

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I²C, SSIO, UART/USART, USB
Peripherals	DMA, LCD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	128KB (32K x 32)
Program Memory Type	FLASH
EEPROM Size	512 x 32
RAM Size	4K x 32
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x12b SAR
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/rohm-semi/ml630q466-nnntbzwax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• Timers (TMR)

- -8 bits $\times 8$ channels
 - (Timer0-7: 16-bit x 4 configuration available by using Timer0-1 or Timer2-3, Timer4-5, Timer6-7)
- Selection of one shot timer mode is possible
- External clock can be selected as timer clock.
- Function Timers (FTM)
 - 16-bit × 4 channels
 - Equipped with the timer/capture/PWM functions using a 16-bit counter
 - An event trigger (external pin input interrupt or timer interrupt request) can control start/stop/clear of the timer (however, the minimum pulse width of pin input is timer clock 3ϕ)
 - 1 to 64 dividing of LSCLK/OSCLK/HSCLK/external input selectable as timer clock
 - Two types of PWM with the same period and different duties and complementary PWM with the dead time set can be output.
- Real Time Clock (RTC)
 - 1 channels (99 years calendar, alarm, revision of the clock)
- Watchdog timer (WDT)
 - Non-maskable interrupt and reset
 - Free running
 - Overflow period: 4 types selectable (125ms, 500ms, 2s, and 8s when LSCLK = 32.768 kHz)
- Synchronous serial port (SSIOF/SSIO)
 - without FIFOs (SSIO) : 1 channel
 - with 16-byte transmits and receives FIFOs (SSIOF) : 1 channel
 - Master/slave selectable
 - LSB first/MSB first selectable
 - Clock polarity (data out at rising edge and data in at falling edge/data out at falling edge and data in at rising edge) selectable
 - 8-bit length/16-bit length selectable
 - Initial clock level (High start/Low start) selectable
 - supports slave-select signal (only SSIOF)
- UART (UARTF/UART)
 - without FIFOs (UART) : 1channel
 - with 16-byte transmits and receives FIFOs (UARTF) :1 channels
 - Full duplex buffer system
 - Communication speed: Settable within the range of 2400bps to 115200bps.
 - Programmable interface (data length, parity, stop bits selectable)
- I^2C bus interface (I^2CF/I^2C)
 - without FIFOs(I²C) :1 channel
 - with 16-byte transmits and receives FIFOs (I^2CF) : 1 channels
 - Master/slave function (only I2CF)
 - Fast mode (400 kHz), standard mode (100 kHz)
- USB full-speed device
 - Compliant with Universal Serial Bus (USB)
 - Full speed (12 Mbps) 1 port.
 - End points: 5 or 6
 - Supports all data transfer types (control transfer, bulk transfer, interrupt transfer, isochronous transfer).
 - Built-in SOF generation and CRC5/16 generation functions
 - Access size to data transfer FIFOs: 8 bits/16 bits/32 bits
- General-purpose ports (PORT)
 - Input/output port × 38 channels (including secondary or tertiary or quaternary or quinary functions). (ML630Q464 and ML630Q466: including LCD com/seg ports (each 20 ports))

- RC oscillation type A/D converter (RC-ADC)
 - Time division × 2 channels
 - Starting by trigger of Timer/FTM function.
 - 24-bit counter
- Successive approximation type A/D converter (SA-ADC)
 - Input \times 12 channels
 - 12-bit A/D converter
 - Starting by trigger of Timer/FTM function.
 - Capacitive touch sense function
- Analog Comparator (CMP)
 - Input \times 2ch
 - Common mode input voltage: 0.2V to V_{DD} -0.2V
 - Input offset voltage: 30mV(max)
 - Interrupt allow edge selection and sampling selection
- Voltage Level Supervisor (VLS)
 - Threshold voltages: One of 64 levels
 - Acuraccy: ±3%
 - Interrupt or Reset generation are slectable
 - Voltage measurement with voltage input pin or V_{DD} pin
- Low Level Detector(LLD)
 - Judgment Voltage: 1.8V±0.2V
 - Can be used as low level detection reset.
- LCD driver
 - Maximun 400 dots (50 segment x 8 common)
 - 1/1 to 1/8 duty
 - 1/2, 1/3 bias (built-in bias generation circuit)
 - Frame frequency selecable
 - Bias voltage multiplying clock selectable (5 types)
 - Contrast adjustment (32 steps)
 - 4 operating mode: LCD drive stop, LCD display, all LCDs on, all LCDs off
 - Programmable display allocation function
- Random number generator (RANDOM)
 - Generates 8-bit random numbers
- AES
 - 128-bit Common key
 - Supports key sizes of 128, 192, and 256 bits
 - Supports ECB, CBC, and CTR modes
- Reset
 - Reset by the RESET_N pin input
 - Reset by power-on detection
 - Reset by overflow of watchdog timer (WDT)
 - Reset by threshold detection in Voltage Level Supervisor(VLS)
 - Reset by low level detection in Low Level Detector(LLD)
 - Reset by the low-speed crystal oscillation stop detection
 - Reset by SYSRESETREQ of Cortex[™]-M0+ (software reset)

- Clock
 - Low-speed clock:
 - Crystal oscillation (32.768 kHz)
 - Built-in RC oscillation (32.768kHz)
 - High-speed clock:
 - PLL (24 MHz) generated from Crystal oscillation (32.768 kHz)
 - Built-in RC oscillation (16MHz)
- Power management
 - HALT mode: Instruction execution by CPU is suspended. All peripheral circuits can keep in operating states.
 - HALT-H mode: Instruction execution by CPU is suspended. Stop of high-speed oscillation automatically. All peripheral circuits can keep in operating states.
 - DEEP-HALT mode: Instruction execution by CPU is suspended. Some peripheral circuits(Timer, LTBC etc.) can keep in operating states.
 - ULTRA-DEEP-HALT mode: Instruction execution by CPU is suspended. Some peripheral circuits(Timer, LTBC etc.) can keep in operating states, at V_{DD} >2.5V.
 - STOP mode: Stop of low-speed oscillation and high-speed oscillation (Operations of CPU and peripheral circuits are stopped.)
 - Clock gear: The frequency of high-speed system clock can be changed by software (1/1, 1/2, 1/4, 1/8,1/16,1/32 of the oscillation clock)
 - Block Control Function: Power down (reset registers and stop clock supply) the circuits of unused peripherals.
- Guaranteed operating range
 - Operating temperature (ambient) : -40°C to +85°C
 - Operating voltage: $V_{DD} = 1.8V$ to 3.6V
- Supply current (Typ)
 - High-speed operation (24 MHz) : 250uA/MHz
 - ULTRA-DEEP-HALT : 0.80uA
- Package
 - 100-pin plastic TQFP
 - Tray

ML630Q464-xxxTBZWAX ML630Q466-xxxTBZWAX

6/37

■ PIN CONFIGURATION

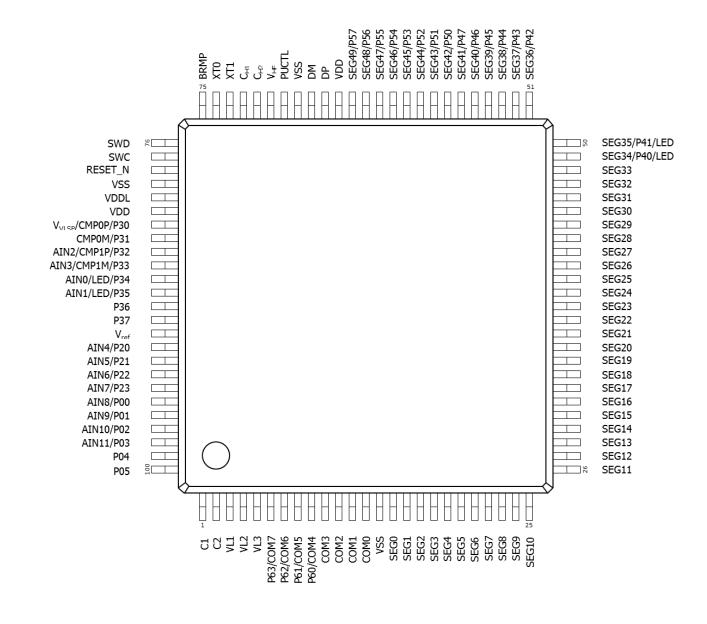


Figure 2. Pin Layout of ML630Q464/Q466

LAPIS	Semiconductor	Co.,Ltd.

■ PIN LIST

PIN	Reset	Primary Function	n	Secondary Fu	unction	Tertiary Fun	iction	Quaternary F	unction	Quinary Fun	ction
No.	State	Pin name	I/O	Pin name	I/O	pin name	I/O	pin name	I/O	pin name	I/O
14 68 79	-	V _{SS}	-	-	-	-	-	-	-	_	I
65 81	-	V _{DD}	-	-	-	-	-	-	-	-	-
80	-	V _{DDL}	-	-	-	-	-	-	-	-	-
70	-	V _{HF}	-	-	-	-	-	-	-	-	-
90	-	V _{REF}	-	-	-	-	-	-	-	-	-
74	-	XT0	-	-	-	-	-	-	-	-	-
73	-	XT1	-	-	-	-	-	-	-	-	-
78	Pull-up Input	RESET_N	I	-	-	-	-	-	-	-	-
77	Pull-up Input	SWC	Т	-	-	-	-	-	-	-	-
76	Pull-up Input	SWD	I/O	-	-	-	-	-	-	-	-
75	Pull-down Input	BRMP	I	-	-	-	-	-	-	-	-
95	Hi-Z output	P00/ EXI00/ AIN8	I/O	INO	I	SOUT0	ο	RXDF0	I	-	-
96	Hi-Z output	P01/ EXI01/ AIN9	I/O	CS0	0	SINO	I	TXDF0	0	-	Ι
97	Hi-Z output	P02/ EXI02/ AIN10	I/O	RCT0	0	SCK0	I/O	TMOUTO	0	-	-
98	Hi-Z output	P03/ EXI03/ AIN11	I/O	RS0	ο	-	-	TMOUT1	0	-	-
99	Hi-Z output	P04/ EXI04	I/O	RT0	0	-	-	-	-	-	-
100	Hi-Z output	P05/ EXI05	I/O	RCM	0	-	-	-	-	-	-
91	Hi-Z output	P20/ EXI20/ AIN4	I/O	IN1	I	SOUTF0	0	-	-	-	-
92	Hi-Z output	P21/ EXI21/ AIN5	I/O	CS1	0	SINF0	I	-	-	-	-
93	Hi-Z output	P22/ EXI22/ AIN6	I/O	RS1	0	SCKF0	I/O	TMOUT2	0	-	Ι
94	Hi-Z output	P23/ EXI23/ AIN7	I/O	RT1	0	SSF0	I/O	TMOUT3	0	-	_
82	Hi-Z output	P30/ EXI30/ CMP0P V _{VLSP}	I/O	SDAF0	I/O	SOUTO	0	-	-	-	-
83	Hi-Z output	P31/ EXI31/ CMP0M	I/O	SCLF0	I/O	SIN0	I	-	-	-	-
84	Hi-Z output	P32/ EXI32/ CMP1P/ AIN2	I/O	RXDF0	I	SCK0	I/O	TMOUT4	0	_	-
85	Hi-Z output	P33/ EXI33/ CMP1M/ AIN3	I/O	TXDF0	ο	32kCLKO	о	TMOUT5	0	_	-
86	Hi-Z output	P34/ EXI34/ AIN0 LED	I/O	SDA1	I/O	SOUTF0	0	-	-	-	-
87	Hi-Z output	P35/ EXI35/ AIN1 LED	I/O	SCL1	ο	SINF0	I	-	-	-	-
88	Hi-Z output	P36/ EXI36/ TMCKI4	I/O	RXD0	I	SCKF0	I/O	TMOUT6	0	-	-
89	Hi-Z output	P37/ EXI37/ TMCKI5	I/O	TXD0	0	SSF0	I/O	TMOUT7	0	-	-
13 to 10	Low Level Output	COM0 to COM3	0	-	-	-	-	-	-	-	-
9	Hi-Z output	P60/ EXI60	I/O	COM4	0	-	-	-	-	-	-
8	Hi-Z output	P61/ EXI61	I/O	COM5	0	-	-	-	-	-	-
7	Hi-Z output	P62/ EXI62	I/O	COM6	0	-	-	-	-	-	-
6	Hi-Z output	P63/ EXI63	I/O	COM7	0	-	-	-	-	-	-
15 to 48	Low Level Output	SEG0 to SEG33	0	-	-	-	-	-	-	-	-
49	Hi-Z output	P40/ EXI40/ LED	I/O	SDAF0	I/O	SOUTO	0	-	-	SEG34	0

■ PIN DESCRIPTION

In the table below indicates the functional pin description.

The pin name represents the function pin name of the primary function of each terminal, The pin mode represents the set of mode register of Port Control. $(1^{st}:primary function, 2^{nd}:secondary function, 3^{rd}: tertiary function, 4^{th}: quaternary function, 5^{th}:quinary function)$

Pin name	I/O	Description	LSI pin name	Pin mode	Logic
System					
RESET_N	I	Reset input pin. When this pin is set to a "L" level, system reset mode is set and the internal section is initialized. When this pin is set to a "H" level subsequently, program execution starts. A pull-up resistor is internally connected.	RESET_N	-	L
BRMP	Ι	Remapping control input (for firmware update) Based on the BRMP pin setting at the time of the reset release, Bank0 is remapped.	BRMP	-	Н
XT0	Ι	Crystal connection pin for low-speed clock.	XT0	-	-
XT1	0	Capacitors C_{DL} and C_{GL} are connected across this pin and V_{SS} as required.	XT1	-	-
32kCLKO	0	Low-speed clock output pin	P33,P43,P53	2 nd	
General-purpo	ose in	put/output port			
P00-P05	I/O	General-purpose input/output port.	P00-P05	1 st	-
P20-P23	I/O	General-purpose input/output port.	P20-P23	1 st	-
P30-P37	I/O	General-purpose input/output port.	P30-P37	1 st	_
P40-P47	I/O	General-purpose input/output port.	P40-P47	1 st	-
P50-P57	I/O	General-purpose input/output port.	P50-P57	1 st	_
P60-P63	I/O	General-purpose input/output port.	P60-P63	1 st	_
External interr					
EXI00-05	1	External maskable interrupt input pins. It is possible, for	P00-P05	1 st	H/L
EXI20-23		each bit, to specify whether the interrupt is enabled and	P20-P23		
EXI30-37		select the interrupt edge by software.	P30-P37		
EXI40-47			P40-P47		
EXI50-57			P50-P57		
EXI60-63			P60-P63		
LED	1				
LED	0	N-channel open drain output pins to drive LED.	P34,P35,P40,P41	1 st	_
UART	-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
TXD0	0	UART data output pin.	P37,P47,P57	2 nd	_
RXD0	1	UART data input pin.	P36,P46,P56	2 nd	
TXDF0	0	UARTF with FIFO data output pin.	P01,P33,P43,P53	2 nd	-
RXDF0	1	UARTF with FIFO data input pin.	P00,P32,P42,P52	2 nd	
I ² C bus interfa			1 00,1 02,1 42,1 02	2	-
SDA1	I/O	I2C1 data input/output pin. This pin has an NMOS open	P34,P44,P54	2 nd	
JUAT	"0	drain output. When using this pin as a function of the I^2C , externally connect a pull-up resistor.	FJ4,F44,FJ4	۷	-
SCL1	0	I2C1 clock output pin. This pin has an NMOS open drain output. When using this pin as a function of the I^2C , externally connect a pull-up resistor.	P35,P45,P55	2 nd	-
SDAF0	I/O	I2CF0 data input/output pin. This pin has an NMOS open drain output. When using this pin as a function of the I ² C, externally connect a pull-up resistor.	P30,P40,P50	2 nd	-
SCLF0	I/O	I2CF0 clock input/output pin. This pin has an NMOS open drain output. When using this pin as a function of the I ² C, externally connect a pull-up resistor.	P31,P41,P51	2 nd	-

Pin name	I/O	Description	LSI pin name	Pin mode	Logic
Synchronous	serial			· · · ·	
SCK0	I/O	Synchronous serial (SSIO) clock input/output pin.	P02,P32,P42,P52	3 rd	-
SIN0	I	Synchronous serial (SSIO) data input pin.	P01,P31,P41,P51	3 rd	-
SOUT0	0	Synchronous serial (SSIO) data output pin.	P00,P30,P40,P50	3 rd	-
SCKF0	I/O	Synchronous serial with FIFO (SSIOF) clock input/output pin.	P22,P36,P46,P56	3 rd	-
SINF0	Ι	Synchronous serial with FIFO (SSIOF) data input pin.	P21,P35,P45,P55	3 rd	-
SOUTF0	0	Synchronous serial with FIFO (SSIOF) data output pin.	P20,P34,P44,P54	3 rd	-
SSF0	I/O	Synchronous serial with FIFO (SSIOF) select input/output pin.	P23,P37,P47,P57	3 rd	L
FTM					
TMOUT0-9	0	FTM output pin.	P02,P03,P22,P23	4 th	-
TMOUTA-F			P32,P33,P36,P37		
			P42,P43,P46,P47		
-			P52,P53,P56,P57	, st	
TMCKI0-7		External clock input pin for FTM.	P42,P43,P46,P47	1 st	-
		A/D service ter	P36,P37,P56,P57		
RC oscillation	туре .	-	1		
IN0	Ι	Oscillation input pin of Channel 0.	P00	2 nd	-
CS0	0	Reference capacitor connection pin of Channel 0.	P01	2 nd	-
RS0	0	Reference resistor connection pin of Channel 0.	P03	2 nd	-
RT0	0	Resistor sensor connection pin for measurement of Channel 0.	P04	2 nd	-
RCT0	0	Resistor/capacitor sensor connection pin of Channel 0 for measurement.	P02	2 nd	-
RCM	0	RC oscillation monitor pin.	P05	2 nd	-
IN1	1	Oscillation input pin of Channel 1.	P20	2 nd	_
CS1	0	Reference capacitor connection pin of Channel 1.	P21	2 nd	_
RS1	0	Reference resistor connection pin of Channel 1.	P22	2 nd	_
RT1	0	Resistor sensor connection pin for measurement of Channel 1.	P23	2 nd	-
Successive an	ixorac	mation type A/D converter			
V _{REF}	1	Reference power supply pin for successive	V _{REF}		
V REF	'	approximation type A/D converter.	V REF	-	-
		Analog input for successive approximation type A/D	(AIN0-3) P32-35,	1 st	_
AIN0-11	I	converter.	(AIN4-7) P20-23,		
			(AIN8-11) P00-03		
Analog compa	arator		-		
CMP0P	Ι	Comparator0 Non-inverted input pin.	P30	1 st	-
CMP0M	Ι	Comparator0 Inverted input pin.	P31	1 st	-
CMP1P	Ι	Comparator1 Non-inverted input pin.	P32	1 st	-
CMP1M	I	Comparator1 Inverted input pin.	P33	1 st	-
USB FS Devic	ce		1		
DP	I/O	USB dev D+ pin.	DP	_	_
DM	-	USB dev D- pin.	DM		_
PUCTL	0	USB dev pull-up control	PUCTL	_	_
DEBUG Interf	-		1001	-	
		Sorial clock of Sorial Wire Debug Port	014/0	<u> </u>	
SWC		Serial clock of Serial Wire Debug Port	SWC	-	-
SWD	I/O	Serial I/O data of Serial Wire Debug Port	SWD	-	-

■ TERMINATION OF UNUSED PINS

Table 1 shows methods of terminating the unused pins.

Pin	Recommended pin termination
RESET N	open
BRMP	Connect a pull-down resistor.
SWC	Connect a pull-up resistor.
SWD	Connect a pull-up resistor.
V _{REF}	Connect to V _{DD}
P00 to P05	open
P20 to P23	open
P30 to P37	open
P40 to P47	open
P50 to P57	open
P60 to P63	open
COM0 to COM3	open
SEG0 to SEG33	open
DP, DM, PUCTL	open
V_{L1}, V_{L2}, V_{L3}	open
C ₁ , C ₂	open

Table 1 Termination of Unused Pins

[Note]

For unused input ports or unused input/output ports, if the corresponding pins are configured as high-impedance inputs and left open, the supply current may become excessively large. Therefore, it is recommended to configure those pins as either inputs with a pull-down resistor/pull-up resistor or outputs.

		VLSLV[5:0] = 2DH		2.650			
		VLSLV[5:0] = 2EH		2.700			
		VLSLV[5:0] = 2FH		2.750	_		
		VLSLV[5:0] =30H		2.800			
		VLSLV[5:0] = 31H		2.850			
		VLSLV[5:0] = 32H		2.900			
		VLSLV[5:0] = 33H		2.950			
		VLSLV[5:0] = 34H		3.000			
		VLSLV[5:0] = 35H		3.050			
		VLSLV[5:0] = 36H	Typ. -3%	3.100	Typ. +3%	V	
		VLSLV[5:0] = 37H	-070	3.150	1070		1
		VLSLV[5:0] = 38H		3.200			
		VLSLV[5:0] = 39H		3.250			
		VLSLV[5:0] = 3AH		3.300			
		VLSLV[5:0] = 3BH		3.350			
		VLSLV[5:0] = 3CH		3.400			
		VLSLV[5:0] = 3DH		3.450			
		VLSLV[5:0] = 3EH		3.500			
		VLSLV[5:0] = 3FH		3.550			
V _{VLS} Hysteresis			V_{VLS}	V _{VLS}	V _{VLS}]
width (V _{DD} =rise)	H _{VLS}	-	× 1.0%	× 2.7%	× 4.5%	V	

VLSLV[3:0] are bits of the VLSCON register to change detection voltage level. *1: Setable only at the time of select to V_{VLSP} pin.

• DC characteristics (LLD)

(V_DD=1.8 to 3.6V, V_SS=0V, Ta=-40 to +85°C, unless otherwise specified)

Daramatar	Symbol	Condition		Rating		Unit	Measuring
Parameter	Symbol	Min.	Тур.	Max.	Unit	circuit	
LLD judge Voltage	VLLR	_	1.60	1.80	2.00	V	1

• DC/AC characteristics (Analog comparator)

(V_{DD}=1.8 to 3.6V, V_{SS}=0V, Ta=-40 to +85°C, unless otherwise specified)

Deremeter	Sumbol	Symbol Condition	Rating			Unit	Measuring
Parameter	Symbol Condition		Min.	Тур.	Max.	Unit	circuit
Common Input voltage range	V _{CMPIN}	_	0.2	_	V _{DD} -0.2	V	
Input offset voltage	V _{CMPOF}	_	-30	_	30	mV	1
Comparator judge time	T _{CMP}	CMPP- CMPM =40mV	_	_	2	μS	

• DC characteristics (VOHL, IOHL)

		(V _{DD} =1.8 to 3.6V, V _{SS} =0V	, Ia40	Rating	C, unles		Measuring
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit
Output voltage 1 (P00-P05, P20-P23, P30-P37, P40-P47,	VOH1	IOH=-1.0mA	V _{DD} -0.5	_	_		
P50-P57,, P60-P63, SWD,PUCTL)	VOL1	IOL=+0.5mA	_	_	0.4		
Output voltage 2 (P34, P35, P40, P41)	VOL2	$2.7V \le V_{DD} \le 3.6V$ IOL=+5.0mA	_	_	0.6		
(LED mode is selected)		IOL=+2.0mA	-	-	0.4		
Output voltage 3 (P30, P31, P34, P35, P40, P41, P44, P45, P50, P51, P54, P55) (l ² C mode is selected)	VOL3	IOL3= +3mA (I ² Cspec) (V _{DD} ≥2V)	_	_	0.4		
Output voltage 4 (P30, P31, P34, P35, P40, P41, P44, P45, P50, P51, P54, P55) (I ² C mode is selected)	VOL4	IOL4= +2mA(I ² Cspec) (V _{DD} < 2V)	V _{DD} ×0.2				
	VOH5	1/3bias, IOH5=-0.02mA, VL1=1.2V	V _{L3} -0.2	_	_		2
	VOM5	1/3bias, IOM5=+0.02mA, VL1=1.2V	_	_	V _{L2} +0.2	V	2
Output voltage 5 (COM0~7)	VOM5S	1/3bias, IOM5S=-0.02mA, VL1=1.2V	V _{L2} -0.2	_	_		
(SEG00~49) (LCD mode is selected)	VOML5	1/3bias, IOML5=+0.02mA, VL1=1.2V	_	_	V _{L1} +0.2		
	VOML5S	1/3bias, IOML5S=-0.02mA, VL1=1.2V	V _{L1} -0.2	_	_		
	VOL5	1/3bias, IOL5=+0.02mA, VL1=1.2V	_	_	0.2		
	VOH5	1/2bias, IOH5=-0.01mA, VL1=1.4V	V _{L3} -0.3	_	_	-	
	VOM5	1/2bias, IOM5=+0.01mA, VL1=1.4V	_	_	V _{L2} +0.3	•	
Output voltage 5 (COM0~7) (SEG00~49) (LCD mode is selected)	VOM5S	1/2bias, IOM5S=-0.01mA, VL1=1.4V	V _{L2} -0.3	_	_		
	VOML5	1/2bias, IOML5=+0.01mA, VL1=1.4V	_	_	V _{L1} +0.3	•	
	VOML5S	1/2bias, IOML5S=-0.01mA, VL1=1.4V	V _{L1} -0.3	_	_	•	
	VOL5	1/2bias, IOL5=+0.01mA, VL1=1.4V	_	_	0.3		

(V_DD=1.8 to 3.6V, V_SS=0V, Ta=-40 to +85°C, unless otherwise specified)

Output leak 1 (P00-P05, P20-P23, P30-P37,	IOOH1	VOH=V _{DD} (at high impedance)	_	_	+1	μA	3
P40-P47, P50-P57, P60-P63, SWD,PUCTL)	IOOL1	VOL=V _{SS} (at high impedance)	-1	_	-	μΛ	5

• DC characteristics (IIHL)

		(V _{DD} =1.8 to 3.6V, V _{SS} =0V,	Ta=-40	to +85°	C, unless	s otherwi	se specified)	
Parameter	Symbol	Condition		Rating			Measuring	
Falametei	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit	
Input current 1	IIH1	VIH1=V _{DD}	-	-	1			
(RESET_N)	IIL1	VIL1=V _{SS}	-900	-300	-20			
Input current 3 (P00-P05,	IIH3	VIH3= V_{DD} (at pull down)	1	15	200			
P20-P23,	IIL3	VIL3=V _{SS} (at pull up)	-200	-15	-1			
P30-P37, P40-P47, P50-P57,	IIH3Z	VIH3=V _{DD} (at high impedance)	-	-	1	μA	4	
P60-P63, SWC, SWD, BRMP)	IIL3Z	VIL3=V _{SS} (at high impedance)	-1	-	-			
Input current 4 (P36, P37, P40-P47, P50-P57, P60-P63)	IIH4Z	VIH4=5.0V (at high impedance)	_	_	1			

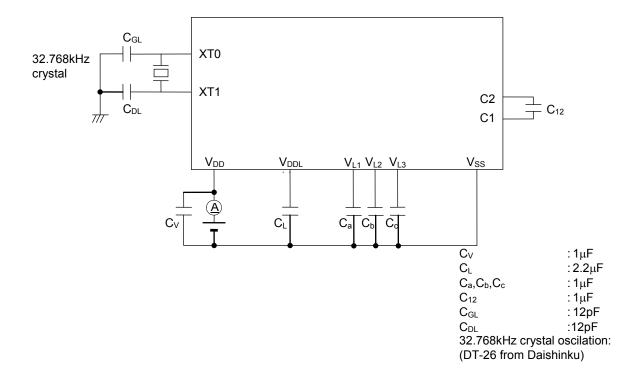
(V_{DD}=1.8 to 3.6V, V_{SS}=0V, Ta=-40 to +85°C, unless otherwise specified)

*¹ : typ.rating is V_{DD}=3.0V, Ta=25°C

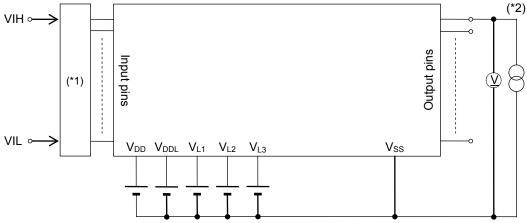
DC characteristics (VIHL)

	1	$(v_{DD} - 1.0 \ to \ 5.0 \ v, \ v_{SS} - 0 \ v,$	10+0		o, unicos		se specificu)	
Parameter	Symbol	Condition		Rating		Unit	Measuring	
Falameter	Symbol	Condition	Min. Typ.		Max.	Unit	circuit	
Input voltage 1 (RESET_N, SWD, SWC, BRMP,	VIH1	-	0.7 ×V _{DD}	_	V _{DD}			
P00-P05, P20-P23, P30-P37, P40-P47, P50-P57, P60-P63)	VIL1	_	0	_	0.3 ×V _{DD}	V	5	
Input terminal capacitance (RESET_N, SWD, SWC, BRMP, P00-P05, P20-P23, P30-P37, P40-P47, P50-P57, P60-P63)	CIN	f=10kHz V _{rms} =50mV Ta=25°C	_	_	10	pF	_	

(V_{DD}=1.8 to 3.6V, V_{SS}=0V, Ta=-40 to +85°C, unless otherwise specified)


• DC characteristics (USB)

			Rating ^{*1}			Measu	
Parameter	Symbol	Condition	Min.	Тур. Мах.		Unit	ring circuit
Differential input sensitivity	V _{DI}	Absolute value of the difference between the DP and DM pins	0.2	-	-	V	
Differential common mode range	V _{CM}	Includes VDI range	0.8	-	2.5	V	
Single end input threshold voltage	V_{SE}	-	0.8	-	2.0	V	
High level output voltage	V _{OH}	15k W RL is connected to GND	2.8	-	-	V	
Low level output voltage	V _{OL}	1.5k W RL to 3.6 V	-	-	0.3	V	
Hi-Z state input/output leakage current	ILO	0 V < VIN < 3.3 V	-10		10	uA	
Driver output resistance	Z _{DRV}	Steady state	28		44	Ω	


(V_DD=3.0 to 3.6V, V_SS=0V, Ta=-40 to +85°C, unless otherwise specified)

• MEASURING CIRCUITS

MEASURING CIRCUIT1

MEASURING CIRCUIT 2

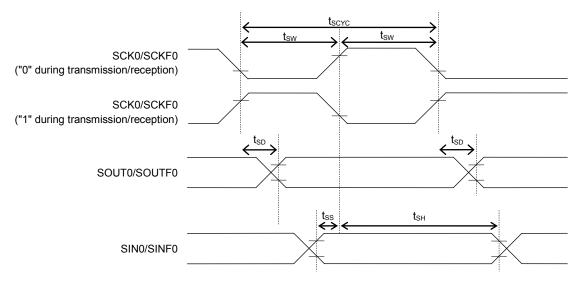
(*1) Input logic circuit to determine the specified measuring conditions. (*2) Measured at the specified output pins.

• AC characteristics (USB)

(V_{DD}=3.0 to 3.6V, V_{SS}=0V, Ta=-40 to +85°C, unless otherwise specified)

Parameter	Symbol	Condition		Rating	Unit	Applied	
Parameter	Symbol		Min.	Тур.	Max.	Unit	pin
Rise time (*1)	T _R	CL = 50 pF	4	_	20	ns	
Fall time (*1)	T _F	CL = 50 pF	4	_	20	ns	
Output signal crossover voltage	V _{CRS}	CL = 50 pF	0.8	_	2.5	V	DP, DM
Data rate	T _{DRATE}	Average bit rate (12Mbps ±0.25%)	11.97	-	12.03	Mbps	

* 1: T_R and T_F: Rise time and fall time between 10% and 90% of the pulse amplitude, respectively


• AC charctoristics (synchronous serial port)

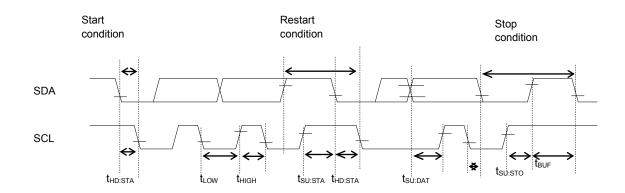
Daramatar	Symbol	Conditon		Unit			
Parameter	Symbol	Conditon	Min.	Тур.	Max.	Unit	
SCK input cycle		High-speed oscillation is not active		-	_	μS	
(slave mode)	tscyc	High-speed oscillation is active	500	-	_	ns	
SCK output cycle (master mode)	t _{scyc}	_	_	SCK*1	_	s	
SCK input pulse width (slave mode)		High-speed oscillation is not active		_	_	μS	
	t _{sw}	High-speed oscillation is active	200	_	_	ns	
SCK output pulse width (master mode)	t _{sw}	_	t _{scyc} ×0.4	t _{scyc} ×0.5	t _{scγc} ×0.6	s	
SOUT output delay time (slave mode)	t _{SD}	_	_	_	180	ns	
SOUT output delay time (master mode)	t _{SD}	_	-	-	80	ns	
SIN input Setup time (slave mode)	t _{ss}	_	50	_	_	ns	
SIN input Setup time (master mode)	t _{ss}	_	130	_	_	ns	
SINinput Hold time	t _{sн}	_	50	_	_	ns	

(V_{DD}=1.8 to 3.6V, V_{SS}=0V, Ta=-40 to +85°C, unless otherwise specified)

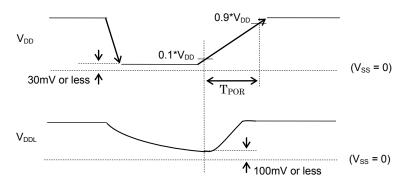
*¹: The clock period which is selected by the below registers(min:250ns@ regularly, min:500ns@P02,P22 is used)
In case of SSIO : S0CK2-0 of serial port 0 mode register(SIO0MOD).
In case of SSIOE : SE0BR9-0 of SIOE0 port register(SE0BRR)

In case of SSIOF : SF0BR9-0 of SIOF0 port register(SF0BRR)

• AC characteristics (I²C Bus interface : Standard mode 100kHz)


(V_{DD}=1.8 to 3.6V, V_{SS}=0V, Ta=-40 to +85°C, unless otherwise specified)

Parameter	Symbol	Condition	Rating			Unit	
Falameter	Symbol	Condition	Min.	Тур.	Max.	Unit	
SCL clock frequency	f _{SCL}	_	0	-	100	kHz	
SCL hold time (Start/restart condition)	t _{HD:STA}	_	4.0	_	_	μS	
SCL"L" level time	t _{LOW}	_	4.7	_	_	μS	
SCL"H" level time	t _{HIGH}	_	4.0	_	_	μS	
SCL setup time (restart condition)	t _{SU:STA}	_	4.7	_	_	μS	
SDA setup time	t _{SU:DAT}	_	0.25	_	_	μS	
SDA setup time (stop condition)	t _{su:sto}	_	4.0	_	_	μS	
Bus-free time	t _{BUF}	_	4.7	_	_	μS	


• AC characteristics (I^2C bus interface : fast mode 400kHz)

	(V _{DD} =	1.8 to 3.6V, V _{SS} =0V, Ta=-40 to +	-85°C, ui	nless oth	erwise s	pecified)
Parameter	Symphol	Condition		Linit		
Parameter	Symbol Condition		Min.	Тур.	Max.	Unit
SCL clock frequency	f _{SCL}	_	0	-	400	kHz
SCLhold time (start/restart condition)	t _{HD:STA}	_	0.6	-	_	μS
SCL"L" level time	t _{LOW}	-	1.3	_	_	μS
SCL"H" level time	tнigн	_	0.6	-	-	μs
SCL setup time (restart condition)	t _{SU:STA}	_	0.6	-	_	μS
SDA setup time	t _{SU:DAT}	-	0.1	_	_	μs
SDA setup time (stop condition)	t _{su:sto}	_	0.6	_	_	μS
Bus-free time	t _{BUF}	_	1.3	-	_	μS

*1: Only at the time of SYSCLK=16MHz or 24MHz

Power-on and shutdown Procedures In case of power-on or shutdown of V_{DD}, the procedures and constraints are shown as following.

Power down/on and power on reset sequence

Note:

If V_{DDL} level is 100mV or more over, reset the IC by RESET_N pin after power-on.

REVISION HISTORY

Document No.	Date	Page		Description
		Previous	Current	
		Edition	Edition	
FEDL630Q464-01	Oct. 26. 2016	-	-	Final Edition

Notes

1) The information contained herein is subject to change without notice.

- 2) Although LAPIS Semiconductor is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. LAPIS Semiconductor shall have no responsibility for any damages arising out of the use of our Products beyond the rating specified by LAPIS Semiconductor.
- 3) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 4) The technical information specified herein is intended only to show the typical functions of the Products and examples of application circuits for the Products. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Semiconductor or any third party with respect to the information contained in this document; therefore LAPIS Semiconductor shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a LAPIS Semiconductor representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) LAPIS Semiconductor shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) LAPIS Semiconductor has used reasonable care to ensure the accuracy of the information contained in this document. However, LAPIS Semiconductor does not warrant that such information is error-free and LAPIS Semiconductor shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. LAPIS Semiconductor shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Semiconductor.

Copyright 2016 LAPIS Semiconductor Co., Ltd.

LAPIS Semiconductor Co., Ltd.

2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan http://www.lapis-semi.com/en/