

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	75MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, WDT
Number of I/O	28
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 2x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount, Wettable Flank
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-HVQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkv10z128vfm7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1. KV11 block diagram

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 2. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume:

- 1. output pins
 - have $C_L=30$ pF loads,
 - are slew rate disabled, and
 - are normal drive strength

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	$0.7 \times V_{DD}$	—	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
VIL	Input low voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	_	$0.35 \times V_{DD}$	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	—	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	—	V	
licio	 Pin negative DC injection current—single pin V_{IN} < V_{SS}-0.3V 	-5	_	mA	1

Symbol	Description	Min.	Max.	Unit	Notes
I _{ICcont}	Contiguous pin DC injection current—regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection	-25	_	mA	
V _{RAM}	V _{DD} voltage required to retain RAM	1.2	—	V	

Table 1. Voltage and current operating requirements (continued)

1. All I/O pins are internally clamped to V_{SS} through an ESD protection diode. There is no diode connection to V_{DD} . If V_{IN} greater than V_{IO_MIN} (= V_{SS} -0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed, then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = ($V_{IO_MIN} - V_{IN}$)/I_{ICIO}.

2.2.2 LVD and POR operating requirements Table 2. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling V _{DD} POR detect voltage	0.8	1.1	1.5	V	
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V _{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V _{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV=10)	2.82	2.90	2.98	V	
V _{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	-	±60	—	mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V _{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V _{LVW3L}	Level 3 falling (LVWV=10)	1.94	2.00	2.06	V	
V _{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	-	±40	—	mV	
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

1. Rising thresholds are falling threshold + hysteresis voltage

Symbol	Description		•	Tempera	ature (°C	;)		Unit
		-40	25	50	70	85	105	
I _{EREFSTEN4MHz}	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	228	237	245	251	258	uA
I _{EREFSTEN32KHz}	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled.	440	490	540	560	570	580	
	VLLS1	440	490	540	560	570	580	nΔ
	VLLS3	510	560	560	560	610	680	
	VLPS	510	560	560	560	610	680	
	STOP							
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.	66	66	66	66	66	66	цА
	MCGIRCLK (4 MHz internal reference clock)	00						μΛ
	OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{SPI}	SPI peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μΑ
	OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{I2C}	I2C peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. MCGIRCLK (4 MHz internal reference	66	66	66	66	66	66	μΑ
	clock) OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	

Table 6.	Low powe	r mode per	ipheral adders	- typical v	value (continued)
----------	----------	------------	----------------	-------------	-------------------

The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 10 MHz (crystal), f_{SYS} = 75 MHz, f_{BUS} = 25 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mo	de			
f _{SYS}	System and core clock	—	48	MHz	
f _{BUS}	Bus clock	_	24	MHz	
f _{FLASH}	ASH Flash clock		24	MHz	
f _{LPTMR}	LPTMR clock	—	24	MHz	
	High Speed run m	node			
f _{SYS}	System and core clock	—	75	MHz	
f _{BUS}	Bus clock	—	25	MHz	
f _{FLASH}	Flash clock	—	25	MHz	
f _{LPTMR}	LPTMR clock		25	MHz	

Symbol	Description	Min.	Max.	Unit	Notes
f _{FTM}	FTM clock	—	75	MHz	
	VLPR mode			•	
f _{SYS}	System and core clock	—	4	MHz	
f _{BUS}	Bus clock	—	1	MHz	
f _{FLASH}	Flash clock	_	1	MHz	
f _{LPTMR}	LPTMR clock	—	25	MHz	
f _{ERCLK}	External reference clock	_	16	MHz	
f _{LPTMR_pin}	LPTMR clock	_	25	MHz	
f _{LPTMR_ERCL}	LPTMR external reference clock	_	16	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)		16	MHz	

Table 9. Device clock specifications (continued)

2.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and I²C signals.

Table 10. General switching specifications

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1
	External RESET and NMI pin interrupt pulse width — Asynchronous path		_	ns	2
	GPIO pin interrupt pulse width — Asynchronous path	16	—	ns	2
	Port rise and fall time				3
	Fast slew rate				
	1.71≤ VDD ≤ 2.7 V	—	8	ns	
	2.7 ≤ VDD ≤ 3.6 V	—	7	ns	
	Port rise and fall time				
	Slow slew rate				
	1.71≤ VDD ≤ 2.7 V	—	15	ns	
	2.7 ≤ VDD ≤ 3.6 V	—	25	ns	

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. For high drive pins with high drive enabled, load is 75pF; other pins load (low drive) is 25pF.

Peripheral operating requirements and behaviors

- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD Electricals

Table 13. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20	_	ns
J4	SWD_CLK rise and fall times	—	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	—	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	—	ns
J11	SWD_CLK high to SWD_DIO data valid	—	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

Figure 5. Serial wire clock input timing

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
Δf _{dco_t}	Total deviation of frequency over vo	trimmed average DCO output Itage and temperature	_	+0.5/-0.7	±2	%f _{dco}	1, 2
∆f _{dco_t}	Total deviation of frequency over fix range of 0 - 70 °C	otal deviation of trimmed average DCO output equency over fixed voltage and temperature ange of 0 - 70 °C			± 1.5	%f _{dco}	1, 2
f _{intf_ft}	Internal reference factory trimmed at	frequency (fast clock) — t nominal V _{DD} and 25 °C	—	4	_	MHz	
∆f _{intf_ft}	Frequency deviati (fast clock) over te factory trimmed at	on of internal reference clock emperature and voltage — t nominal V _{DD} and 25 °C	_	+1/-2	± 3	%f _{intf_ft}	2
f _{intf_t}	Internal reference user trimmed at n	frequency (fast clock) — ominal V _{DD} and 25 °C	3	—	5	MHz	
f _{loc_low}	Loss of external c RANGE = 00	lock minimum frequency —	(3/5) x f _{ints_t}	—	—	kHz	
f _{loc_high}	Loss of external c RANGE = 01, 10,	(16/5) x f _{ints_t}		_	kHz		
		Fl	L				
f _{fll_ref}	FLL reference free	quency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS = 00, DMX32 = 0)	20	20.97	25	MHz	3, 4
		640 × f _{fll_ref}					
		Mid range (DRS = 01, DMX32 = 0)	40	41.94	48	MHz	
		$1280 \times f_{fll_ref}$					
		Mid range (DRS = 10, DMX32 = 0)	60	62.915	75	MHz	
		1920 x f _{fll_ref}					
f _{dco_t_DMX3}	DCO output frequency	Low range (DRS = 00, DMX32 = 1)	_	23.99		MHz	5
		$732 \times f_{fll_ref}$					
		Mid range (DRS = 01, DMX32 = 1)	—	47.97	—	MHz	
		$1464 \times f_{fll_ref}$					
		Mid range (DRS = 10, DMX32 = 1)	-	71.991	_	MHz	
		$2197 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		_	180		ps	7
	• f _{VCO} = 75 M	Hz					
t _{fll_acquire}	FLL target freque	ncy acquisition time	_	_	1	ms	8

Table 14. MCG specifications (continued)

1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).

2. The deviation is relative to the factory trimmed frequency at nominal V_{DD} and 25 °C, $f_{ints_{t}}$.

3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
	ADC	• ADLPC = 1, ADHSC =	1.2	2.4	3.9		t _{ADACK} =
	asynchronous	0	2.4	4.0	6.1		1/f _{ADACK}
		 ADLPC = 1, ADHSC = 1 	3.0	5.2	7.3		
f _{ADACK}			4.4	6.2	9.5	MHZ	
		0				MHZ	
		• ADLPC = 0, ADHSC = 1				MHZ	
	Sample Time	See Reference Manual chapte	r for sample	times	11		
TUE	Total unadjusted	12-bit modes		±4	±6.8	LSB ⁴	5
	error	12-bit modes	_	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	—	±0.7	-1.1 to +1.9	LSB ⁴	5
		 <12-bit modes 	—	±0.2	–0.3 to 0.5		
INL	Integral non- linearity	12-bit modes	—	±1.0	-2.7 to +1.9	LSB ⁴	5
		 <12-bit modes 	_	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	—	-1.4	-1.8		V _{DDA} S
Eq	Quantization	16-bit modes	—	-1 to 0	-	LSB ⁴	
	enor	 ≤13-bit modes 	—		±0.5		
ENOB	Effective number	16-bit differential mode					6
	of bits	• Avg = 32	12.8	14.5	-	bits	
		• Avg = 4	11.9	13.8	—	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.7		hite	
		• Avg = 4	11 4	13.1		bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode					7
	distortion	• Avg = 32	—	-97	_	dB	
		16-bit single-ended mode		_01		dB	
		• Avg = 32		-31		uD	
SFDR	Spurious free	16-bit differential mode					7
	dynamic range		82	100	_	dB	

Table 22. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

ADC electrical specifications

Symbol	Description	Conditions ¹ .	Min.	Typ. ²	Max.	Unit	Notes
		 Avg = 32 16-bit single-ended mode Avg = 32 	78	92	_	dB	
EIL	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 22. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$

Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, high-speed mode (EN = 1, PMODE = 1)	_	—	200	μA
I _{DDLS}	Supply current, low-speed mode (EN = 1, PMODE = 0)		_	20	μA
V _{AIN}	Analog input voltage	V _{SS}	—	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	—	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	 CR0[HYSTCTR] = 11 	_	30		mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	—	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN = 1, PMODE = 1)	20	35	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN = 1, PMODE = 0)	80	100	600	ns
	Analog comparator initialization delay ²	_	—	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μA
INL	6-bit DAC integral non-linearity	-0.5		0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

Table 23. Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.7 to V_{DD} – 0.7 V.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

Figure 10. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 0)

Figure 11. Typical hysteresis vs. Vin level (V_{DD} = 3.3 V, PMODE = 1)

3.6.3 12-bit DAC electrical characteristics

3.8.1 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Symbol	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation		25	MHz	1
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	-	ns	2
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCS <i>n</i> valid to DSPI_SCK delay	(t _{SCK} /2) – 2	_	ns	3
DS4	DSPI_SCK to DSPI_PCS <i>n</i> invalid delay	(t _{SCK} /2) – 2	_	ns	4
DS5	DSPI_SCK to DSPI_SOUT valid	-	8.7	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	-	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	17	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	-	ns	
	Frequency of operation	_	25	MHz	5
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	-	ns	2
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{SCK} /2) – 2	_	ns	3
DS4	DSPI_SCK to DSPI_PCS <i>n</i> invalid delay	(t _{SCK} /2) – 2	_	ns	4
DS5	DSPI_SCK to DSPI_SOUT valid	_	14.7	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	-	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	17	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	
	Frequency of operation	_	37.5	MHz	6
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	-	ns	2
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCS <i>n</i> valid to DSPI_SCK delay	(t _{SCK} /2) – 2	-	ns	3
DS4	DSPI_SCK to DSPI_PCS <i>n</i> invalid delay	(t _{SCK} /2) – 2	_	ns	4
DS5	DSPI_SCK to DSPI_SOUT valid	_	8.7	ns	

Table 26. Master mode DSPI timing (limited voltage range)

Symbol	Description	Min.	Max.	Unit	Notes
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	—	ns	2
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK} /2) + 4	ns	
DS11	DSPI_SCK to DSPI_SOUT valid	-	27.8	ns	
DS12	DSPI_SCK to DSPI_SOUT invalid	0	-	ns	
DS13	DSPI_SIN to DSPI_SCK input setup	2.7	_	ns	
DS14	DSPI_SCK to DSPI_SIN input hold	7	_	ns	
DS15	DSPI_SS active to DSPI_SOUT driven	-	22	ns	
DS16	DSPI_SS inactive to DSPI_SOUT not driven	-	22	ns	
	Frequency of operation	-	9.375	MHz	3
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	—	ns	2
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK} /2) + 4	ns	
DS11	DSPI_SCK to DSPI_SOUT valid	-	43.8	ns	
DS12	DSPI_SCK to DSPI_SOUT invalid	0	-	ns	
DS13	DSPI_SIN to DSPI_SCK input setup	2.7	_	ns	
DS14	DSPI_SCK to DSPI_SIN input hold	7	_	ns	
DS15	DSPI_SS active to DSPI_SOUT driven	-	22	ns	
DS16	DSPI_SS inactive to DSPI_SOUT not driven	-	38	ns	
	Frequency of operation		12.5	MHz	4
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	—	ns	2
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK} /2) + 4	ns	
DS11	DSPI_SCK to DSPI_SOUT valid	-	20.8	ns	
DS12	DSPI_SCK to DSPI_SOUT invalid	0	-	ns	
DS13	DSPI_SIN to DSPI_SCK input setup	2.7	_	ns	
DS14	DSPI_SCK to DSPI_SIN input hold	7	-	ns	
DS15	DSPI_SS active to DSPI_SOUT driven	-	22	ns	
DS16	DSPI_SS inactive to DSPI_SOUT not driven	-	15	ns	

Table 29. Slave mode DSPI timing (full voltage range) (continued)

1. Normal pads

2. The SPI module is clocked by the system clock

3. Open Drain pads: SIN: PTC7, SOUT:PTC6

4. Fast pads: SIN: PTD7, SOUT:PTD6, SCK: PTD5, PCS:PTD4

5 Pinout

5.1 KV11 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

• PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, PTD7 are high current pins.

64 LQFP	48 QFP	32 QFN	32 LQFP	Pin Name	DEFAULT	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
-	_	7	7	VDDA/ VREFH	VDDA/ VREFH	VDDA/ VREFH							
-	_	8	8	VREFL/ VSSA	VREFL/ VSSA	VREFL/ VSSA							
1	-	Ι	-	PTE0	ADC1_SE12	ADC1_SE12	PTE0		UART1_TX				
2	-	_	_	PTE1/ LLWU_P0	ADC1_SE13	ADC1_SE13	PTE1/ LLWU_P0		UART1_RX				
3	1	1	1	VDD	VDD	VDD							
4	2	2	2	VSS	VSS	VSS							
5	3	3	3	PTE16	ADC0_SE1/ ADC0_DP1/ ADC1_SE0	ADC0_SE1/ ADC0_DP1/ ADC1_SE0	PTE16	SPI0_PCS0	UART1_TX	FTM_ CLKIN0		FTM0_FLT3	
6	4	4	4	PTE17/ LLWU_P19	ADC0_DM1/ ADC0_SE5/ ADC1_SE5	ADC0_DM1/ ADC0_SE5/ ADC1_SE5	PTE17/ LLWU_P19	SPI0_SCK	UART1_RX	FTM_ CLKIN1		LPTMR0_ ALT3	
7	5	5	5	PTE18/ LLWU_P20	ADC0_SE6/ ADC1_SE1/ ADC1_DP1	ADC0_SE6/ ADC1_SE1/ ADC1_DP1	PTE18/ LLWU_P20	SPI0_SOUT	UART1_ CTS_b	I2C0_SDA		SPI0_SIN	
8	6	6	6	PTE19	ADC0_SE7/ ADC1_SE7/ ADC1_DM1	ADC0_SE7/ ADC1_SE7/ ADC1_DM1	PTE19	SPI0_SIN	UART1_ RTS_b	I2C0_SCL		SPI0_SOUT	
9	7	_	_	PTE20	ADC0_SE0/ ADC0_DP0	ADC0_SE0/ ADC0_DP0	PTE20		FTM1_CH0	UART0_TX			
10	8	-	-	PTE21	ADC0_SE4/ ADC0_DM0	ADC0_SE4/ ADC0_DM0	PTE21		FTM1_CH1	UART0_RX			
11	_	_	—	PTE22	ADC0_SE12	ADC0_SE12	PTE22						
12	-	-	—	PTE23	ADC0_SE13	ADC0_SE13	PTE23						
13	9	-	-	VDDA	VDDA	VDDA							

• PTC6 and PTC7 have open drain outputs

Pinout

64 LQFP	48 QFP	32 QFN	32 LQFP	Pin Name	DEFAULT	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
39	31	-	_	PTB16	DISABLED		PTB16		UART0_RX	FTM_ CLKIN2	CAN0_TX	EWM_IN	
40	32	_	_	PTB17	DISABLED		PTB17		UART0_TX	FTM_ CLKIN1	CAN0_RX	EWM_OUT_ b	
41	_	_	_	PTB18	DISABLED		PTB18	CAN0_TX		FTM3_CH2			
42	_	_	_	PTB19	DISABLED		PTB19	CAN0_RX		FTM3_CH3			
43	33	-	_	PTC0	ADC1_SE11	ADC1_SE11	PTC0	SPI0_PCS4	PDB_ EXTRG0		CMP0_OUT	FTM0_FLT0	SPI0_PCS0
44	34	22	22	PTC1/ LLWU_P6	ADC1_SE3	ADC1_SE3	PTC1/ LLWU_P6	SPI0_PCS3	UART1_ RTS_b	FTM0_CH0	FTM2_CH0		
45	35	23	23	PTC2	ADC0_SE11/ CMP1_IN0	ADC0_SE11/ CMP1_IN0	PTC2	SPI0_PCS2	UART1_ CTS_b	FTM0_CH1	FTM2_CH1		
46	36	24	24	PTC3/ LLWU_P7	CMP1_IN1	CMP1_IN1	PTC3/ LLWU_P7	SPI0_PCS1	UART1_RX	FTM0_CH2	CLKOUT	FTM3_FLT0	
47	—	—	—	VSS	VSS	VSS							
48	—	-	-	VDD	VDD	VDD							
49	37	25	25	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	FTM0_CH3		CMP1_OUT	
50	38	26	26	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2			CMP0_OUT	FTM0_CH2
51	39	27	27	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_SOUT	PDB_ EXTRG1		UART0_RX		I2C0_SCL
52	40	28	28	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_SIN			UART0_TX		I2C0_SDA
53	_	_	_	PTC8	ADC1_SE14/ CMP0_IN2	ADC1_SE14/ CMP0_IN2	PTC8		FTM3_CH4				
54	-	-	_	PTC9	ADC1_SE15/ CMP0_IN3	ADC1_SE15/ CMP0_IN3	PTC9		FTM3_CH5				
55	-	_	_	PTC10	ADC1_SE16	ADC1_SE16	PTC10		FTM5_CH0	FTM5_QD_ PHA			
56	_	_	_	PTC11/ LLWU_P11	ADC1_SE17	ADC1_SE17	PTC11/ LLWU_P11		FTM5_CH1	FTM5_QD_ PHB			
57	41	_	_	PTD0/ LLWU_P12	DISABLED		PTD0/ LLWU_P12	SPI0_PCS0	UART0_ CTS_b	FTM0_CH0	UART1_RX	FTM3_CH0	
58	42	_	_	PTD1	ADC0_SE2	ADC0_SE2	PTD1	SPI0_SCK	UART0_ RTS_b	FTM0_CH1	UART1_TX	FTM3_CH1	
59	43	_	_	PTD2/ LLWU_P13	DISABLED		PTD2/ LLWU_P13	SPI0_SOUT	UART0_RX	FTM0_CH2		FTM3_CH2	I2C0_SCL
60	44	-	-	PTD3	DISABLED		PTD3	SPI0_SIN	UART0_TX	FTM0_CH3		FTM3_CH3	I2C0_SDA
61	45	29	29	PTD4/ LLWU_P14	DISABLED		PTD4/ LLWU_P14	SPI0_PCS1	UART0_ RTS_b	FTM0_CH4	FTM2_CH0	EWM_IN	SPI0_PCS0
62	46	30	30	PTD5	ADC0_SE3	ADC0_SE3	PTD5	SPI0_PCS2	UARTO_ CTS_b	FTM0_CH5	FTM2_CH1	EWM_OUT_ b	SPI0_SCK
63	47	31	31	PTD6/ LLWU_P15	ADC1_SE6	ADC1_SE6	PTD6/ LLWU_P15	FTM4_CH0	UART0_RX	FTM0_CH0	FTM1_CH0	FTM0_FLT0	SPI0_SOUT
64	48	32	32	PTD7	DISABLED		PTD7	FTM4_CH1	UART0_TX	FTM0_CH1	FTM1_CH1	FTM0_FLT1	SPI0_SIN

5.2 KV11 Pinouts

The following figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

Figure 18. 64 LQFP Pinout Diagram

Figure 20. 32 LQFP Pinout Diagram

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KV## M FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KV##	Kinetis family	• KV10 and KV11
М	Key attribute	• Z = M0+ core
FFF	Program flash memory size	• 128 = 128 KB
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 FK = 24 QFN (4 mm x 4 mm) LC = 32 LQFP (7 mm x 7 mm) FM = 32 QFN (5 mm x 5 mm) LF = 48 LQFP (7 mm x 7 mm) FT = 48 QFN (10 mm x 10 mm) LH = 64 LQFP (10 mm x 10 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm)
CCC	Maximum CPU frequency (MHz)	• 7 = 75 MHz
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

7.4 Example

This is an example part number:

8.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

8.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

8.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

8.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V