
Infineon Technologies - CY7C65113C-SXCT Datasheet

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application
Specific: Tailored Solutions for Precision and
Performance

Embedded - Microcontrollers - Application Specific
represents a category of microcontrollers designed with
unique features and capabilities tailored to specific
application needs. Unlike general-purpose
microcontrollers, application-specific microcontrollers are
optimized for particular tasks, offering enhanced
performance, efficiency, and functionality to meet the
demands of specialized applications.

What Are Embedded - Microcontrollers -
Application Specific?

Application-specific microcontrollers are engineered to
excel in particular roles or environments, making them
ideal for applications where general-purpose
microcontrollers might fall short. These microcontrollers
integrate custom features and peripherals that align with
the specific requirements of an application, such as
specialized communication protocols, real-time processing
capabilities, or unique power management needs. By
focusing on particular use cases, they provide solutions
that are both efficient and effective, reducing the need for
additional components and simplifying system design.

Applications of Embedded - Microcontrollers
- Application Specific

The versatility of application-specific microcontrollers
enables their use across a wide range of industries and
applications. In automotive systems, these
microcontrollers are used for tasks like engine control,
advanced driver assistance systems (ADAS), and in-vehicle
communication. In industrial automation, they control
machinery, manage data acquisition, and handle complex
sensor interfacing. Consumer electronics benefit from
these microcontrollers in applications such as smart home
devices, wearable technology, and advanced audio
equipment. Additionally, in medical devices, they provide
precise control for diagnostic and therapeutic equipment,
ensuring reliability and accuracy in critical situations.

Common Subcategories

Within the Embedded - Microcontrollers - Application
Specific category, several subcategories address different
application needs. Automotive Microcontrollers are
designed to meet stringent automotive standards and
provide robust performance in harsh conditions.
Industrial Microcontrollers offer features tailored for
automation, including real-time processing and robust I/O
capabilities. Consumer Electronics Microcontrollers
are optimized for low power consumption and integration
with various sensors and communication modules.
Medical Microcontrollers emphasize reliability,
precision, and compliance with medical device standards.

Details

Product Status Obsolete

Applications USB Hub/Microcontroller

Core Processor M8

Program Memory Type OTP (8kB)

Controller Series USB Hub

RAM Size 256 x 8

Interface I²C, USB

Number of I/O 11

Voltage - Supply 4V ~ 5.5V

Operating Temperature 0°C ~ 70°C

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package 28-SOIC

Purchase URL https://www.e-xfl.com/product-detail/infineon-technologies/cy7c65113c-sxct

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/cy7c65113c-sxct-4513128
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific
https://www.e-xfl.com/product/filter/embedded-microcontrollers-application-specific

 CY7C65113C

Document #: 38-08002 Rev. *G Page 4 of 48

Contents
Pin Configurations ... 5
Product Summary Tables .. 5
Programming Model ...8
Clocking .. 11
Reset .. 12
Suspend Mode .. 13
General-purpose I/O Ports ... 14
12-bit Free-Running Timer ... 17
I2C Configuration Register .. 18
I2C-compatible Controller .. 18
Processor Status and Control Register 20
Interrupts ... 21
USB Overview ... 26
USB Hub .. 26
USB Mode Tables ... 35
Register Summary .. 39

Sample Schematic .. 41
Absolute Maximum Ratings .. 41
Electrical Characteristics ... 42
Switching Characteristics .. 43
Ordering Information .. 44

Ordering Code Definitions ... 44
Package Diagram .. 45
Acronyms .. 46
Document Conventions ... 46

Units of Measure ... 46
Document History Page ... 47
Sales, Solutions, and Legal Information 48

Worldwide Sales and Design Support 48
Products .. 48
PSoC Solutions ... 48

 CY7C65113C

Document #: 38-08002 Rev. *G Page 5 of 48

Product Summary Tables
Pin Assignments

Pin Configurations
Figure 1. CY7C65113C 28-Pin SOIC

1

2

3

4

5

6

7

9

11

12

13

14

XTALIN

10

8

15

17

16

19

18

21

20

23

22

25

24

26

28

27

VCC

P1[1]

P1[0]

P1[2]

D–[3]

D+[3]

D–[4]

D+[4]

VREF

GND

D+[0]

D–[0]

D+[1]

D–[1]

D+[2]

D–[2]

P0[7]

P0[5]

P0[3]

P0[1]

XTALOUT

GND

VPP

P0[0]

P0[2]

P0[4]

P0[6]

Top View

Table 1. Pin Assignments

Name I/O 28-pin Description
D+[0], D–[0] I/O 5, 6 Upstream port, USB differential data.
D+[1], D–[1] I/O 7, 8 Downstream Port 1, USB differential data.
D+[2], D–[2] I/O 9, 10 Downstream Port 2, USB differential data.
D+[3], D–[3] I/O 23, 24 Downstream Port 3, USB differential data.
D+[4], D–[4] I/O 21, 22 Downstream Port 4, USB differential data.
P0 I/O P1[7:0]

11, 15, 12, 16, 13, 17, 14, 18
GPIO Port 0 capable of sinking 7 mA (typical).

P1 I/O P1[2:0]
25, 27, 26

GPIO Port 1 capable of sinking 7 mA (typical).

XTALIN IN 2 6-MHz crystal or external clock input.
XTALOUT OUT 1 6-MHz crystal out.
VPP 19 Programming voltage supply, tie to ground during normal operation.
VCC 28 Voltage supply.
GND 4, 20 Ground.
VREF IN 3 External 3.3V supply voltage for the downstream differential data output

buffers and the D+ pull-up.

 CY7C65113C

Document #: 38-08002 Rev. *G Page 7 of 48

Instruction Set Summary
Refer to the CYASM Assembler User’s Guide for more details. Note that conditional jump instructions (i.e., JC, JNC, JZ, JNZ) take
five cycles if jump is taken, four cycles if no jump.

Hub Port Speed 0x4A R/W Hub Downstream Ports Speed 27

Hub Port Control (Ports [4:1]) 0x4B R/W Hub Downstream Ports Control (Ports [4:1]) 28

Hub Port Suspend 0x4D R/W Hub Downstream Port Suspend Control 30

Hub Port Resume Status 0x4E R Hub Downstream Ports Resume Status 30

Hub Ports SE0 Status 0x4F R Hub Downstream Ports SE0 Status 29

Hub Ports Data 0x50 R Hub Downstream Ports Differential Data 29

Hub Downstream Force Low 0x51 R/W Hub Downstream Ports Force LOW (Ports [1:4]) 28

Processor Status & Control 0xFF R/W Microprocessor Status and Control Register 20

Table 3. Instruction Set Summary

MNEMONIC operand opcode cycles MNEMONIC operand opcode cycles
HALT 00 7 NOP 20 4
ADD A,expr data 01 4 INC A acc 21 4
ADD A,[expr] direct 02 6 INC X x 22 4
ADD A,[X+expr] index 03 7 INC [expr] direct 23 7
ADC A,expr data 04 4 INC [X+expr] index 24 8
ADC A,[expr] direct 05 6 DEC A acc 25 4
ADC A,[X+expr] index 06 7 DEC X x 26 4
SUB A,expr data 07 4 DEC [expr] direct 27 7
SUB A,[expr] direct 08 6 DEC [X+expr] index 28 8
SUB A,[X+expr] index 09 7 IORD expr address 29 5
SBB A,expr data 0A 4 IOWR expr address 2A 5
SBB A,[expr] direct 0B 6 POP A 2B 4
SBB A,[X+expr] index 0C 7 POP X 2C 4
OR A,expr data 0D 4 PUSH A 2D 5
OR A,[expr] direct 0E 6 PUSH X 2E 5
OR A,[X+expr] index 0F 7 SWAP A,X 2F 5
AND A,expr data 10 4 SWAP A,DSP 30 5
AND A,[expr] direct 11 6 MOV [expr],A direct 31 5
AND A,[X+expr] index 12 7 MOV [X+expr],A index 32 6
XOR A,expr data 13 4 OR [expr],A direct 33 7
XOR A,[expr] direct 14 6 OR [X+expr],A index 34 8
XOR A,[X+expr] index 15 7 AND [expr],A direct 35 7
CMP A,expr data 16 5 AND [X+expr],A index 36 8
CMP A,[expr] direct 17 7 XOR [expr],A direct 37 7
CMP A,[X+expr] index 18 8 XOR [X+expr],A index 38 8
MOV A,expr data 19 4 IOWX [X+expr] index 39 6
MOV A,[expr] direct 1A 5 CPL 3A 4
MOV A,[X+expr] index 1B 6 ASL 3B 4

Table 2. I/O Register Summary (continued)

Register Name I/O Address Read/Write Function Page

 CY7C65113C

Document #: 38-08002 Rev. *G Page 8 of 48

Programming Model
14-bit Program Counter
The 14-bit Program Counter (PC) allows access to up to 8 KB of
PROM available with the CY7C65113C architecture. The top
32 bytes of the ROM in the 8K part are reserved for testing
purposes. The program counter is cleared during reset, such that
the first instruction executed after a reset is at address 0x0000h.
Typically, this is a jump instruction to a reset handler that
initializes the application (see Interrupt Vectors on page 23).
The lower eight bits of the program counter are incremented as
instructions are loaded and executed. The upper six bits of the
program counter are incremented by executing an XPAGE
instruction. As a result, the last instruction executed within a
256-byte “page” of sequential code should be an XPAGE

instruction. The assembler directive “XPAGEON” causes the
assembler to insert XPAGE instructions automatically. Because
instructions can be either one or two bytes long, the assembler
may occasionally need to insert a NOP followed by an XPAGE
to execute correctly.
The address of the next instruction to be executed, the carry flag,
and the zero flag are saved as two bytes on the program stack
during an interrupt acknowledge or a CALL instruction. The
program counter, carry flag, and zero flag are restored from the
program stack during a RETI instruction. Only the program
counter is restored during a RET instruction.
The program counter cannot be accessed directly by the
firmware. The program stack can be examined by reading SRAM
from location 0x00 and up.

MOV X,expr data 1C 4 ASR 3C 4
MOV X,[expr] direct 1D 5 RLC 3D 4
reserved 1E RRC 3E 4
XPAGE 1F 4 RET 3F 8
MOV A,X 40 4 DI 70 4
MOV X,A 41 4 EI 72 4
MOV PSP,A 60 4 RETI 73 8
CALL addr 50-5F 10 JC addr C0-CF 5 (or 4)
JMP addr 80-8F 5 JNC addr D0-DF 5 (or 4)
CALL addr 90-9F 10 JACC addr E0-EF 7
JZ addr A0-AF 5 (or 4) INDEX addr F0-FF 14
JNZ addr B0-BF 5 (or 4)

Table 3. Instruction Set Summary (continued)

MNEMONIC operand opcode cycles MNEMONIC operand opcode cycles

 CY7C65113C

Document #: 38-08002 Rev. *G Page 9 of 48

Program Memory Organization

Figure 2. Program Memory Space with Interrupt Vector Table

Note that the upper 32 bytes of the 8K PROM are reserved. Therefore, user’s program must not overwrite this space.

after reset Address
 14-bit PC 0x0000 Program execution begins here after a reset

0x0002 USB Bus Reset interrupt vector

0x0004 128-μs timer interrupt vector

0x0006 1.024-ms timer interrupt vector

0x0008 USB address A endpoint 0 interrupt vector

0x000A USB address A endpoint 1 interrupt vector

0x000C USB address A endpoint 2 interrupt vector

0x000E USB address B endpoint 0 interrupt vector

0x0010 USB address B endpoint 1 interrupt vector

0x0012 Hub interrupt vector

0x0014 Reserved

0x0016 GPIO interrupt vector

0x0018 I2C interrupt vector

0x001A Program Memory begins here

0x1FDF (8 KB -32) PROM ends here (CY7C65113C)

 CY7C65113C

Document #: 38-08002 Rev. *G Page 11 of 48

8-bit Data Stack Pointer (DSP)
The Data Stack Pointer (DSP) supports PUSH and POP instruc-
tions that use the data stack for temporary storage. A PUSH
instruction pre-decrements the DSP, then writes data to the
memory location addressed by the DSP. A POP instruction reads
data from the memory location addressed by the DSP, then
post-increments the DSP.
During a reset, the DSP is reset to 0x00. A PUSH instruction
when DSP equals 0x00 writes data at the top of the data RAM
(address 0xFF). This writes data to the memory area reserved
for USB endpoint FIFOs. Therefore, the DSP should be indexed
at an appropriate memory location that does not compromise the
Program Stack, user-defined memory (variables), or the USB
endpoint FIFOs.
For USB applications, the firmware should set the DSP to an
appropriate location to avoid a memory conflict with RAM
dedicated to USB FIFOs. The memory requirements for the USB
endpoints are described in Section 17.2. Example assembly
instructions to do this with two device addresses (FIFOs begin at
0xD8) are shown below:

MOV A,20h ; Move 20 hex into Accumulator (must be D8h
or less)
SWAP A,DSP ; swap accumulator value into DSP register.

Address Modes
The CY7C65113 microcontrollers support three addressing
modes for instructions that require data operands: data, direct,
and indexed.

Data (Immediate)
“Data” address mode refers to a data operand that is actually a
constant encoded in the instruction. As an example, consider the
instruction that loads A with the constant 0xD8:
• MOV A, 0D8h.

This instruction requires two bytes of code where the first byte
identifies the “MOV A” instruction with a data operand as the

second byte. The second byte of the instruction is the constant
“0xD8.” A constant may be referred to by name if a prior “EQU”
statement assigns the constant value to the name. For example,
the following code is equivalent to the example shown above:
• DSPINIT: EQU 0D8h
• MOV A, DSPINIT.

Direct
“Direct” address mode is used when the data operand is a
variable stored in SRAM. In that case, the one byte address of
the variable is encoded in the instruction. As an example,
consider an instruction that loads A with the contents of memory
address location 0x10:
• MOV A, [10h].

Normally, variable names are assigned to variable addresses
using “EQU” statements to improve the readability of the
assembler source code. As an example, the following code is
equivalent to the example shown above:
• buttons: EQU 10h
• MOV A, [buttons].

Indexed
“Indexed” address mode allows the firmware to manipulate
arrays of data stored in SRAM. The address of the data operand
is the sum of a constant encoded in the instruction and the
contents of the “X” register. Normally, the constant is the “base”
address of an array of data and the X register contains an index
that indicates which element of the array is actually addressed:
• array: EQU 10h
• MOV X, 3
• MOV A, [X+array].

This would have the effect of loading A with the fourth element
of the SRAM “array” that begins at address 0x10. The fourth
element would be at address 0x13.

Clocking

XTALOUT

XTALIN To Internal PLL
30 pF 30 pF

(pin 1)

(pin 2)

Figure 3. Clock Oscillator On-Chip Circuit

 CY7C65113C

Document #: 38-08002 Rev. *G Page 12 of 48

The XTALIN and XTALOUT are the clock pins to the microcon-
troller. The user can connect an external oscillator or a crystal to
these pins. When using an external crystal, keep PCB traces
between the chip leads and crystal as short as possible (less
than 2 cm). A 6-MHz fundamental frequency parallel resonant
crystal can be connected to these pins to provide a reference
frequency for the internal PLL. The two internal 30-pF load caps
appear in series to the external crystal and would be equivalent
to a 15-pF load. Therefore, the crystal must have a required load
capacitance of about 15–18 pF. A ceramic resonator does not
allow the microcontroller to meet the timing specifications of full
speed USB and therefore a ceramic resonator is not recom-
mended with these parts.
An external 6-MHz clock can be applied to the XTALIN pin if the
XTALOUT pin is left open. Grounding the XTALOUT pin when
driving XTALIN with an oscillator does not work because the
internal clock is effectively shorted to ground.

Reset
The CY7C65113C supports two resets: POR and WDR. Each of
these resets causes:
• all registers to be restored to their default states
• the USB device addresses to be set to 0
• all interrupts to be disabled
• the PSP and DSP to be set to memory address 0x00.

The occurrence of a reset is recorded in the Processor Status
and Control Register, as described in Section. Bits 4 and 6 are
used to record the occurrence of POR and WDR respectively.
Firmware can interrogate these bits to determine the cause of a
reset.

Program execution starts at ROM address 0x0000 after a reset.
Although this looks like interrupt vector 0, there is an important
difference. Reset processing does NOT push the program
counter, carry flag, and zero flag onto program stack. The
firmware reset handler should configure the hardware before the
“main” loop of code. Attempting to execute a RET or RETI in the
firmware reset handler causes unpredictable execution results.

Power-on Reset
When VCC is first applied to the chip, the POR signal is asserted
and the CY7C65113C enters a “semi-suspend” state. During the
semi-suspend state, which is different from the suspend state
defined in the USB specification, the oscillator and all other
blocks of the part are functional, except for the CPU. This
semi-suspend time ensures that both a valid VCC level is reached
and that the internal PLL has time to stabilize before full
operation begins. When the VCC has risen above approximately
2.5V, and the oscillator is stable, the POR is deasserted and the
on-chip timer starts counting. The first 1 ms of suspend time is
not interruptible, and the semi-suspend state continues for an
additional 95 ms unless the count is bypassed by a USB Bus
Reset on the upstream port. The 95 ms provides time for VCC to
stabilize at a valid operating voltage before the chip executes
code.
If a USB Bus Reset occurs on the upstream port during the 95
ms semi-suspend time, the semi-suspend state is aborted and
program execution begins immediately from address 0x0000. In
this case, the Bus Reset interrupt is pending but not serviced
until firmware sets the USB Bus Reset Interrupt Enable bit (Bit 0,
Figure 18) and enables interrupts with the EI command.
The POR signal is asserted whenever VCC drops below approx-
imately 2.5V, and remains asserted until VCC rises above this
level again. Behavior is the same as described above.

 CY7C65113C

Document #: 38-08002 Rev. *G Page 14 of 48

General-purpose I/O Ports
Figure 5. Block Diagram of a GPIO Pin

There are 11 GPIO pins (P0[7:0] and P1[2:0]) for the hardware interface. Each port can be configured as inputs with internal pull-ups,
open drain outputs, or traditional CMOS outputs. The data for each GPIO port is accessible through the data registers. Port data
registers are shown in Figure 6 through Figure , and are set to 1 on reset.

Figure 6. Port 0 Data.

Special care should be taken with any unused GPIO data bits.
An unused GPIO data bit, either a pin on the chip or a port bit
that is not bonded on a particular package, must not be left
floating when the device enters the suspend state. If a GPIO data
bit is left floating, the leakage current caused by the floating bit
may violate the suspend current limitation specified by the USB

Specifications. If a ‘1’ is written to the unused data bit and the
port is configured with open drain outputs, the unused data bit
remains in an indeterminate state. Therefore, if an unused port
bit is programmed in open-drain mode, it must be written with a
‘0.’

Port 0 Data Address 0x00
Bit # 7 6 5 4 3 2 1 0
Bit Name P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Reset 1 1 1 1 1 1 1 1

Figure 7. Port1 Data

Port 1 Data Address 0x01
Bit # - - - - - 2 1 0
Bit Name - - - - - P1.2 P1.1 P1.0
Read/Write - - - - - R/W R/W R/W
Reset - - - - - 1 1 1

GPIO

VCC

14 kΩ

GPIO
CFG mode

2-bits

Data
Out
Latch

Internal
Data Bus

Port Read

Port Write

Interrupt
Enable

C
on

tro
l

C
on

tro
l

Interrupt
Controller

Q1

Q3*

Q2

*Port 0,1: Low Isink

Data
Interrupt
Latch

OE

Reg_Bit
STRB

Data
In
Latch

(Latch is Transparent)

PIN

 CY7C65113C

Document #: 38-08002 Rev. *G Page 15 of 48

A read from a GPIO port always returns the present state of the
voltage at the pin, independent of the settings in the Port Data
Registers. During reset, all of the GPIO pins are set to a
high-impedance input state. Writing a ‘0’ to a GPIO pin drives the
pin LOW. In this state, a ‘0’ is always read on that GPIO pin
unless an external source overdrives the internal pull-down
device.

GPIO Configuration Port
Every GPIO port can be programmed as inputs with internal
pull-ups, outputs LOW or HIGH, or Hi-Z (floating, the pin is not
driven internally). In addition, the interrupt polarity for each port
can be programmed. The Port Configuration bits (Figure) and
the Interrupt Enable bit (Figure 10 through Figure 10) determine
the interrupt polarity of the port pins

Figure 8. GPIO Configuration Register.

As shown in Table 4 below, a positive polarity on an input pin
represents a rising edge interrupt (LOW to HIGH), and a negative
polarity on an input pin represents a falling edge interrupt (HIGH
to LOW).
The GPIO interrupt is generated when all of the following condi-
tions are met: the Interrupt Enable bit of the associated Port
Interrupt Enable Register is enabled, the GPIO Interrupt Enable
bit of the Global Interrupt Enable Register (Figure 18) is enabled,
the Interrupt Enable Sense (bit 2, Figure 17) is set, and the GPIO
pin of the port sees an event matching the interrupt polarity.

The driving state of each GPIO pin is determined by the value
written to the pin’s Data Register (Figure 6 through Figure) and
by its associated Port Configuration bits as shown in the GPIO
Configuration Register (Figure). These ports are configured on
a per-port basis, so all pins in a given port are configured
together. The possible port configurations are detailed in Table 4.
As shown in this table below, when a GPIO port is configured with
CMOS outputs, interrupts from that port are disabled.
During reset, all of the bits in the GPIO Configuration Register
are written with ‘0’ to select Hi-Z mode for all GPIO ports as the
default configuration.

GPIO Configuration Address 0x08
Bit # 7 6 5 4 3 2 1 0
Bit Name Reserved Reserved Reserved Reserved Port 1

Config Bit 1
Port 1

Config Bit 0
Port 0

Config Bit 1
Port 0

Config Bit 0
Read/Write - - - - R/W R/W R/W R/W
Reset - - - - 0 0 0 0

 CY7C65113C

Document #: 38-08002 Rev. *G Page 19 of 48

Bits [7..0]: I2C Data
Contains the 8-bit data on the I2C Bus

Figure 16. I2C Status and Control Register.

The I2C Status and Control register bits are defined in Table 6, with a more detailed description following.

Bit 7: MSTR Mode
Setting this bit to 1 causes the I2C-compatible block to ini-
tiate a master mode transaction by sending a start bit and
transmitting the first data byte from the data register (this
typically holds the target address and R/W bit). Subse-
quent bytes are initiated by setting the Continue bit, as
described below.
Clearing this bit (set to 0) causes the GPIO pins to operate
normally.
In master mode, the I2C-compatible block generates the
clock (SCK), and drives the data line as required depend-
ing on transmit or receive state. The I2C-compatible block
performs any required arbitration and clock synchroniza-
tion. IN the event of a loss of arbitration, this MSTR bit is
cleared, the ARB Lost bit is set, and an interrupt is gener-
ated by the microcontroller. If the chip is the target of an
external master that wins arbitration, then the interrupt is
held off until the transaction from the external master is
completed.
When MSTR Mode is cleared from 1 to 0 by a firmware
write, an I2C Stop bit is generated.

Bit 6: Continue/Busy
This bit is written by the firmware to indicate that the firm-
ware is ready for the next byte transaction to begin. In oth-
er words, the bit has responded to an interrupt request and
has completed the required update or read of the data reg-
ister. During a read this bit indicates if the hardware is busy
and is locking out additional writes to the I2C Status and
Control register. This locking allows the hardware to com-
plete certain operations that may require an extended pe-
riod of time. Following an I2C interrupt, the I2C-compatible
block does not return to the Busy state until firmware sets
the Continue bit. This allows the firmware to make one
control register write without the need to check the Busy
bit.

Bit 5: Xmit Mode
This bit is set by firmware to enter transmit mode and per-
form a data transmit in master or slave mode. Clearing this
bit sets the part in receive mode. Firmware generally de-
termines the value of this bit from the R/W bit associated
with the I2C address packet. The Xmit Mode bit state is
ignored when initially writing the MSTR Mode or the Re-

I2C Status and Control Address 0x28
Bit # 7 6 5 4 3 2 1 0
Bit Name MSTR Mode Continue/Bu

sy
Xmit Mode ACK Addr ARB

Lost/Restart
Received

Stop
I2C Enable

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Table 6. I2C Status and Control Register Bit Definitions

Bit Name Description
0 I2C Enable When set to ‘1’, the I2C-compatible function is enabled. When cleared, I2C GPIO pins operate

normally.
1 Received Stop Reads 1 only in slave receive mode, when I2C Stop bit detected (unless firmware did not ACK the

last transaction).
2 ARB Lost/Restart Reads 1 to indicate master has lost arbitration. Reads 0 otherwise.

Write to 1 in master mode to perform a restart sequence (also set Continue bit).
3 Addr Reads 1 during first byte after start/restart in slave mode, or if master loses arbitration.

Reads 0 otherwise. This bit should always be written as 0.
4 ACK In receive mode, write 1 to generate ACK, 0 for no ACK.

In transmit mode, reads 1 if ACK was received, 0 if no ACK received.
5 Xmit Mode Write to 1 for transmit mode, 0 for receive mode.
6 Continue/Busy Write 1 to indicate ready for next transaction.

Reads 1 when I2C-compatible block is busy with a transaction, 0 when transaction is complete.
7 MSTR Mode Write to 1 for master mode, 0 for slave mode. This bit is cleared if master loses arbitration.

Clearing from 1 to 0 generates Stop bit.

 CY7C65113C

Document #: 38-08002 Rev. *G Page 20 of 48

start bits, as these cases always cause transmit mode for
the first byte.

Bit 4: ACK
This bit is set or cleared by firmware during receive oper-
ation to indicate if the hardware should generate an ACK
signal on the I2C-compatible bus. Writing a 1 to this bit
generates an ACK (SDA LOW) on the I2C-compatible bus
at the ACK bit time. During transmits (Xmit Mode = 1), this
bit should be cleared.

Bit 3: Addr
This bit is set by the I2C-compatible block during the first
byte of a slave receive transaction, after an I2C start or
restart. The Addr bit is cleared when the firmware sets the
Continue bit. This bit allows the firmware to recognize
when the master has lost arbitration, and in slave mode it
allows the firmware to recognize that a start or restart has
occurred.

Bit 2: ARB Lost/Restart

This bit is valid as a status bit (ARB Lost) after master
mode transactions. In master mode, set this bit (along with
the Continue and MSTR Mode bits) to perform an I2C re-
start sequence. The I2C target address for the restart must
be written to the data register before setting the Continue
bit. To prevent false ARB Lost signals, the Restart bit is
cleared by hardware during the restart sequence.

Bit 1: Receive Stop
This bit is set when the slave is in receive mode and de-
tects a stop bit on the bus. The Receive Stop bit is not set
if the firmware terminates the I2C transaction by not ac-
knowledging the previous byte transmitted on the
I2C-compatible bus, e.g., in receive mode if firmware sets
the Continue bit and clears the ACK bit.

Bit 0: I2C Enable
Set this bit to override GPIO definition with I2C-compatible
function on the two I2C-compatible pins. When this bit is
cleared, these pins are free to function as GPIOs. In
I2C-compatible mode, the two pins operate in open drain
mode, independent of the GPIO configuration setting.

Processor Status and Control Register
Figure 17. Processor Status and Control Register

Bit 0: Run
This bit is manipulated by the HALT instruction. When Halt
is executed, all the bits of the Processor Status and Control
Register are cleared to 0. Since the run bit is cleared, the
processor stops at the end of the current instruction. The
processor remains halted until an appropriate reset occurs
(power-on or Watchdog). This bit should normally be writ-
ten as a ‘1.’

Bit 1: Reserved
Bit 1 is reserved and must be written as a zero.

Bit 2: Interrupt Enable Sense
This bit indicates whether interrupts are enabled or dis-
abled. Firmware has no direct control over this bit as writ-
ing a zero or one to this bit position has no effect on inter-
rupts. A ‘0’ indicates that interrupts are masked off and a
‘1’ indicates that the interrupts are enabled. This bit is fur-
ther gated with the bit settings of the Global Interrupt En-
able Register (Figure 18) and USB End Point Interrupt En-
able Register (Figure 19). Instructions DI, EI, and RETI
manipulate the state of this bit.

Bit 3: Suspend

Writing a ‘1’ to the Suspend bit halts the processor and
cause the microcontroller to enter the suspend mode that
significantly reduces power consumption. A pending, en-
abled interrupt or USB bus activity causes the device to
come out of suspend. After coming out of suspend, the
device resumes firmware execution at the instruction fol-
lowing the IOWR which put the part into suspend. An
IOWR attempting to put the part into suspend is ignored if
USB bus activity is present. See Section for more details
on suspend mode operation.

Bit 4: Power-on Reset
The Power-on Reset is set to ‘1’ during a power-on reset.
The firmware can check bits 4 and 6 in the reset handler
to determine whether a reset was caused by a power-on
condition or a Watchdog timeout. A POR event may be
followed by a Watchdog reset before firmware begins ex-
ecuting, as explained below.

Bit 5: USB Bus Reset Interrupt
The USB Bus Reset Interrupt bit is set when the USB Bus
Reset is detected on receiving a USB Bus Reset signal on
the upstream port. The USB Bus Reset signal is a sin-
gle-ended zero (SE0) that lasts from 12 to 16 μs. An SE0

Processor Status and Control Address 0xFF
Bit # 7 6 5 4 3 2 1 0
Bit Name IRQ

Pending
 Watchdog

Reset
USB Bus

Reset
Interrupt

Power-on
Reset

 Suspend Interrupt
Enable
Sense

 Reserved Run

Read/Write R R/W R/W R/W R/W R R/W R/W
Reset 0 0 0 1 0 0 0 1

 CY7C65113C

Document #: 38-08002 Rev. *G Page 21 of 48

is defined as the condition in which both the D+ line and
the D– line are LOW at the same time.

Bit 6: Watchdog Reset
The Watchdog Reset is set during a reset initiated by the
Watchdog Timer. This indicates the Watchdog Timer went
for more than tWATCH (8 ms minimum) between Watchdog
clears. This can occur with a POR event, as noted below.

Bit 7: IRQ Pending
The IRQ pending, when set, indicates that one or more of
the interrupts has been recognized as active. An interrupt
remains pending until its interrupt enable bit is set
(Figure 18, Figure 19) and interrupts are globally enabled.
At that point, the internal interrupt handling sequence
clears this bit until another interrupt is detected as pending.

During power-up, the Processor Status and Control Register is
set to 00010001, which indicates a POR (bit 4 set) has occurred
and no interrupts are pending (bit 7 clear). During the 96-ms
suspend at start-up (explained in Section), a Watchdog Reset
also occurs unless this suspend is aborted by an upstream SE0

before 8 ms. If a WDR occurs during the power-up suspend
interval, firmware reads 01010001 from the Status and Control
Register after power-up. Normally, the POR bit should be cleared
so a subsequent WDR can be clearly identified. If an upstream
bus reset is received before firmware examines this register, the
Bus Reset bit may also be set.
During a Watchdog Reset, the Processor Status and Control
Register is set to 01XX0001, which indicates a Watchdog Reset
(bit 6 set) has occurred and no interrupts are pending (bit 7
clear). The Watchdog Reset does not effect the state of the POR
and the Bus Reset Interrupt bits.

Interrupts
Interrupts are generated by GPIO pins, internal timers,
I2C-compatible operation, internal USB hub and USB traffic
conditions. All interrupts are maskable by the Global Interrupt
Enable Register and the USB End Point Interrupt Enable
Register. Writing a ‘1’ to a bit position enables the interrupt
associated with that bit position.

Figure 18. Global Interrupt Enable Register

Bit 0: USB Bus RST Interrupt Enable
1 = Enable Interrupt on a USB Bus Reset; 0 = Disable
interrupt on a USB Bus Reset (Refer to section).

Bit 1:128-μs Interrupt Enable
1 = Enable Timer interrupt every 128 μs; 0 = Disable Timer
Interrupt for every 128 μs.

Bit 2: 1.024-ms Interrupt Enable
1 = Enable Timer interrupt every 1.024 ms; 0 = Disable
Timer Interrupt every 1.024 ms.

Bit 3: USB Hub Interrupt Enable

1 = Enable Interrupt on a Hub status change; 0 = Disable
interrupt due to hub status change. (Refer to section .)

Bit 4: Reserved.
Bit 5: GPIO Interrupt Enable

1 = Enable Interrupt on falling/rising edge on any GPIO; 0
= Disable Interrupt on falling/rising edge on any GPIO (Re-
fer to section , and .).

Bit 6: I2C Interrupt Enable
1 = Enable Interrupt on I2C related activity; 0 = Disable I2C
related activity interrupt. (Refer to section .)

Bit 7: Reserved

Figure 19. USB Endpoint Interrupt Enable Register.

Global Interrupt Enable Register Address 0X20
Bit # 7 6 5 4 3 2 1 0
Bit Name Reserved I2C Interrupt

Enable
GPIO

Interrupt
Enable

Reserved USB Hub
Interrupt
Enable

1.024-ms
Interrupt
Enable

 128-μs
Interrupt
Enable

USB Bus
RST

Interrupt
Enable

Read/Write – R/W R/W - R/W R/W R/W R/W
Reset – 0 0 X 0 0 0 0

USB Endpoint Interrupt Enable Address 0X21
Bit # 7 6 5 4 3 2 1 0
Bit Name Reserved Reserved Reserved EPB1

Interrupt
Enable

 EPB0
Interrupt
Enable

EPA2
Interrupt
Enable

EPA1
Interrupt
Enable

EPA0
Interrupt
Enable

Read/Write – – – R/W R/W R/W R/W R/W
Reset – – – 0 0 0 0 0

 CY7C65113C

Document #: 38-08002 Rev. *G Page 22 of 48

Bit 0: EPA0 Interrupt Enable
1 = Enable Interrupt on data activity through endpoint A0;
0 = Disable Interrupt on data activity through endpoint A0

Bit 1: EPA1 Interrupt Enable
1 = Enable Interrupt on data activity through endpoint A1;
0 = Disable Interrupt on data activity through endpoint A1

Bit 2: EPA2 Interrupt Enable
1 = Enable Interrupt on data activity through endpoint A2;
0 = Disable Interrupt on data activity through endpoint A2.

Bit 3: EPB0 Interrupt Enable
1 = Enable Interrupt on data activity through endpoint B0;
0 = Disable Interrupt on data activity through endpoint B0

Bit 4: EPB1 Interrupt Enable
1 = Enable Interrupt on data activity through endpoint B1;
0 = Disable Interrupt on data activity through endpoint B1

Bit [7..5]: Reserved
During a reset, the contents of the Global Interrupt Enable
Register and USB End Point Interrupt Enable Register are
cleared, effectively disabling all interrupts,
The interrupt controller contains a separate flip-flop for each
interrupt. See Figure 20 for the logic block diagram of the
interrupt controller. When an interrupt is generated, it is first
registered as a pending interrupt. It stays pending until it is
serviced or a reset occurs. A pending interrupt only generates an
interrupt request if it is enabled by the corresponding bit in the
interrupt enable registers. The highest priority interrupt request
is serviced following the completion of the currently executing
instruction.
When servicing an interrupt, the hardware does the following:

1. Disables all interrupts by clearing the Global Interrupt Enable
bit in the CPU (the state of this bit can be read at Bit 2 of the
Processor Status and Control Register, Figure 17).

2. Clears the flip-flop of the current interrupt.
3. Generates an automatic CALL instruction to the ROM

address associated with the interrupt being serviced (i.e., the
Interrupt Vector, see Section).

The instruction in the interrupt table is typically a JMP instruction
to the address of the Interrupt Service Routine (ISR). The user
can reenable interrupts in the interrupt service routine by
executing an EI instruction. Interrupts can be nested to a level
limited only by the available stack space.
The Program Counter value as well as the Carry and Zero flags
(CF, ZF) are stored onto the Program Stack by the automatic
CALL instruction generated as part of the interrupt acknowledge
process. The user firmware is responsible for ensuring that the
processor state is preserved and restored during an interrupt.
The PUSH A instruction should typically be used as the first
command in the ISR to save the accumulator value and the POP
A instruction should be used to restore the accumulator value
just before the RETI instruction. The program counters CF and
ZF are restored and interrupts are enabled when the RETI
instruction is executed.
The IDI and EI instruction can be used to disable and enable
interrupts, respectively. These instruction affect only the Global
Interrupt Enable bit of the CPU. If desired, EI can be used to
re-enable interrupts while inside an ISR, instead of waiting for the
RETI that exits the ISR. While the global interrupt enable bit is
cleared, the presence of a pending interrupt can be detected by
examining the IRQ Sense bit (Bit 7 in the Processor Status and
Control Register).

 CY7C65113C

Document #: 38-08002 Rev. *G Page 26 of 48

USB Overview
The USB hardware includes a USB Hub repeater with one
upstream and up to seven downstream ports. The USB Hub
repeater interfaces to the microcontroller through a full-speed
serial interface engine (SIE). An external series resistor of Rext
must be placed in series with all upstream and downstream USB
outputs in order to meet the USB driver requirements of the USB
specification. The CY7C65113C microcontroller can provide the
functionality of a compound device consisting of a USB hub and
permanently attached functions.

USB Serial Interface Engine (SIE)
The SIE allows the CY7C65113C microcontroller to commu-
nicate with the USB host through the USB repeater portion of the
hub. The SIE simplifies the interface between the microcontroller
and USB by incorporating hardware that handles the following
USB bus activity independently of the microcontroller:
• Bit stuffing/unstuffing
• Checksum generation/checking
• ACK/NAK/STALL
• Token type identification
• Address checking.

Firmware is required to handle the following USB interface tasks:
• Coordinate enumeration by responding to SETUP packets
• Fill and empty the FIFOs
• Suspend/Resume coordination
• Verify and select DATA toggle values.

USB Enumeration
The internal hub and any compound device function are
enumerated under firmware control. The hub is enumerated first,
followed by any integrated compound function. After the hub is
enumerated, the USB host can read hub connection status to
determine which (if any) of the downstream ports need to be
enumerated. The following is a brief summary of the typical
enumeration process of the CY7C65113C by the USB host. For
a detailed description of the enumeration process, refer to the
USB specification.
In this description, ‘Firmware’ refers to embedded firmware in the
CY7C65113C controller.
1. The host computer sends a SETUP packet followed by a

DATA packet to USB address 0 requesting the Device de-
scriptor.

2. Firmware decodes the request and retrieves its Device
descriptor from the program memory tables.

3. The host computer performs a control read sequence and
Firmware responds by sending the Device descriptor over the
USB bus, via the on-chip FIFOs.

4. After receiving the descriptor, the host sends a SETUP packet
followed by a DATA packet to address 0 assigning a new USB
address to the device.

5. Firmware stores the new address in its USB Device Address
Register (for example, as Address B) after the no-data control
sequence completes.

6. The host sends a request for the Device descriptor using the
new USB address.

7. Firmware decodes the request and retrieves the Device
descriptor from program memory tables.

8. The host performs a control read sequence and Firmware
responds by sending its Device descriptor over the USB bus.

9. The host generates control reads from the device to request
the Configuration and Report descriptors.

10.Once the device receives a Set Configuration request, its
functions may now be used.

11.Following enumeration as a hub, Firmware can optionally
indicate to the host that a compound device exists (for
example, the keyboard in a keyboard/hub device).

12.The host carries out the enumeration process with this
additional function as though it were attached downstream
from the hub.

13.When the host assigns an address to this device, it is stored
as the other USB address (for example, Address A).

USB Hub
A USB hub is required to support:
• Connectivity behavior: service connect/disconnect detection
• Bus fault detection and recovery
• Full-/Low-speed device support

These features are mapped onto a hub repeater and a hub
controller. The hub controller is supported by the processor
integrated into the CY7C65113C microcontroller. The hardware
in the hub repeater detects whether a USB device is connected
to a downstream port. The connection to a downstream port is
through a differential signal pair (D+ and D–). Each downstream
port provided by the hub requires external RUDN resistors from
each signal line to ground, so that when a downstream port has
no device connected, the hub reads a LOW (zero) on both D+
and D–. This condition is used to identify the “no connect” state.
The hub must have a resistor RUUP connected between its
upstream D+ line and VREG to indicate it is a full speed USB
device.
The hub generates an EOP at EOF1, in accordance with the
USB 1.1 Specification (section 11.2.2, page 234) as well as USB
2.0 specification (section 11.2.5, page 304).

Connecting/Disconnecting a USB Device
A low-speed (1.5 Mbps) USB device has a pull-up resistor on the
D– pin. At connect time, the bias resistors set the signal levels
on the D+ and D– lines. When a low-speed device is connected
to a hub port, the hub sees a LOW on D+ and a HIGH on D–.
This causes the hub repeater to set a connect bit in the Hub Ports
Connect Status register for the downstream port (see Figure 22).
Then the hub repeater generates a Hub Interrupt to notify the
microcontroller that there has been a change in the Hub
downstream status. The firmware sets the speed of this port in
the Hub Ports Speed Register (see Figure).
A full-speed (12 Mbps) USB device has a pull-up resistor from
the D+ pin, so the hub sees a HIGH on D+ and a LOW on D–. In
this case, the hub repeater sets a connect bit in the Hub Ports
Connect Status register and generates a Hub Interrupt to notify
the microcontroller of the change in Hub status. The firmware
sets the speed of this port in the Hub Ports Speed Register (see
Figure)

 CY7C65113C

Document #: 38-08002 Rev. *G Page 27 of 48

Connects are recorded by the time a non-SE0 state lasts for
more than 2.5 μs on a downstream port.
When a USB device is disconnected from the Hub, the
downstream signal pair eventually floats to a single-ended zero

state. The hub repeater recognizes a disconnect once the SE0
state on a downstream port lasts from 2.0 to 2.5 μs. On a
disconnect, the corresponding bit in the Hub Ports Connect
Status register is cleared, and the Hub Interrupt is generated.

Figure 22. Hub Ports Connect Status

.

Bit [0..3]: Port x Connect Status (where x = 1..4).
When set to 1, Port x is connected; When set to 0, Port x
is disconnected.

Bit [4..7]: Reserved.

Set to 0.
The Hub Ports Connect Status register is cleared to zero by reset
or USB bus reset, then set to match the hardware configuration
by the hub repeater hardware. The Reserved bits [4..7] should
always read as ‘0’ to indicate no connection.

Figure 23. Hub Ports Speed

Bit [0..3]: Port x Speed (where x = 1..4).
Set to 1 if the device plugged in to Port x is Low Speed; Set
to 0 if the device plugged in to Port x is Full Speed.

Bit [4..7]: Reserved.
Set to 0.

The Hub Ports Speed register is cleared to zero by reset or bus
reset. This must be set by the firmware on issuing a port reset.
The Reserved bits [4..7] should always read as ‘0.’

Enabling/Disabling a USB Device
After a USB device connection has been detected, firmware
must update status change bits in the hub status change data
structure that is polled periodically by the USB host. The host
responds by sending a packet that instructs the hub to reset and
enable the downstream port. Firmware then sets the bit in the
Hub Ports Enable register (Figure 24), for the downstream port.
The hub repeater hardware responds to an enable bit in the Hub

Ports Enable register (Figure 24) by enabling the downstream
port, so that USB traffic can flow to and from that port.
If a port is marked enabled and is not suspended, it receives all
USB traffic from the upstream port, and USB traffic from the
downstream port is passed to the upstream port (unless babble
is detected). Low-speed ports do not receive full-speed traffic
from the upstream port.
When firmware writes to the Hub Ports Enable register
(Figure 24) to enable a port, the port is not enabled until the end
of any packet currently being transmitted. If there is no USB
traffic, the port is enabled immediately.
When a USB device disconnection has been detected, firmware
must update status bits in the hub change status data structure
that is polled periodically by the USB host. In suspended mode,
a connect or disconnect event generates an interrupt (if the hub
interrupt is enabled) even if the port is disabled.

Figure 24. Hub Ports Enable Register

Hub Ports Connect Status Address 0x48
Bit # 7 6 5 4 3 2 1 0
Bit Name Reserved Reserved Reserved Reserved Port 4

Connect
Status

Port 3
Connect
Status

Port 2
Connect
Status

Port 1
Connect
Status

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Hub Ports Speed Address 0x4A
Bit # 7 6 5 4 3 2 1 0
Bit Name Reserved Reserved Reserved Reserved Port 4 Speed Port 3 Speed Port 2 Speed Port 1 Speed
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Hub Ports Enable Register Address 0x49
Bit # 7 6 5 4 3 2 1 0
Bit Name Reserved Reserved Reserved Reserved Port 4 Enable Port 3 Enable Port 2 Enable Port 1 Enable
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

 CY7C65113C

Document #: 38-08002 Rev. *G Page 30 of 48

Figure 29. Hub Ports Suspend Register

Bit [0..3]: Port x Selective Suspend (where x = 1..4).
Set to 1 if Port x is Selectively Suspended; Set to 0 if Port
x Do not suspend.

Bit 7: Device Remote Wakeup.

When set to 1, Enable hardware upstream resume signal-
ing for connect/disconnect events during global resume.
When set to 0, Disable hardware upstream resume signal-
ing for connect/disconnect events during global resume.

Figure 30. Hub Ports Resume Status Register

Bit [0..3] : Resume x (where x = 1..4).

When set to 1 Port x requesting to be resumed (set by
hardware); default state is 0.

Bit [4..7]: Reserved.
Set to 0.

Resume from a selectively suspended port, with the hub not in
suspend, typically involves the following actions:
1. Hardware detects the Resume, drives a K to the port, and

generates the hub interrupt. The corresponding bit in the Re-
sume Status Register (0x4E) reads ‘1’ in this case.

2. Firmware responds to hub interrupt, and reads register 0x4E
to determine the source of the Resume.

3. Firmware begins driving K on the port for 10 ms or more
through register 0x4B.

4. Firmware clears the Selective Suspend bit for the port (0x4D),
which clears the Resume bit (0x4E). This ends the
hardware-driven Resume, but the firmware-driven Resume
continues. To prevent traffic being fed by the hub repeater to
the port during or just after the Resume, firmware should
disable this port.

5. Firmware drives a timed SE0 on the port for two low-speed bit
times as appropriate. Firmware must disable interrupts during
this SE0 so the SE0 pulse isn’t inadvertently lengthened, and
appear as a bus reset to the downstream device.

6. Firmware drives a J on the port for one low-speed bit time,
then it idles the port.

7. Firmware re-enables the port.

Resume when the hub is suspended typically involves these
actions:
1. Hardware detects the Resume, drives a K on the upstream

(which is then reflected to all downstream enabled ports), and
generates the hub interrupt.

2. The part comes out of suspend and the clocks start.
3. Once the clocks are stable, firmware execution resumes. An

internal counter ensures that this takes at least 1 ms.
Firmware should check for Resume from any selectively
suspended ports. If found, the Selective Suspend bit for the
port should be cleared; no other action is necessary.

4. The Resume ends when the host stops sending K from
upstream. Firmware should check for changes to the Enable
and Connect Registers. If a port has become disabled but is
still connected, an SE0 has been detected on the port. The
port should be treated as having been reset, and should be
reported to the host as newly connected.

Firmware can choose to clear the Device Remote Wake-up bit (if
set) to implement firmware timed states for port changes. All
allowed port changes wake the part. Then, the part can use
internal timing to determine whether to take action or return to
suspend. If Device Remote Wake-up is set, automatic hardware
assertions take place on Resume events.

USB Upstream Port Status and Control
USB status and control is regulated by the USB Status and
Control Register, as shown in Figure . All bits in the register are
cleared during reset.

Hub Ports Suspend Address 0x4D
Bit # 7 6 5 4 3 2 1 0
Bit Name Device

Remote
Wakeup

Reserved Reserved Reserved Port 4
Selective
Suspend

Port 3
Selective
Suspend

Port 2
Selective
Suspend

Port 1
Selective
Suspend

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Reset 0 0 0 0 0 0 0 0

Hub Ports Resume Address 0x4E
Bit # 7 6 5 4 3 2 1 0
Bit Name Reserved Reserved Reserved Reserved Resume 4 Resume 3 Resume 2 Resume 1
Read/Write - - - - R R R R
Reset 0 0 0 0 0 0 0 0

 CY7C65113C

Document #: 38-08002 Rev. *G Page 42 of 48

Electrical Characteristics
fOSC = 6 MHz; Operating Temperature = 0 to 70°C, VCC = 4.0V to 5.25V

Parameter Description Conditions Min. Max. Unit
General

VREF Reference Voltage 3.3V ±5% 3.15 3.45 V
Vpp Programming Voltage (disabled) –0.4 0.4 V
ICC VCC Operating Current No GPIO source current 50 mA
ISB1 Supply Current—Suspend Mode 50 μA
Iref VREF Operating Current No USB Traffic[8] 10 mA
Iil Input Leakage Current Any pin 1 μA

USB Interface
Vdi Differential Input Sensitivity | (D+)–(D–) | 0.2 V
Vcm Differential Input Common Mode Range 0.8 2.5 V
Vse Single Ended Receiver Threshold 0.8 2.0 V
Cin Transceiver Capacitance 20 pF
Ilo Hi-Z State Data Line Leakage 0V < Vin < 3.3V –10 10 μA
Rext External USB Series Resistor In series with each USB pin 19 21 Ω

RUUP External Upstream USB Pull-up Resistor 1.5 kΩ ±5%, D+ to VREG 1.425 1.575 kΩ

RUDN External Downstream Pull-down Resistors 15 kΩ ±5%, downstream USB pins 14.25 15.75 kΩ

Power-on Reset
tvccs VCC Ramp Rate Linear ramp 0V to VCC

[9] 0 100 ms
USB Upstream/Downstream Port

VUOH Static Output High 15 kΩ ±5% to Gnd 2.8 3.6 V
VUOL Static Output Low 1.5 kΩ ±5% to VREF 0.3 V
ZO USB Driver Output Impedance Including Rext Resistor 28 44 Ω

General Purpose I/O (GPIO)
Rup Pull-up Resistance (typical 14 kΩ) 8.0 24.0 kΩ

VITH Input Threshold Voltage All ports, low-to-high edge 20% 40% VCC
VH Input Hysteresis Voltage All ports, high-to-low edge 2% 8% VCC
VOL Port 0,1 Output Low Voltage IOL = 3 mA

IOL = 8 mA
0.4
2.0

V
V

VOH Output High Voltage IOH = 1.9 mA (all ports 0,1) 2.4 V
Notes
8. Add 18 mA per driven USB cable (upstream or downstream. This is based on transitions every 2 full-speed bit times on average.
9. Power-on Reset occurs whenever the voltage on VCC is below approximately 2.5V.

 CY7C65113C

Document #: 38-08002 Rev. *G Page 43 of 48

Switching Characteristics (fOSC = 6.0 MHz)
Parameter Description Min. Max. Unit

Clock Source
fOSC Clock Rate 6 ±0.25% MHz
tcyc Clock Period 166.25 167.08 ns
tCH Clock HIGH time 0.45 tCYC ns
tCL Clock LOW time 0.45 tCYC ns

USB Full-speed Signaling[10]

trfs Transition Rise Time 4 20 ns
tffs Transition Fall Time 4 20 ns
trfmfs Rise/Fall Time Matching; (tr/tf) 90 111 %
tdratefs Full Speed Date Rate 12 ±0.25% Mb/s

Timer Signals
twatch Watchdog Timer Period 8.192 14.336 ms
Note
10. Per Table 7-6 of revision 1.1 of USB specification.

CLOCK

tCYC

tCL

tCH

90%

10%

90%

10%
D−

D+

tr tr

 CY7C65113C

Document #: 38-08002 Rev. *G Page 46 of 48

Acronyms Document Conventions
Units of MeasureAcronym Description

CMOS complementary metal oxide semiconductor
CPU central processing unit
DSP data stack pointer
EMI electro magnetic interference
GPIO general purpose I/O
HID human interface device
I2C inter integrated circuit
LSB least-significant byte
MSB most-significant byte
PC program counter
PLL phase-locked loop
POR power on reset
PROM precision power on reset
PSP program stack pointer
RAM random access memory
SIE serial interface engine
SOIC small outlined integrated circuit
SRAM standard random access memory
USB universal serial bus
WDT watchdog timer

Convention Description
DC Direct current
KB 1024 bytes
Kbit 1024 bits
kHz kilohertz
kΩ kilohm
mA milli-ampere

Mbps megabits per second
ms milli seconds
pF picofarad
μs microsecond
V volts

 CY7C65113C

Document #: 38-08002 Rev. *G Page 47 of 48

Document History Page

Document Title: CY7C65113C USB Hub with Microcontroller
Document Number: 38-08002

REV. ECN NO. Issue Date Orig. of
Change Description of Change

** 109965 02/22/02 SZV Change from Spec number: 38-00590 to 38-08002
*A 120372 12/17/02 MON Added register bit definitions.

Added default bit state of each register.
Corrected the Schematic (location of the pull-up on D+).
Corrected the Logical Diagram (removed the extra GPIO Port 1).
Added register summary.
Modified Figure 17, more labeling.
Removed information on the availability of the part in PDIP package.
Modified Table 11 and provided more explanation regarding
locking/unlocking mechanism of the mode register.
Removed any information regarding the speed detect bit in Hub Port Speed
register being set by hardware.

*B 124522 03/13/03 MON Fixed the figure on page 42 regarding the update of mode registers. The
arrows in the figure were misplaced and the figure was unreadable. This is
an important figure for understanding mode register functioning.

*C 368601 See ECN BHA Added Lead-free Package Information.
Removed CY7C65013 Information.
Updated Package Drawing.

*D 429098 See ECN TYJ Part numbers changed to ‘C’ types
Cypress Perform logo added
Part numbers updated in the ordering section

*E 3057657 10/13/10 AJHA Added “Not recommended for new designs” watermark in the PDF.
Updated package diagrams.
Updated template.

*F 3207401 03/28/2011 ODC Added Ordering Code Definitions, Acronyms, and Document Conventions.
Updated package diagram.

*G 4313900 03/21/2014 AKSL Removed "Not recommended for new designs" watermark.
Updated package diagram to current revision.

