E·XFL

NXP USA Inc. - MKV10Z128VLF7 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	75MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	DMA, LVD, POR, WDT
Number of I/O	40
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 2x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkv10z128vlf7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number	Memory		FlexCAN	Maximum number of		
	Flash (KB)	SRAM (KB)		I\O's		
MKV11Z128VLH7	128	16	Yes	54		
MKV11Z128VLF7	128	16	Yes	40		
MKV11Z128VLC7 ²	128	16	Yes	28		
MKV11Z128VFM7	128	16	Yes	28		
MKV11Z64VLH7	64	16	Yes	54		
MKV11Z64VLF7	64	16	Yes	40		
MKV11Z64VLC7 ²	64	16	Yes	28		
MKV11Z64VFM7	64	16	Yes	28		
MKV10Z64VLH7	64	16	No	54		
MKV10Z64VLF7	64	16	No	40		
MKV10Z64VLC7 ²	64	16	No	28		
MKV10Z64VFM7	128	16	No	28		
MKV10Z128VLH7	128	16	No	54		
MKV10Z128VLF7	128	16	No	40		
MKV10Z128VLC7 ²	128	16	No	28		
MKV10Z128VFM7	128	16	No	28		

Ordering Information¹

1. To confirm current availability of ordererable part numbers, go to http://www.freescale.com and perform a part number search.

2. The 32-pin LQFP package supporting this part number is not yet available, however it is included in a Package Your Way program for Kinetis MCUs. Please visit http://www.freescale.com/KPYW for more details.

Related Resources

Туре	Description
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.
Package drawing	Package dimensions are provided in package drawings.

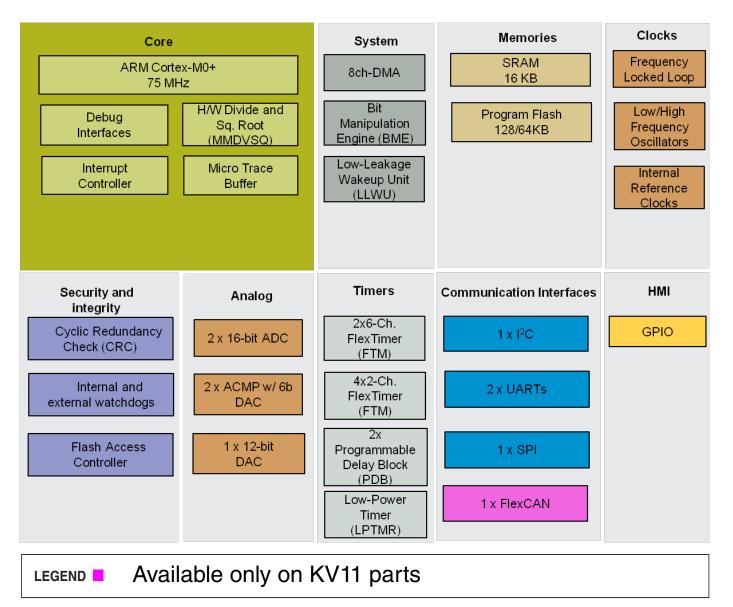


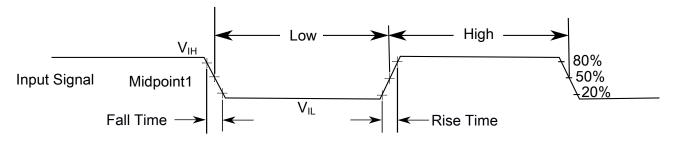
Figure 1. KV11 block diagram

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	120	mA
V _{IO}	Digital pin input voltage (except open drain pins)	-0.3	VDD + 0.3 ¹	V
	Open drain pins (PTC6 and PTC7)	-0.3	5.5	V
Ι _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

1. Maximum value of V_{IO} (except open drain pins) must be 3.8 V.

2 General

Electromagnetic compatibility (EMC) performance depends on the environment in which the MCU resides. Board design and layout, circuit topology choices, location, characteristics of external components, and MCU software operation play a significant role in EMC performance.


See the following applications notes available on freescale.com for guidelines on optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 2. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume:

- 1. output pins
 - have $C_L=30$ pF loads,
 - are slew rate disabled, and
 - are normal drive strength

2.2 Nonswitching electrical specifications

2.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{IH}	Input high voltage				
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	$0.7 \times V_{DD}$	—	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	_	V	
V _{IL}	Input low voltage				
	• 2.7 V \leq V _{DD} \leq 3.6 V	_	$0.35 \times V_{DD}$	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	-	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$		V	
I _{ICIO}	Pin negative DC injection current—single pin • V _{IN} < V _{SS} –0.3V	-5	_	mA	1

Table continues on the next page...

2.2.3 Voltage and current operating behaviors Table 3. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad				
	All port pins, except PTC6 and PTC7	V _{DD} – 0.5	_	v	
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -5 mA	V _{DD} – 0.5	_	v	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -1.5 \text{ mA}$				
V _{OH}	Output high voltage — High drive pad				
	PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6,	V _{DD} – 0.5	_	v	
	PTD7 pins	V _{DD} – 0.5	_	v	
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -18 mA				
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -6 \text{ mA}$				
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — Normal drive pad				
	All port pins		0.5	v	
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 5 mA		0.5	v	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 1.5 mA				
V _{OL}	Output low voltage — High drive pad				
	PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6,	_	0.5	v	
	PTD7 pins		0.5	v	
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 18 mA				
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 6 \text{ mA}$				
I _{OLT}	Output low current total for all ports	—	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	-	1	μA	
I _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μA	1
I _{IN}	Input leakage current (total all pins) for full temperature range	-	41	μA	1
I _{OZ}	Hi-Z (off-state) leakage current (per pin)		1	μA	
R _{PU}	Internal pullup resistors	20	50	kΩ	2

1. Measured at $V_{DD} = 3.6 V$

2. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

Symbol	Description		Temperature (°C)					
		-40	25	50	70	85	105	
I _{EREFSTEN4MHz}	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	228	237	245	251	258	uA
I _{EREFSTEN32KHz}	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled.	440	490	540	560	570	580	
	VLLS1	440	490	540	560	570	580	nA
	VLLS3	510	560	560	560	610	680	
	VLPS	510	560	560	560	610	680	
	STOP							
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.	66	66	66	66	66	66	
	MCGIRCLK (4 MHz internal reference clock)	00	00	00	00	00	00	μA
	OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{SPI}	SPI peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.							
	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μA
	OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{I2C}	I2C peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.	00	00					
	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μ
	OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	

Table 6.	Low power mode	peripheral adders —	typical value (continued)

Table continues on the next page...

Symbol	Description		Temperature (°C)					
		-40	25	50	70	85	105	
I _{FTM}	FTM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents.							μA
	MCGIRCLK (4 MHz internal reference clock)	150	150	150	150	150	150	F
	OSCERCLK (4 MHz external crystal)	300	300	300	320	340	350	
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at VDD and VDDA by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	366	366	366	366	366	366	μΑ
Iwdog	WDOG peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.							_
	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μA
	OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	

Table 6. Low power mode peripheral adders — typical value (continued)

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE for run mode (except for 75 MHz which is in FEE mode), and BLPE for VLPR mode
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

General

Figure 3. Run mode supply current vs. core frequency

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature ¹	-40	105	°C

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is:

 $T_J = T_A + R_{\theta JA} x$ chip power dissipation

2.4.2 Thermal attributes

Table 12	. Thermal	attributes
----------	-----------	------------

Board type	Symb ol	Description	64 LQFP	48 LQFP	32 LQFP	32 QFN	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	64	81	85	98	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	46	57	57	34	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	52	68	72	82	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	39	51	50	28	°C/W	
-	R _{θJB}	Thermal resistance, junction to board	28	35	33	14	°C/W	2
-	R _{θJC}	Thermal resistance, junction to case	15	25	25	2.5	°C/W	3
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	2	7	7	8	°C/W	4

1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	1000	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)		500		ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

 Table 16.
 Oscillator frequency specifications (continued)

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	_
t _{hversscr}	Sector Erase high-voltage time	—	13	113	ms	1
t _{hversall}	Erase All high-voltage time	—	52	452	ms	1

 Table 17.
 NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec2k}	Read 1s Section execution time (flash sector)	—	—	60	μs	1
t _{pgmchk}	Program Check execution time	_	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	_	—	30	μs	1
t _{pgm4}	Program Longword execution time	_	65	145	μs	_
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	_	—	0.9	ms	1
t _{rdonce}	Read Once execution time	_	—	30	μs	1
t _{pgmonce}	Program Once execution time	_	100	_	μs	
t _{ersall}	Erase All Blocks execution time	-	140	1150	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	—	—	30	μs	1

3.4.1.2 Flash timing specifications — commands Table 18. Flash command timing specifications

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 19. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	12.0	mA
I _{DD_ERS}			1.5	8.0	mA

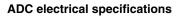

3.4.1.4 Reliability specifications

Table 20. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes				
	Program Flash									
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years	—				
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years					
n _{nvmcycp}	Cycling endurance	10 K	50 K		cycles	2				

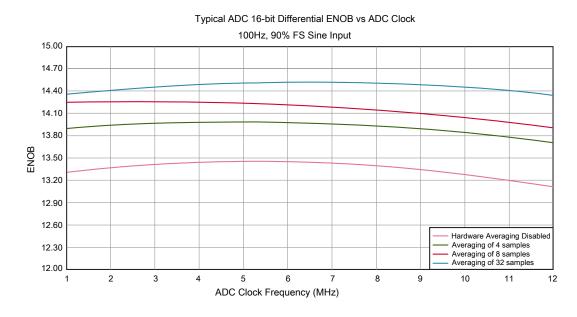
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_i \leq 125 °C.

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog


3.6.1 ADC electrical specifications

3.6.1.1 16-bit ADC operating conditions Table 21. 16-bit ADC operating conditions

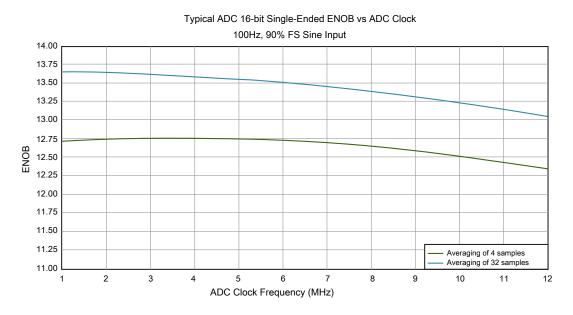

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V_{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V_{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage	16-bit differential mode	VREFL		31/32 * VREFH	V	
		All other modes	VREFL	—	VREFH		
C _{ADIN}	Input	16-bit mode	_	8	10	pF	
	capacitance	 8-bit / 10-bit / 12-bit modes 	—	4	5		
R _{ADIN}	Input resistance			2	5	kΩ	
R _{AS}	Analog source resistance	13-bit / 12-bit modes					3
	resistance	f _{ADCK} < 4 MHz	—		5	kΩ	
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0		24.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0		12.0	MHz	4
C _{rate}	ADC conversion	≤ 13-bit modes					5
	rate	No ADC hardware averaging	20.000	_	1200	Ksps	
		Continuous conversions enabled, subsequent conversion time					

Table continues on the next page ...

3.6.2 CMP and 6-bit DAC electrical specifications Table 23. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	DD Supply voltage		_	3.6	V

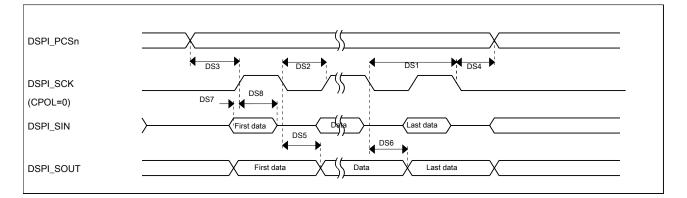
Table continues on the next page ...

3.8.1 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Symbol	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation		25	MHz	1
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	_	ns	2
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{SCK} /2) - 2	-	ns	3
DS4	DSPI_SCK to DSPI_PCS <i>n</i> invalid delay	(t _{SCK} /2) - 2	_	ns	4
DS5	DSPI_SCK to DSPI_SOUT valid	_	8.7	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	-	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	17	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	-	ns	
	Frequency of operation	_	25	MHz	5
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	_	ns	2
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{SCK} /2) - 2	-	ns	3
DS4	DSPI_SCK to DSPI_PCS <i>n</i> invalid delay	(t _{SCK} /2) - 2	-	ns	4
DS5	DSPI_SCK to DSPI_SOUT valid	_	14.7	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	-	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	17	_	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	-	ns	
	Frequency of operation	-	37.5	MHz	6
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	-	ns	2
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCS <i>n</i> valid to DSPI_SCK delay	(t _{SCK} /2) - 2	_	ns	3
DS4	DSPI_SCK to DSPI_PCS <i>n</i> invalid delay	(t _{SCK} /2) - 2	-	ns	4
DS5	DSPI_SCK to DSPI_SOUT valid	_	8.7	ns	

Table 26. Master mode DSPI timing (limited voltage range)


Table continues on the next page...

Symbol	Description	Min.	Max.	Unit	Notes
	Frequency of operation	-	25	MHz	7
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	_	ns	3
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 4	(t _{SCK} /2) + 4	ns	
DS3	DSPI_PCS <i>n</i> valid to DSPI_SCK delay	(t _{SCK} /2) - 4	_	ns	4
DS4	DSPI_SCK to DSPI_PCS <i>n</i> invalid delay	(t _{SCK} /2) - 4	_	ns	5
DS5	DSPI_SCK to DSPI_SOUT valid	-	10		
DS6	DSPI_SCK to DSPI_SOUT invalid	-7.8	_	ns	
DS7	DS7 DSPI_SIN to DSPI_SCK 17 – ns input setup		ns		
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

Table 28. Master mode DSPI timing (full voltage range) (continued)

- 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.
- 2. Normal pads
- 3. The SPI module is clocked by the system clock
- 4. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].
- 5. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC]
- 6. Open Drain pads: SIN: PTC7, SOUT: PTC6
- 7. Fast pads: SIN: PTD7, SOUT:PTD6, SCK: PTD5, PCS:PTD4

Figure 16. DSPI classic SPI timing — master mode

Table 29. Slave mode DSPI timing (full voltage range)

Symbol	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.7	3.6	V	
	Frequency of operation	_	9.375	MHz	1

Table continues on the next page ...

5 Pinout

5.1 KV11 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

• PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, PTD7 are high current pins.

64 LQFP	48 QFP	32 QFN	32 LQFP	Pin Name	DEFAULT	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
—	-	7	7	VDDA/ VREFH	VDDA/ VREFH	VDDA/ VREFH							
-	Ι	8	8	VREFL/ VSSA	VREFL/ VSSA	VREFL/ VSSA							
1	Ι	Ι	-	PTE0	ADC1_SE12	ADC1_SE12	PTE0		UART1_TX				
2	Ι	1	1	PTE1/ LLWU_P0	ADC1_SE13	ADC1_SE13	PTE1/ LLWU_P0		UART1_RX				
3	1	1	1	VDD	VDD	VDD							
4	2	2	2	VSS	VSS	VSS							
5	3	3	3	PTE16	ADC0_SE1/ ADC0_DP1/ ADC1_SE0	ADC0_SE1/ ADC0_DP1/ ADC1_SE0	PTE16	SPI0_PCS0	UART1_TX	FTM_ CLKIN0		FTM0_FLT3	
6	4	4	4	PTE17/ LLWU_P19	ADC0_DM1/ ADC0_SE5/ ADC1_SE5	ADC0_DM1/ ADC0_SE5/ ADC1_SE5	PTE17/ LLWU_P19	SPI0_SCK	UART1_RX	FTM_ CLKIN1		LPTMR0_ ALT3	
7	5	5	5	PTE18/ LLWU_P20	ADC0_SE6/ ADC1_SE1/ ADC1_DP1	ADC0_SE6/ ADC1_SE1/ ADC1_DP1	PTE18/ LLWU_P20	SPI0_SOUT	UART1_ CTS_b	I2C0_SDA		SPI0_SIN	
8	6	6	6	PTE19	ADC0_SE7/ ADC1_SE7/ ADC1_DM1	ADC0_SE7/ ADC1_SE7/ ADC1_DM1	PTE19	SPI0_SIN	UART1_ RTS_b	12C0_SCL		SPI0_SOUT	
9	7	_	—	PTE20	ADC0_SE0/ ADC0_DP0	ADC0_SE0/ ADC0_DP0	PTE20		FTM1_CH0	UART0_TX			
10	8	—	-	PTE21	ADC0_SE4/ ADC0_DM0	ADC0_SE4/ ADC0_DM0	PTE21		FTM1_CH1	UART0_RX			
11	_	_	_	PTE22	ADC0_SE12	ADC0_SE12	PTE22						
12	_	_	_	PTE23	ADC0_SE13	ADC0_SE13	PTE23						
13	9	—	_	VDDA	VDDA	VDDA							

• PTC6 and PTC7 have open drain outputs

44

5.2 KV11 Pinouts

The following figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

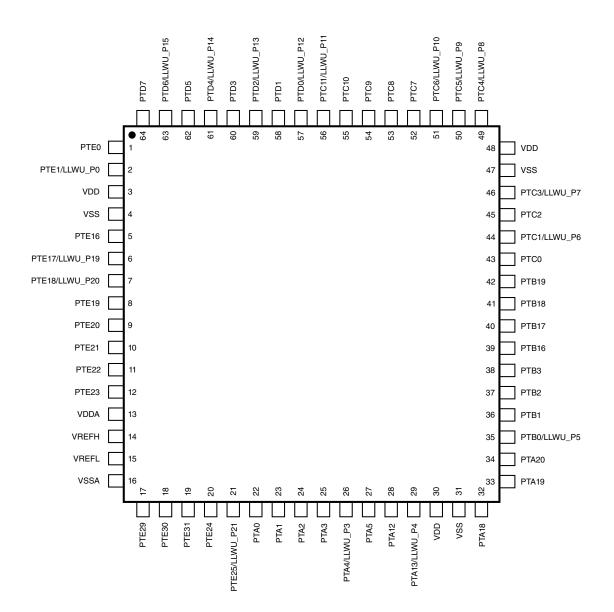


Figure 18. 64 LQFP Pinout Diagram

8.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

8.3.1 Example

This is an example of an attribute:

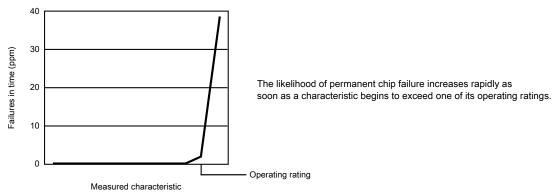
Symbol Description		Min.	Max.	Unit	
CIN_D	Input capacitance: digital pins	—	7	pF	

8.4 Definition: Rating

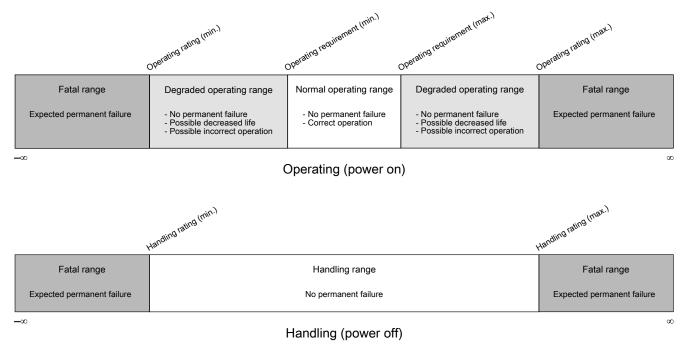
A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

8.4.1 Example


This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V



Terminology and guidelines

8.5 Result of exceeding a rating

8.6 Relationship between ratings and operating requirements

8.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

8.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

8.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions: