

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4F
Core Size	32-Bit Single-Core
Speed	200MHz
Connectivity	CANbus, CSIO, EBI/EMI, Ethernet, I ² C, LINbus, SD, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	120
Program Memory Size	2MB (2M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e2ccah0agv2000a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Purpose I/O Port

This series can use its pins as general purpose I/O ports when they are not used for external bus or peripherals; moreover, the port relocate function is built in. It can set the I/O port to which the peripheral function can be allocated.

- Capable of pull-up control per pin
- Capable of reading pin level directly
- ■Built-in port-relocate function
- Up to 120 high-speed general-purpose I/O ports in 144-pin package
- Some pins 5 V tolerant I/O. See "4. Pin Descriptions" and "5. I/O Circuit Type" for the corresponding pins.

Multi-function Timer (Max three units)

The multi-function timer is composed of the following blocks: Minimum resolution: 5.00 ns

- ■16-bit free-run timer × 3 ch/unit
- ■Input capture × 4 ch/unit
- ■Output compare × 6 ch/unit
- A/D activation compare × 6 ch/unit
- Waveform generator × 3 ch/unit
- 16-bit PPG timer × 3 ch/unit

The following functions can be used to achieve the motor control:

PWM signal output function

- DC chopper waveform output function
- Dead time function
- Input capture function
- A/D convertor activate function
- DTIF (motor emergency stop) interrupt function

Real-Time Clock (RTC)

The real-time clock can count year, month, day, hour, minute, second, or day of the week from 00 to 99.

- Interrupt function with specifying date and time (year/month/day/hour/minute) is available. This function is also available by specifying only year, month, day, hour, or minute.
- Timer interrupt function after set time or each set time.
- Capable of rewriting the time with continuing the time count.
- Leap year automatic count is available.

Quadrature Position/Revolution Counter (QPRC; Max four channels)

The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. It is also possible to use up/down counter.

- The detection edge of the three external event input pins AIN, BIN and ZIN is configurable.
- 16-bit position counter
- ■16-bit revolution counter
- Two 16-bit compare registers

Dual Timer (32-/16-bit Down Counter)

The dual timer consists of two programmable 32-/16-bit down counters.

Operation mode is selectable from the following for each channel:

- ■Free-running
- ■Periodic (= Reload)
- One shot

Watch Counter

The watch counter is used for wake up from low-power consumption mode. It is possible to select the main clock, sub clock, built-in High-speed CR clock, or built-in low-speed CR clock as the clock source.

■Interval timer: up to 64 s (max) with a sub clock of 32.768 kHz

External Interrupt Controller Unit

- External interrupt input pin: Max 32 pins
- ■Include one non-maskable interrupt (NMI)

Watchdog Timer (Two channels)

A watchdog timer can generate interrupts or a reset when a time-out value is reached.

This series consists of two different watchdogs: a "hardware" watchdog and a "software" watchdog.

The hardware watchdog timer is clocked by low-speed internal CR oscillator. The hardware watchdog is thus active in any power saving mode except RTC mode and Stop mode.

Cyclic Redundancy Check (CRC) Accelerator

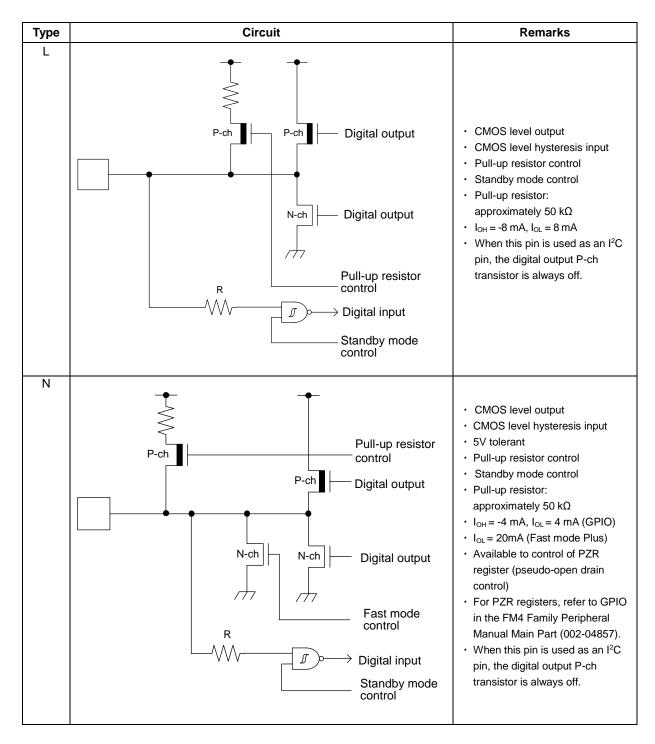
The CRC accelerator helps to verify data transmission or storage integrity.

CCITT CRC16 and IEEE-802.3 CRC32 are supported.

CCITT CRC16 generator polynomial: 0x1021

■IEEE-802.3 CRC32 generator polynomial: 0x04C11DB7

Pin Number		umber			.i/O	Pin State
LQQ216	LQP176	LQS144	LBE192	Pin Name	Circuit Type	Туре
				P68		
				SCK13_1		
204	_	_	_	(SCL13_0)	– Е	1
204	-	_	_	RTO21_1		•
				(PPG20_1)	_	
				TIOA14_2		
				P67	_	
				SOT13_1		
205	-	-	-	(SDA13_1)	E E	I
				RTO22_1		
				(PPG22_1) TIOB15_2	-	
				P66		
				SIN13_1	_	
				RTO23_1	-	
206	-	-	-	(PPG22_1)	E	К
				TIOA15_2		
				INT15_2		
				P65		
207	167	-	Ге	RTO24_1		к
207	167	107 -	E6	(PPG24_1)	E	ĸ
				INT28_1		
				P64		
			5-	CTS4_0	_	
208	168	-	B5	RTO25_1	I	К
				(PPG24_1)	_	
				INT29_1		-
		169 137	C5	P63	-	
209	160			ADTG_3 RTS4_0	- L	к
209	109			INT30_0	L	ĸ
				MOEX_0	_	
				P62		
			B4	SCK4_0	-	
210	170	170 138		(SCL4_0)	L	I
				MWEX_0		
				P61		
				UHCONX0		
				SOT4_0		
211	171	139	C4	(SDA4_0)	L	I
				MALE_0	_	
				RTCCO_0	_	
				SUBOUT_0		
				P60		
212	172	140	B3	SIN4_0	- 1	Q
				INT31_0 WKUP3		
213	173	141	A4	USBVCC0	_	-
				P80		
214	174	142	A3	UDM0	н	R
04 <i>E</i>	475	140	^ 2	P81		Р
215	175	143	A2	UDP0	- н	R



	Pin N	umber		Pin Name	I/O Circuit	Pin State
LQQ216	LQP176	LQS144	LBE192	Pin Name	Туре	Туре
216	176	144	B1		-	-
-	-	-	E1		-	-
-	-	-	G1		-	-
-	-	-	P7		-	-
-	-	-	P11		-	-
-	-	-	L14		-	-
-	-	-	A11		-	-
-	-	-	A5		-	-
-	-	-	N7	VSS	-	-
-	-	-	M7		-	-
-	-	-	L7		-	-
-	-	-	K7		-	-
-	-	-	J7		-	-
	-	-	G7		-	-
-	-	-	H7		-	-
-	-	-	H8		-	-
-	-	-	G8		-	-

					umber	
Module	Pin Name	Function	LQQ 216	LQP 176	LQS 144	LBE 192
	SWCLK	Serial wire debug interface clock input pin	165	135	111	A12
	SWDIO	Serial wire debug interface data input/ output pin	167	137	113	B12
	SWO	Serial wire viewer output pin	168	138	114	B11
	ТСК	JTAG test clock input pin	165	135	111	A12
	TDI	JTAG test data input pin	166	136	112	C12
	TDO	JTAG debug data output pin	168	138	114	B11
	TMS	JTAG test mode state input/output pin	167	137	113	B12
	TRACECLK	Trace CLK output pin of ETM/HTM	131	107	87	H12
	TRACED0		132	108	88	H14
	TRACED1	Trace data output pin of ETM/	133	109	89	G14
	TRACED2	Trace data output pin of HTM	134	110	90	H13
Debugger	TRACED3		135	111	91	H11
	TRACED4		138	112	-	G13
	TRACED5		139	113	-	F14
	TRACED6		140	114	-	G12
	TRACED7		141	115	-	G11
	TRACED8		119	-	-	-
	TRACED9	Trace data output pin of HTM	120	-	-	-
	TRACED10		121	-	-	-
	TRACED11		122	-	-	-
	TRACED12		148	-	-	-
	TRACED13		149	-	-	-
	TRACED14		150	-	-	-
	TRACED15		151	-	-	-
	TRSTX	JTAG test reset Input pin	164	134	110	B13

Latch-Up

Semiconductor devices are constructed by the formation of p-type and n-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic pnpn junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred milliamps to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

As previously mentioned, all semiconductor devices have inherent rates of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

6.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

7. Handling Devices

Power-Supply Pins

In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. All of these pins should be connected externally to the power supply or ground lines, however, in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Be sure to connect the current-supply source with the power pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between VCC and VSS near this device.

A malfunction may occur when the power-supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the VCC power supply voltage. As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard VCC value, and the transient fluctuation rate does not exceed 0.1V/µs at a momentary fluctuation such as switching the power supply.

Crystal Oscillator Circuit

Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane, as this is expected to produce stable operation.

Evaluate the oscillation introduced by the use of the crystal oscillator by your mount board.

Sub Crystal Oscillator

The sub-oscillator circuit for devices in this family is low gain to keep current consumption low. To stabilize the oscillation, Cypress recommends a crystal oscillator that meets the following conditions:

Surface mount type

Size: More than 3.2 mm × 1.5 mm Load capacitance: approximately 6 pF to 7 pF

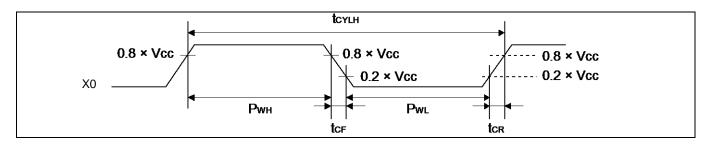
Lead type

Load capacitance: approximately 6 pF to 7 pF

Peripheral Address Map

Start Address	End Address	Bus	Peripherals
0x4000_0000	0x4000_0FFF	AHB	MainFlash I/F register
0x4000_1000	0x4000_FFFF	AIID	Reserved
0x4001_0000	0x4001_0FFF		Clock/reset control
0x4001_1000	0x4001_1FFF		Hardware watchdog timer
0x4001_2000	0x4001_2FFF	APB0	Software watchdog timer
0x4001_3000	0x4001_4FFF		Reserved
0x4001_5000	0x4001_5FFF		Dual-timer
0x4001_6000	0x4001_FFFF		Reserved
0x4002_0000	0x4002_0FFF		Multi-Function Timer unit 0
0x4002_1000	0x4002_1FFF		Multi-Function Timer unit 1
0x4002_2000	0x4002_2FFF		Multi-Function Timer unit 1
0x4002_3000	0x4002_3FFF		Reserved
0x4002_4000	0x4002_4FFF		PPG
0x4002_5000	0x4002_5FFF	APB1	Base timer
0x4002_6000	0x4002_6FFF		Quadrature position/revolution counter
0x4002_7000	0x4002_7FFF		A/D converter
0x4002_8000	0x4002_DFFF		Reserved
0x4002_E000	0x4002_EFFF		Internal CR trimming
0x4002_F000	0x4002_FFFF		Reserved
0x4003 0000	0x4003_0FFF		External interrupt controller
0x4003_1000	0x4003_1FFF		Interrupt request batch-read function
0x4003_2000	0x4003_2FFF		Reserved
0x4003_3000	0x4003 3FFF		D/A converter
0x4003 4000	0x4003 4FFF		Reserved
0x4003_5000	0x4003_57FF		Low voltage detector
0x4003_5800	0x4003_5FFF		Deep standby mode Controller
0x4003_6000	0x4003 6FFF		USB clock generator
0x4003_7000	0x4003 7FFF		CAN prescaler
0x4003_8000	0x4003_8FFF	APB2	Multi-function serial interface
0x4003_9000	0x4003_9FFF		CRC
0x4003_A000	0x4003_AFFF	_	Watch counter
0x4003_B000	0x4003 BFFF	_	RTC/port control
0x4003_C000	0x4003_C0FF	_	Low-speed CR prescaler
0x4003_C100	0x4003_C7FF	-	Peripheral clock gating
0x4003_C800	0x4003_CFFF		Reserved
0x4003 D000	0x4003_DFFF		l ² S prescaler
0x4003_E000	0x4003_EFFF		Reserved
0x4003_F000	0x4003 FFFF		External memory interface
0x4004 0000	0x4004 FFFF		USB ch 0
0x4005 0000	0x4005_FFFF	_	USB ch 1
0x4006_0000	0x4006_0FFF	_	DMAC register
0x4006_0000	0x4006_0FFF		DSTC register
0x4006_2000	0x4006_2FFF		CAN ch 0
0x4006_2000	0x4006_2FFF	_	CAN ch 0
	0x4006_5FFF		Ethernet-MAC ch 0
0x4006_4000 0x4006_6000	0x4006_5FFF	-	Ethernet-MAC setting register
			<u> </u>
0x4006_7000	0x4006_BFFF	AHB	Reserved
0x4006_C000	0x4006_CFFF	-	I ² S Reconved
0x4006_D000	0x4006_DFFF	-	Reserved
0x4006_E000	0x4006_EFFF	-	SD card I/F
0x4006_F000	0x4006_FFFF	4	GPIO
0x4007_0000	0x4007_FFFF	_	CAN-FD (CAN ch 2)
0x4008_0000	0x4008_0FFF	_	Programmable-CRC
0x4008_1000	0x41FF_FFFF	_	Reserved
0x200E_0000	0x200E_FFFF	_	Workflash I/F register
0xD000_0000	0xDFFF_FFF		High-speed quad SPI control register

12.4 AC Characteristics

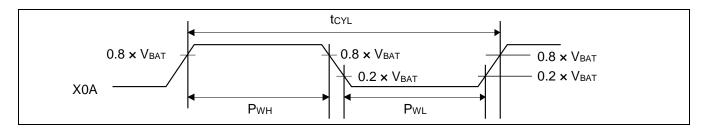

12.4.1 Main Clock Input Characteristics

Parameter	Symbo	Pin	Conditions	Va	lue	Unit	Remarks	
Parameter	Î Î	Name	Conditions	Min	Max	Unit	Remarks	
			V _{CC} ≥4.5 V	4	48	MHz	When crystal oscillator is	
Input fraguanay	f _{CH}		Vcc < 4.5 V	4	20		connected	
Input frequency	ICH		V _{CC} ≥4.5 V	4	48	MHz	When using external cleak	
			Vcc < 4.5 V	4	20		When using external clock	
Input clock cycle	4	X0,	V _{CC} ≥4.5 V	20.83	250		When using external clock	
	t CYLH	X1	Vcc < 4.5 V	50	250	ns	when using external clot	
Input clock pulse width	-		Pwн/tcylн, Pwl/tcylн	45	55	%	When using external clock	
Input clock rise time and fall time	tcF, tcR		-	-	5	ns	When using external clock	
	fcc	-	-	-	200	MHz	Base clock (HCLK/FCLK)	
Internal operating clock *1	f _{CP0}	-	-	-	100	MHz	APB0bus clock *2	
frequency	f _{CP1}	-	-	-	200	MHz	APB1bus clock *2	
	f _{CP2}	-	-	-	100	MHz	APB2bus clock *2	
	tcycc	-	-	5	-	ns	Base clock (HCLK/FCLK)	
Internal operating clock *1	tcycp0	-	-	10	-	ns	APB0bus clock *2	
cycle time	tcycp1	-	-	5	-	ns	APB1bus clock *2	
	tCYCP2	-	-	10	-	ns	APB2bus clock ^{*2}	

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +105^{\circ}C)$

*1: For more information about each internal operating clock, see Chapter 2-1: Clock in FM4 Family Peripheral Manual Main Part (002-04856).

*2: For more about each APB bus to which each peripheral is connected, see 8. Block Diagram in this data sheet.



12.4.2 Sub Clock Input Characteristics

 $(V_{BAT} = 1.65V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks	
Falameter	Symbol	Name	Conditions	Min	Тур	Max	Onit	Remarks	
Input frequency	1/tcyll		-	-	32.768	-	kHz	When crystal oscillator is connected *	
		X0A,	-	32	-	100	kHz	When using external clock	
Input clock cycle	tcyll	X1A	-	10	-	31.25	μs	When using external clock	
Input clock pulse width	-		Рwн/tcyll, Pwl/tcyll	45	-	55	%	When using external clock	

*: For more information about crystal oscillator, see Sub crystal oscillator in 7. Handling Devices.

12.4.3 Built-In CR Oscillation Characteristics

Built-In High-speed CR

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Conditions		Value		Unit	Remarks	
Farameter	Symbol	conditions	Min	Тур	Max	Onit	Rellarks	
Clock frequency		T _J = - 20°C to + 105°C	3.92	4	4.08		When trimming *1	
	fскн	T _J = - 40°C to + 125°C	3.88	4	4.12	MHz	when triming	
		T _J = - 40°C to + 125°C	3	4	5		When not trimming	
Frequency stabilization time	tcrwt	-	-	-	30	μs	*2	

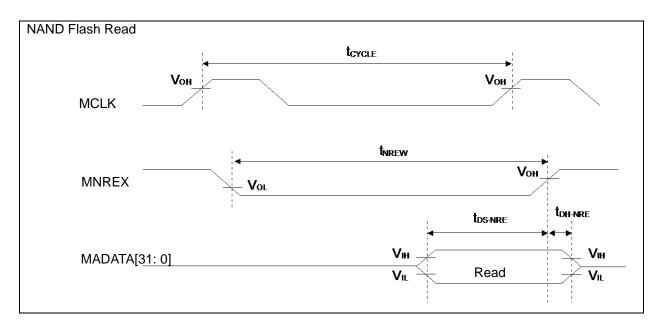
*1: In the case of using the values in CR trimming area of flash memory at shipment for frequency/temperature trimming

*2: This is the time to stabilize the frequency of the High-speed CR clock after setting trimming value. During this period, it is able to use the High-speed CR clock as a source clock.

Built-In Low-speed CR

(V_{CC} = 2.7V to 5.5V, V_{SS} = 0V)

Parameter	Symbol	Condition		Value	Unit	Remarks	
	Symbol	Condition	Min	Тур	Max	Onit	Remarks
Clock frequency	fcrl	-	50	100	150	kHz	

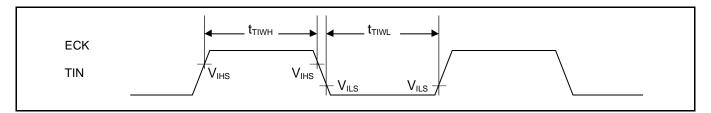

NAND Flash Mode

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
i arameter	Gymbol	i in Name	Conditions	Min	Max	Onit	itema ka
MNREX Min pulse width	t _{NREW}	MNREX	-	MCLK×n-3	-	ns	
Data set up →MNREX ↑ time	tds – nre	MNREX, MADATA[31: 0]	-	20	-	ns	
MNREX ↑ → Data hold time	t dh – NRE	MNREX, MADATA[31: 0]	-	0	-	ns	
MNALE ↑ → MNWEX delay time	taleh - NWEL	MNALE, MNWEX	-	MCLK×m-9	MCLK×m+9	ns	
MNALE↓→ MNWEX delay time	TALEL - NWEL	MNALE, MNWEX	-	MCLK×m-9	MCLK×m+9	ns	
MNCLE $\uparrow \rightarrow$ MNWEX delay time	tcleh - NWEL	MNCLE, MNWEX	-	MCLK×m-9	MCLK×m+9	ns	
MNWEX ↑ → MNCLE delay time	tnweh - Clel	MNCLE, MNWEX	-	0	MCLK×m+9	ns	
MNWEX Min pulse width	t _{NWEW}	MNWEX	-	MCLK×n-3	-	ns	
$\begin{array}{c} MNWEX \downarrow \rightarrow \\ Data output time \end{array}$	tnwel – DV	MNWEX, MADATA[31: 0]	-	-9	9	ns	
$\begin{array}{l} MNWEX \uparrow \rightarrow \\ Data \ hold \ time \end{array}$	tnweh – dx	MNWEX, MADATA[31: 0]	-	0	MCLK×m+9	ns	

Note:

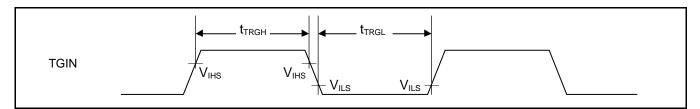
- When the external load capacitance $C_L = 30 \text{ pF}$ (m = 0 to 15, n = 1 to 16)



12.4.11 Base Timer Input Timing

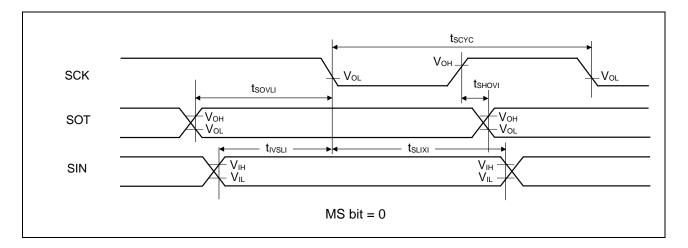
Timer Input Timing

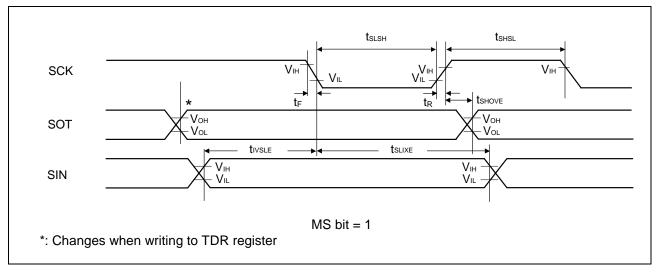
 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$


Parameter	Symbol	bol Pin Name		Value		Unit	Remarks
i arameter	Cymson		itions	Min	Max	om	Romanio
Input pulse width	t⊤ıwн, t⊤ıw∟	TIOAn/TIOBn (when using as ECK, TIN)	-	2tcycp	-	ns	

Trigger Input Timing

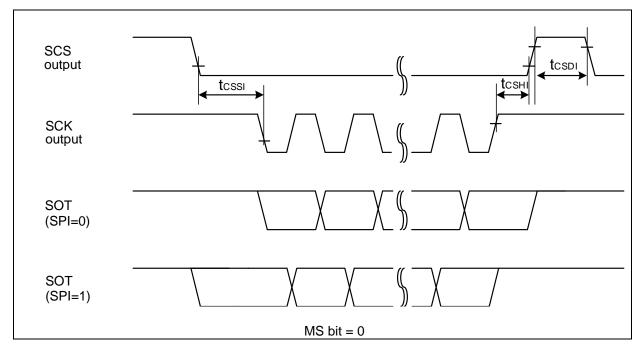
(V_{CC} = 2.7V to 5.5V, V_{SS} = 0V)

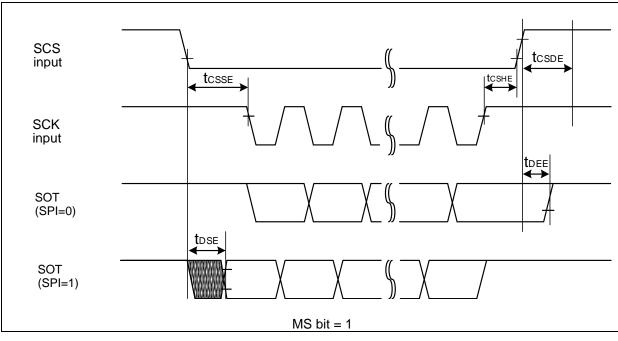

Parameter	Symbol	Pin Name	Cond	Value		Unit	Remarks
Farameter	Symbol	Fili Nallie	itions	Min	Max	Unit	Remarks
Input pulse width	ttrgh, ttrgl	TIOAn/TIOBn (when using as TGIN)	-	2tcycp	-	ns	



Note:

- tcycp indicates the APB bus clock cycle time. For more information about the APB bus number to which the base timer is connected, see 8. Block Diagram in this data sheet.





When Using Synchronous Serial Chip Select (SCINV = 0, CSLVL = 0)

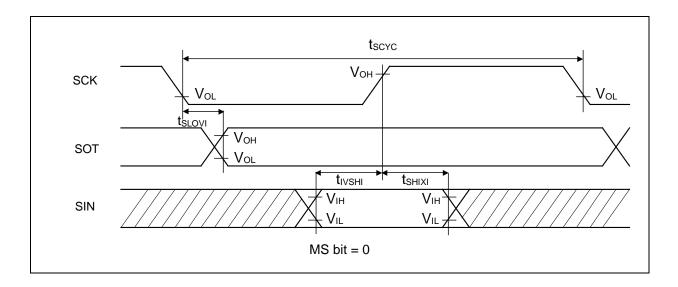
 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V)$

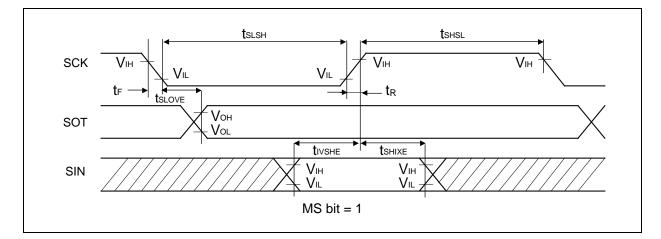
Parameter	Symbol	Conditions	Vcc <	4.5 V	V _{cc} ≥ 4.5 V		Unit
		Conditions	Min	Max	Min	Max	Unit
SCS↑→SCK↓ setup time	tcssi	Internal shift	(*1)-50	(*1)+0	(*1)-50	(*1)+0	ns
SCK↑→SCS↓ hold time	tcsнi		(*2)+0	(*2)+50	(*2)+0	(*2)+50	ns
SCS deselect time	tcsdi	operation	(*3)-50 +5tсүср	(*3)+50 +5tсүср	(*3)-50 +5tсүср	(*3)+50 +5tсүср	ns
SCS↑→SCK↓ setup time	tcsse		3tcycp+30	-	3tcycp+30	-	ns
SCK \uparrow →SCS↓ hold time	t _{CSHE}	External shift clock operation	0	-	0	-	ns
SCS deselect time	tcsde		3tcycp+30	-	3tcycp+30	-	ns
SCS↑→SOT delay time	t _{DSE}		-	40	-	40	ns
SCS↓→SOT delay time	t _{DEE}		0	-	0	-	ns

(*1): CSSU bit valuexserial chip select timing operating clock cycle [ns]

(*2): CSHD bit value×serial chip select timing operating clock cycle [ns]

(*3): CSDS bit valuexserial chip select timing operating clock cycle [ns]


Notes:


 t_{CYCP} indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 8. Block Diagram in this data sheet.

 For more information about CSSU, CSHD, CSDS, and the serial chip select timing operating clock, see FM4 Family Peripheral Manual Main Part (002-04856).

- When the external load capacitance $C_L = 30 \text{ pF}$.

High-Speed Synchronous Serial (SPI = 0, SCINV = 1)

Parameter	Symbol	Pin Name	Conditions	Vcc < 4.5 V		V _{CC} ≥ 4.5 V		Unit
				Min	Max	Min	Max	Unit
Serial clock cycle time	tscyc	SCKx	Internal shift clock operation	4t _{CYCP}	-	4t _{CYCP}	-	ns
$SCK\uparrow \rightarrow SOT$ delay time	tsнovi	SCKx, SOTx		- 10	+ 10	- 10	+ 10	ns
$SIN \rightarrow SCK_{\downarrow}$ setup time	t _{IVSLI}	SCKx, SINx		14		12.5	-	ns
				12.5*				
$SCK\downarrow \rightarrow SIN$ hold time	t _{SLIXI}	SCKx, SINx		5	-	5	-	ns
Serial clock L pulse width	ts∟sн	SCKx	External shift clock operation	2tcycp - 5	-	2tcycp - 5	-	ns
Serial clock H pulse width	tsнs∟	SCKx		tсүср + 10	-	tcycp + 10	-	ns
$SCK_{\uparrow} \rightarrow SOT$ delay time	t _{SHOVE}	SCKx, SOTx		-	15	-	15	ns
$SIN {\rightarrow} SCK {\downarrow} setup time$	tivsle	SCKx, SINx		5	-	5	-	ns
$SCK\downarrow \rightarrow SIN$ hold time	t _{SLIXE}	SCKx, SINx		5	-	5	-	ns
SCK fall time	tF	SCKx		-	5	-	5	ns
SCK rise time	t _R	SCKx		-	5	-	5	ns

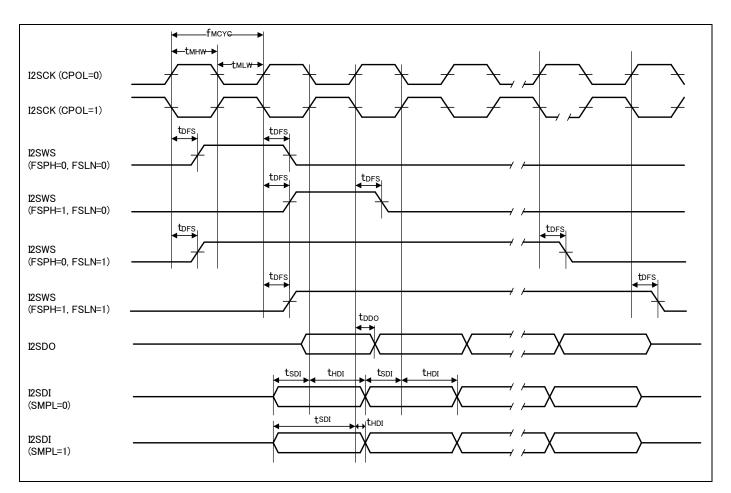
Notes:

- The above characteristics apply to CLK synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 8. Block Diagram in this data sheet.
- These characteristics only guarantee the following pins: No chip select: SIN4_0, SOT4_0, SCK4_0 Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0
- When the external load capacitance $C_L = 30 \text{ pF}$. (For *, when $C_L = 10 \text{ pF}$)

High-Speed Synchronous Serial (SPI = 1, SCINV = 1)

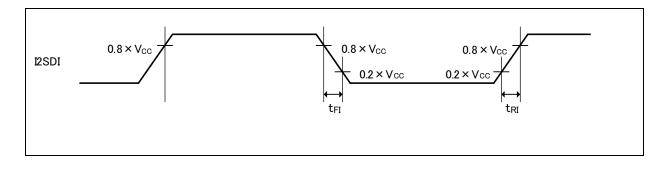
Parameter	Symbol	Pin Name	Conditions	V _{CC} < 4.5 V		V _{CC} ≥ 4.5 V		Unit
				Min	Max	Min	Max	Unit
Serial clock cycle time	tscyc	SCKx	Internal shift clock operation	4tcycp	-	4t _{CYCP}	-	ns
SCK↓ \rightarrow SOT delay time	t _{SLOVI}	SCKx, SOTx		- 10	+ 10	- 10	+ 10	ns
SIN→SCK↑ setup time	tı∨sнı	SCKx, SINx		14	-	12.5	-	ns
				12.5*				
SCK↑→SIN hold time	t _{SHIXI}	SCKx, SINx		5	-	5	-	ns
SOT→SCK↑ delay time	tsovнı	SCKx, SOTx		2tcycp - 10	-	2t _{CYCP} - 10	-	ns
Serial clock L pulse width	tslsh	SCKx	External shift clock operation	2tcycp - 5	-	2tcycp - 5	-	ns
Serial clock H pulse width	tsнs∟	SCKx		tcycp + 10	-	tcycp + 10	-	ns
SCK↓→SOT delay time	t SLOVE	SCKx, SOTx		-	15	-	15	ns
SIN→SCK↑ setup time	tivshe	SCKx, SINx		5	-	5	-	ns
SCK↑→SIN hold time	t SHIXE	SCKx, SINx		5	-	5	-	ns
SCK fall time	tF	SCKx		-	5	-	5	ns
SCK rise time	t _R	SCKx		-	5	-	5	ns

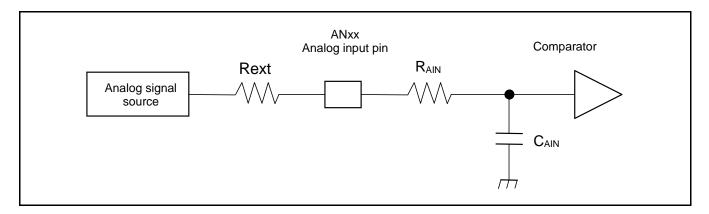
Notes:


- t_{CYCP} indicates the APB bus clock cycle time. For more information about the APB bus number to which the multi-function serial is connected, see 8. Block Diagram in this data sheet.

- These characteristics only guarantee the following pins: No chip select: SIN4_0, SOT4_0, SCK4_0 Chip select: SIN6_0, SOT6_0, SCK6_0, SCS60_0, SCS61_0, SCS62_0, SCS63_0
- When the external load capacitance $C_L = 30 \text{ pF}$. (for *, when $C_L = 10 \text{ pF}$)

⁻ The above characteristics apply to CLK synchronous mode.





Note:

 See Chapter 7-2: PS (Inter-IC Sound bus) Interface in FM4 Family Peripheral Manual Communication Macro Part (002-04862) for the details of CPOL, FSPH, FSLIN, and SMPL.

(Equation 1) $t_S \ge (R_{AIN} + R_{ext}) \times C_{AIN} \times 9$

t_S: Sampling time

 R_{AIN} : Input resistance of A/D = 1.2 k Ω at 4.5 V \leq AV_{CC} \leq 5.5 V

Input resistance of A/D = 1.8 k Ω at 2.7 V \leq AV_{CC} < 4.5 V

 $C_{\text{AIN}}:$ Input capacity of A/D = 12.05 pF at 2.7 V \leq AV_{CC} \leq 5.5 V

Rext: Output impedance of external circuit

(Equation 2) $t_c = t_{CCK} \times 14$

tc: Compare time

t_{CCK}: Compare clock cycle