRISG1	TRISG0	xxxx
6620	PORTG	31:16	_			—	_	_	—	_	—	—	_	—	—	—	—	—	0000
0020		15:0	RG15	RG14	RG13	RG12	—	—	RG9	RG8	RG7	RG6	—	—	RG3 ⁽²⁾	RG2 ⁽²⁾	RG1	RG0	xxxx
6630	LATG	31:16	_			-	_	—	—	—	—	—	—	—	-	—	—	—	0000
		15:0	LATG15	LATG14	LATG13	LATG12	_	—	LATG9	LATG8	LATG7	LATG6	—	—	LATG3	LATG2	LATG1	LATG0	xxxx
6640	ODCG	31:16	—	_	_	—	—	_	—	—	—	—	—	—		—	—	—	0000
		15:0	ODCG15	ODCG14	ODCG13	ODCG12	—	_	ODCG9	ODCG8	ODCG7	ODCG6	—	—	ODCG3	ODCG2	ODCG1	ODCG0	xxxx
6650	CNPUG	31:16	—	_	_	—	—	_	—	—	—	—	—	—		—	—	—	0000
			CNPUG15	CNPUG14	CNPUG13	CNPUG12	—	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	—	CNPUG3	CNPUG2	CNPUG1	CNPUG0	
6660	CNPDG	31:16	—	—	—	—	—	_	—		—	—	_	—	—	—	—	—	0000
			CNPDG15	CNPDG14	CNPDG13	CNPDG12	—	_	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	—	CNPDG3	CNPDG2	CNPDG1	CNPDG0	
6670	CNCONG	31:16	-	_	-	-	_	_	_	_	_	_	_	-		_	_	-	0000
		15:0	ON	_	SIDL	-	_	_	_	_	_	_	_	-		_	_	-	0000
6680	CNENG	31:16	-	-	-	-	_	_	-	-	-	-	_	_	-	—	-	-	0000
		15:0	CNIEG15	CNIEG14	CNIEG13	CNIEG12	_	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	CNIEG3	CNIEG2	CNIEG1	CNIEG0	xxxx
0000		31:16	-	-	-	-	_	—	—	_	—	—	_	—	—	—	—	—	0000
6690	CNSTATG	15:0	CN STATG15	CN STATG14	CN STATG13	CN STATG12	—	_	CN STATG9	CN STATG8	CN STATG7	CN STATG6	—	—	CN STATG3	CN STATG2	CN STATG1	CN STATG0	xxxx

TABLE 12-15: PORTG REGISTER MAP FOR PIC32MX330F064L, PIC32MX350F128L, PIC32MX350F256L, PIC32MX370F512L,

Legend: x = Unknown value on Reset; - = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

2: This bit only implemented on devices without a USB module.

TABLE 12-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

2012-2016	
Microchip	
Technology	
Inc	

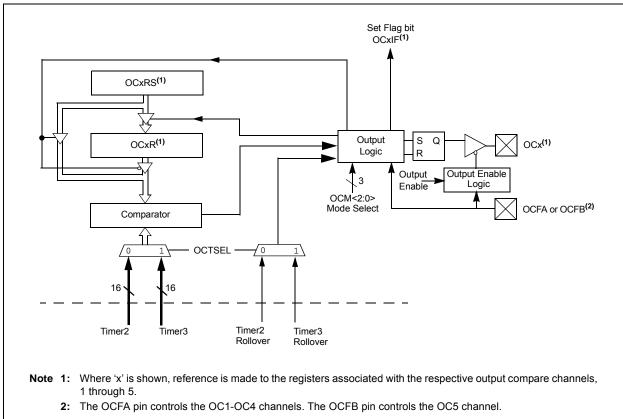
0

SS										Bi	its								
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FC14	RPE5R	31:16	_	_	_	_	_	_	—		_	_	_	—		_	_	_	000
1014	RELIK	15:0	—	_	—	—	—	—	—	—	_	—	—	—		RPE5	<3:0>		000
FC20	RPE8R ⁽¹⁾	31:16	_	—	—	—	—	—	—	_	_	—	—	_	—	—	—	_	000
1 0 2 0		15:0	_	_	_	_		_	_			_	_	_		RPE8	<3:0>		000
FC24	RPE9R ⁽¹⁾	31:16	_	_	—	—	—	—	_	_	_	—	—	_	_	_	_	—	000
		15:0	_	_	—	—	—	—	—	_	_	—	—	_		RPE9	<3:0>		000
FC40	RPF0R	31:16	_	_	_	_	_	_	_			_	_	_	_	-	-	-	000
	-	15:0	_		_	_		_	_			_	_			RPF0	<3:0>		000
FC44	RPF1R	31:16	_	_	_	_							_		—	-	-		000
		15:0	_	_	_		—	_	_	_	_	_	_			RPF1	<3:0>		000
FC48	RPF2R ⁽³⁾	31:16 15:0	_		—	—	—	—		_		_	—		_	 RPF2		—	000
			_				—			_		_				RPFZ	<3.0>		000
FC4C	RPF3R ⁽²⁾	31:16 15:0	_	_	_	_	_	_		_		_	_		—	 RPF3			000
		31:16						_								RPFJ	<3.0>		000
FC50	RPF4R	15:0	_			_	_					_	_	_	_	 RPF4			000
		31:16													_		< <u></u>	_	000
FC54	RPF5R	15:0					_						_		_	 RPF5	<3:0>		000
		31:16	_	_	_	_	_	_	_				_	_	_			_	000
FC58	RPF6R ⁽²⁾	15:0	_	_		_	_	_		_		_	_	_		RPF6			000
		31:16	_	_	_	_	_	_	_	_		_	_	_	_	_		_	000
FC60	RPF8R ⁽¹⁾	15:0	_	_	_	_		_	_	_	_	_		_		RPF8	<3:0>		000
	(1)	31:16	_	_						_	_	_			_	_	_	_	000
FC70	RPF12R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF12	2<3:0>		000
	(1)	31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	000
FC74	RPF13R ⁽¹⁾	15:0	_	_	_	_	_	_	_	_	_	_	_	_		RPF13	3<3:0>		000
	DD000 (1)	31:16	_	_	_	_	_	_	—	_	_	_	_	_	_	—	_		000
FC80	RPG0R ⁽¹⁾	15:0	_	_	_	_	—	_	—	_	_	_	_	_		RPG0	<3:0>		000
F004		31:16	_	-	_	_	—	_	_	_	-	_	_	_	_	_	_	_	000
FC84	RPG1R ⁽¹⁾	15:0	_		_	_	_		—	_				—		RPG1	<3:0>		000
ECOS	DDC6D	31:16					_		—					_		_	_		000
FC98	RPG6R	15:0	_	_	_	_	_		_				_	—		RPG6	<3:0>		000
FC9C	RPG7R	31:16		_	_	_	_	—	_		_	_	—	_	_	_	_	_	000
1 090	NEGIK	15:0	Ι	_	—	—	_	—	_	_	_	_	_			RPG7	<3:0>		000

Note 1: This register is not available on 64-pin devices.

2: This register is only available on devices without a USB module.

3: This register is not available on 64-pin devices with a USB module.


17.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX330/350/370/430/450/470 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are key features of this module:

- Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

FIGURE 17-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
31:24	_	—	_	_	_	_	_	ADM_EN
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				ADDR<	<7:0>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0
7:0	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

Logonal			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

- bit 24 ADM_EN: Automatic Address Detect Mode Enable bit
 - 1 = Automatic Address Detect mode is enabled
 - 0 = Automatic Address Detect mode is disabled
- bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADM_EN bit is '1', this value defines the address character to use for automatic address detection.

bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits

- 11 = Reserved, do not use
- 10 = Interrupt is generated and asserted while the transmit buffer is empty
- 01 = Interrupt is generated and asserted when all characters have been transmitted
- 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space

bit 13 UTXINV: Transmit Polarity Inversion bit

If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):

- 1 = UxTX Idle state is '0'
- 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'

bit 12 URXEN: Receiver Enable bit

- 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
- 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module. UxRX pin is controlled by the port.

bit 11 UTXBRK: Transmit Break bit

- 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
- 0 = Break transmission is disabled or completed
- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset. UxTX pin is controlled by the port.

bit 9 UTXBF: Transmit Buffer Full Status bit (read-only)

- 1 = Transmit buffer is full
- 0 = Transmit buffer is not full, at least one more character can be written

		ICDAIL. N								
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24		YEAR1	0<3:0>			YEAR0	1<3:0>			
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:16		MONTH	10<3:0>		MONTH01<3:0>					
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8		DAY10	<3:0>		DAY01<3:0>					
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x		
7:0		_	_	—	WDAY01<3:0>					
					•					
Legend:										
R = Read	able bit		W = Writable	e bit	U = Unimple	emented bit, re	ead as '0'			
-n = Value	-n = Value at POR			et	'0' = Bit is cleared x = Bit is unknown					

REGISTER 22-4: RTCDATE: RTC DATE VALUE REGISTER

bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10s place digits

bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1s place digit

bit 23-20 MONTH10<3:0>: Binary-Coded Decimal Value of Months bits, 10s place digits; contains a value of 0 or 1

bit 19-16 MONTH01<3:0>: Binary-Coded Decimal Value of Months bits, 1s place digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary-Coded Decimal Value of Days bits, 10s place digits; contains a value from 0 to 3

bit 11-8 **DAY01<3:0>:** Binary-Coded Decimal Value of Days bits, 1s place digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

bit 3-0 WDAY01<3:0>: Binary-Coded Decimal Value of Weekdays bits,1s place digit; contains a value from 0 to 6

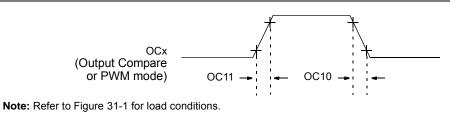
Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

28.0 SPECIAL FEATURES

This data sheet summarizes the features Note: of the PIC32MX330/350/370/430/450/470 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Configuration" Section 32. (DS60001124) and Section 33. "Programming and **Diagnostics**" (DS60001129), which are available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32MX330/350/370/430/450/470 family of devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are:

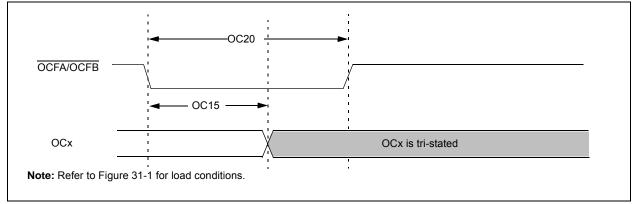
- · Flexible device configuration
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])


28.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- · CFGCON: Configuration Control Register

In addition, the DEVID register (Register 28-6) provides device and revision information.


TABLE 31-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

		(unless	d Operating C otherwise stat g temperature	,			
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions
OC10	TccF	OCx Output Fall Time	—	—	_	ns	See parameter DO32
OC11	TccR	OCx Output Rise Time	—	—	_	ns	See parameter DO31

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 31-9: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 31-28: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHAP	(unless		(unless o	d Operating Conditions: 2.3V to 3.6V otherwise stated) g temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for Commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param No.	Symbol	Characteristics ⁽¹⁾	Min	Typical ⁽²⁾	Max	Units	Conditions		
OC15	Tfd	Fault Input to PWM I/O Change	—	—	50	ns	_		
OC20	TFLT	Fault Input Pulse Width	50	—	_	ns	—		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHA	RACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	e stated) iture 0°(-4(C ≤ TA ≤ +)°C ≤ TA ≤	70°C for Commercial +85°C for Industrial	
Param. No.	Symbol	Charact	eristics	Min. ⁽¹⁾	+105°C for V-temp Conditions			
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Трв * (BRG + 2)		μS		
	1201002		400 kHz mode	Трв * (BRG + 2)		μs	_	
			1 MHz mode (Note 2)	Трв * (BRG + 2)		μs	-	
IM11	THI:SCL	Clock High Time	100 kHz mode	Трв * (BRG + 2)		μS	_	
		_	400 kHz mode	Трв * (BRG + 2)		μS	_	
			1 MHz mode (Note 2)	Трв * (BRG + 2)	_	μs	_	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode (Note 2)	_	100	ns		
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be	
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode (Note 2)	—	300	ns		
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns	—	
			400 kHz mode	100	_	ns		
			1 MHz mode (Note 2)	100	—	ns		
IM26	THD:DAT	Data Input Hold Time	100 kHz mode	0		μS	—	
			400 kHz mode	0	0.9	μS	1	
			1 MHz mode (Note 2)	0	0.3	μs		
IM30	TSU:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	—	μS	Only relevant for	
		Setup Time	400 kHz mode	Трв * (BRG + 2)		μS	Repeated Start	
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Трв * (BRG + 2)	—	μS	After this period, the	
		Hold Time	400 kHz mode	Трв * (BRG + 2)		μS	first clock pulse is	
			1 MHz mode (Note 2)	Трв * (BRG + 2)	—	μs	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Трв * (BRG + 2)	—	μS	—	
		Setup Time	400 kHz mode	Трв * (BRG + 2)		μS		
			1 MHz mode (Note 2)	Трв * (BRG + 2)	_	μS		

TABLE 31-33: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l^2C Baud Rate Generator.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: The typical value for this parameter is 104 ns.

AC CHARACTERISTICS ⁽⁵⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.3V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C \leq TA \leq +70^{\circ}C \mbox{ for Commercial} \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions			
ADC Ac	curacy – N	leasurements with Inter	nal VREF+/VR	EF-						
AD20d	Nr	Resolution		10 data bits		bits	(Note 3)			
AD21d	INL	Integral Nonlinearity	> -1	_	< 1	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)			
AD22d	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 2.5V to 3.6V (Notes 2,3)			
AD23d	Gerr	Gain Error	> -4	_	< 4	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)			
AD24d	Eoff	Offset Error	> -2	_	< 2	LSb	VINL = AVss = 0V, AVDD = 2.5V to 3.6V (Note 3)			
AD25d	_	Monotonicity	_	—		—	Guaranteed			
Dynami	c Performa	ince	•	•		•	•			
AD31b	SINAD	Signal to Noise and Distortion	55	58	—	dB	(Notes 3,4)			
AD34b	ENOB	Effective Number of Bits	9	9.5	_	bits	(Notes 3,4)			

TABLE 31-35: ADC MODULE SPECIFICATIONS (CONTINUED)

Note 1: These parameters are not characterized or tested in manufacturing.

2: With no missing codes.

3: These parameters are characterized, but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 31-10 for VBORMIN values.