

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Broduct Status	Not For New Designs
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	100MHz
Connectivity	CANbus, EBI/EMI, FlexRay, I ² C, LINbus, SPI, UART/USART
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	118
Program Memory Size	1.56MB (1.56M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	138K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-144-4
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2388c200f100labkxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Table of Contents

1 1.1 1.2 1.3	Summary of Features 7 Basic Device Types 10 Special Device Types 10 Definition of Feature Variants 11
2 2.1 2.2	General Device Information 13 Pin Configuration and Definition 14 Identification Registers 51
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20	Functional Description52Memory Subsystem and Organization53External Bus Controller57Central Processing Unit (CPU)58Memory Protection Unit (MPU)60Memory Checker Module (MCHK)60Interrupt System61On-Chip Debug Support (OCDS)62Capture/Compare Units (CC1 and CC2)63Capture/Compare Units CCU6x66General Purpose Timer (GPT12E) Unit68Real Time Clock72A/D Converters74Universal Serial Interface Channel Modules (USIC)75MultiCAN Module77FlexRay™ Protocol Controller (E-Ray)79System Timer81Watchdog Timer81Parallel Ports82Instruction Set Summary83
3.20	Electrical Decomptore
ч 41	General Parameters
4.1.1	Operating Conditions
4.2	Voltage Range definitions
4.2.1	Parameter Interpretation
4.3	DC Parameters
4.3.1	DC Parameters for Upper Voltage Area
4.3.2	DC Parameters for Lower Voltage Area
4.3.3	Power Consumption
4.4	Analog/Digital Converter Parameters
4.5	System Parameters

Summary of Features

- On-Chip Peripheral Modules
 - Two synchronizable A/D Converters with up to 24 channels, 10-bit resolution, conversion time below 1 μs, optional data preprocessing (data reduction, range check), broken wire detection
 - One 16-channel general purpose capture/compare units (CC2)
 - Four capture/compare units for flexible PWM signal generation (CCU6x)
 - Multi-functional general purpose timer unit with 5 timers
 - Up to 8 serial interface channels to be used as UART, LIN, high-speed synchronous channel (SPI/QSPI), IIC bus interface (10-bit addressing, 400 kbit/s), IIS interface
 - On-chip MultiCAN interface (Rev. 2.0B active) with 64message objects (Full CAN/Basic CAN) on up to 3 CAN nodes and gateway functionality
 - Optional FlexRay[™] module (E-Ray) according to protocol specification V2.1, with 2 nodes
 - On-chip system timer and on-chip real time clock
- Up to 12 Mbytes external address space for code and data
 - Programmable external bus characteristics for different address ranges
 - Multiplexed or demultiplexed external address/data buses
 - Selectable address bus width
 - 16-bit or 8-bit data bus width
 - Five programmable chip-select signals
- Single power supply from 3.0 V to 5.5 V
- Power reduction and wake-up modes
- Programmable watchdog timer and oscillator watchdog
- Up to 118 general purpose I/O lines
- On-chip bootstrap loaders
- Supported by a full range of development tools including C compilers, macroassembler packages, emulators, evaluation boards, HLL debuggers, simulators, logic analyzer disassemblers, programming boards
- On-chip debug support via Device Access Port (DAP) or JTAG interface
- 144-pin Green LQFP package, 0.5 mm (19.7 mil) pitch

Summary of Features

1.1 Basic Device Types

Basic device types are available and can be ordered through Infineon's direct and/or distribution channels.

Table 1 Synopsis of XC238xC Basic Device Types

Derivative	Flash Memory	PSRAM	Capt./Comp. Modules	ADC Chan.	Interfaces
none					

1.2 Special Device Types

Special device types are only available for high-volume applications on request.

Derivative ¹⁾	Flash Memory ²⁾	PSRAM ³⁾	Capt./Comp. Modules	ADC ⁴⁾ Chan.	Interfaces ⁴⁾
XC2387C-104FxL	832 Kbytes	56 Kbytes	CC2 CCU60/1/2/3	16 + 8	3 CAN Nodes 6 Serial Chan.
XC2387C-136FxL	1,088 Kbytes	80 Kbytes	CC2 CCU60/1/2/3	16 + 8	3 CAN Nodes 6 Serial Chan.
XC2387C-200FxL	1,600 Kbytes	112 Kbytes	CC2 CCU60/1/2/3	16 + 8	3 CAN Nodes 6 Serial Chan.
XC2388C-104FxL	832 Kbytes	56 Kbytes	CC2 CCU60/1/2/3	16 + 8	2 FlexRay Nodes 3 CAN Nodes 8 Serial Chan.
XC2388C-136FxL	1,088 Kbytes	80 Kbytes	CC2 CCU60/1/2/3	16 + 8	2 FlexRay Nodes 3 CAN Nodes 8 Serial Chan.
XC2388C-200FxL	1,600 Kbytes	112 Kbytes	CC2 CCU60/1/2/3	16 + 8	2 FlexRay Nodes 3 CAN Nodes 8 Serial Chan.

 Table 2
 Synopsis of XC238xC Special Device Types

1) x is a placeholder for available speed grade in MHz. Can be 80 or 100.

2) Specific information about the on-chip Flash memory in Table 3 and Table 4.

3) All derivatives additionally provide 8 Kbytes SBRAM, 2 Kbytes DPRAM, and 24 Kbytes DSRAM.

 Specific information about the available channels in Table 5. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).

General Device Information

Pin	Symbol	Ctrl.	Туре	Function		
6	TRST	1	In/B	Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XC238xC's debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pull-down device will hold this pin low when nothing is driving it.		
7	P8.3	O0 / I	St/B	Bit 3 of Port 8, General Purpose Input/Output		
	CCU60_COU T60	01	St/B	CCU60 Channel 0 Output		
-	CCU62_CC6 0	02	St/B	CCU62 Channel 0 Output		
	TDI_D	IH	St/B	JTAG Test Data Input If JTAG pos. D is selected during start-up, an internal pull-up device will hold this pin low when nothing is driving it.		
	CCU62_CC6 0INB	I	St/B	CCU62 Channel 0 Input		
8	P7.0	O0 / I	St/B	Bit 0 of Port 7, General Purpose Input/Output		
	T3OUT	O1	St/B	GPT12E Timer T3 Toggle Latch Output		
	T6OUT	O2	St/B	GPT12E Timer T6 Toggle Latch Output		
	TDO_A	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 0 or 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.		
	ESR2_1	I	St/B	ESR2 Trigger Input 1		

Table 6 Pin Definitions and Functions (cont'd)

XC2387C, XC2388C XC2000 Family / High Line

General Device Information

Table	ble 6 Pin Definitions and Functions (cont'd)								
Pin	Symbol	Ctrl.	Туре	Function					
12	P7.4	O0 / I	St/B	Bit 4 of Port 7, General Purpose Input/Output					
	EMUX2	01	St/B	External Analog MUX Control Output 2 (ADC1)					
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output					
	U0C1_SCLK OUT	O3	St/B	USIC0 Channel 1 Shift Clock Output					
	CCU62_CCP OS2A	1	St/B	CCU62 Position Input 2					
	TCK_C	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.					
	U0C0_DX0D	I	St/B	USIC0 Channel 0 Shift Data Input					
	U0C1_DX1E	I	St/B	USIC0 Channel 1 Shift Clock Input					
13	P8.1	O0 / I	St/B	Bit 1 of Port 8, General Purpose Input/Output					
	CCU60_CC6 1	01	St/B	CCU60 Channel 1 Output					
	CCU60_CC6 1INB	I	St/B	CCU60 Channel 1 Input					
	RxDC1F	I	St/B	CAN Node 1 Receive Data Input					
16	P6.0	O0 / I	DA/A	Bit 0 of Port 6, General Purpose Input/Output					
	EMUX0	01	DA/A	External Analog MUX Control Output 0 (ADC0)					
	TxDC2	O2	DA/A	CAN Node 2 Transmit Data Output					
	BRKOUT	O3	DA/A	OCDS Break Signal Output					
	ADCx_REQG TyG	I	DA/A	External Request Gate Input for ADC0/1					
	U1C1_DX0E	1	DA/A	USIC1 Channel 1 Shift Data Input					

General Device Information

Table	able 6 Fin Definitions and Functions (Cont d)								
Pin	Symbol	Ctrl.	Туре	Function					
90	P0.4	O0 / I	St/B	Bit 4 of Port 0, General Purpose Input/Output					
	U1C1_SELO 0	O1	St/B	USIC1 Channel 1 Select/Control 0 Output					
	U1C0_SELO 1	O2	St/B	USIC1 Channel 0 Select/Control 1 Output					
	CCU61_COU T61	O3	St/B	CCU61 Channel 1 Output					
	A4	OH	St/B	External Bus Interface Address Line 4					
	U1C1_DX2A	I	St/B	USIC1 Channel 1 Shift Control Input					
	RxDC1B	I	St/B	CAN Node 1 Receive Data Input					
	ESR2_8	I	St/B	ESR2 Trigger Input 8					
92	P2.13	O0 / I	St/B	Bit 13 of Port 2, General Purpose Input/Output					
	U2C1_SELO 2	O1	St/B	USIC2 Channel 1 Select/Control 2 Output					
	RxDC2D	I	St/B	CAN Node 2 Receive Data Input					
93	P3.2	O0 / I	St/B	Bit 2 of Port 3, General Purpose Input/Output					
	U2C0_SCLK OUT	O1	St/B	USIC2 Channel 0 Shift Clock Output					
	U2C0_DX1B	I	St/B	USIC2 Channel 0 Shift Clock Input					
94	P2.10	O0 / I	St/B	Bit 10 of Port 2, General Purpose Input/Output					
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output					
	U0C0_SELO 3	O2	St/B	USIC0 Channel 0 Select/Control 3 Output					
	CC2_CC23	O3 / I	St/B	CAPCOM2 CC23IO Capture Inp./ Compare Out.					
	A23	OH	St/B	External Bus Interface Address Line 23					
	U0C1_DX0E	I	St/B	USIC0 Channel 1 Shift Data Input					
	CAPINA	I	St/B	GPT12E Register CAPREL Capture Input					
	U3C1 DX0A	I	St/B	USIC3 Channel 1 Shift Data Input					

XC2387C, XC2388C XC2000 Family / High Line

General Device Information

Table	Fin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
121	P10.12	O0 / I	St/B	Bit 12 of Port 10, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	TxDC2	O2	St/B	CAN Node 2 Transmit Data Output			
	TDO_B	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.			
	AD12	OH / IH	St/B	External Bus Interface Address/Data Line 12			
	U1C0_DX0C	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX1E	I	St/B	USIC1 Channel 0 Shift Clock Input			
122	P9.3	O0 / I	St/B	Bit 3 of Port 9, General Purpose Input/Output			
	CCU63_COU T60	01	St/B	CCU63 Channel 0 Output			
	BRKOUT	O2	St/B	OCDS Break Signal Output			
123	P10.13	O0 / I	St/B	Bit 13 of Port 10, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	U1C0_SELO 3	O3	St/B	USIC1 Channel 0 Select/Control 3 Output			
	WR/WRL	ОН	St/B	External Bus Interface Write Strobe Output Active for each external write access, when \overline{WR} , active for ext. writes to the low byte, when \overline{WRL} .			
	U1C0_DX0D	1	St/B	USIC1 Channel 0 Shift Data Input			

General Device Information

Table								
Pin	Symbol	Ctrl.	Туре	Function				
138	PORST	1	In/B	Power On Reset Input A low level at this pin resets the XC238xC completely. A spike filter suppresses input pulses <10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 120 ns. An internal pull-up device will hold this pin high when nothing is driving it.				
139	ESR1	O0 / I	St/B	External Service Request 1 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it.				
	RxDC0E	I	St/B	CAN Node 0 Receive Data Input				
	U1C0_DX0F	I	St/B	USIC1 Channel 0 Shift Data Input				
	U1C0_DX2C	I	St/B	USIC1 Channel 0 Shift Control Input				
	U1C1_DX0C	I	St/B	USIC1 Channel 1 Shift Data Input				
	U1C1_DX2B	Ι	St/B	USIC1 Channel 1 Shift Control Input				
	U2C1_DX2C	I	St/B	USIC2 Channel 1 Shift Control Input				
140	ESR2	O0 / I	St/B	External Service Request 2 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it.				
	RxDC1E	I	St/B	CAN Node 1 Receive Data Input				
	CCU60_CTR APC	I	St/B	CCU60 Emergency Trap Input				
	CCU61_CTR APC	1	St/B	CCU61 Emergency Trap Input				
	CCU62_CTR APC	I	St/B	CCU62 Emergency Trap Input				
	CCU63_CTR APC	1	St/B	CCU63 Emergency Trap Input				
	U1C1_DX0D	I	St/B	USIC1 Channel 1 Shift Data Input				
	U1C1_DX2C	I	St/B	USIC1 Channel 1 Shift Control Input				
	U2C1_DX0E	I	St/B	USIC2 Channel 1 Shift Data Input				
	U2C1_DX2B	I	St/B	USIC2 Channel 1 Shift Control Input				

Table 6 Pin Definitions and Functions (cont'd)

to a dedicated vector table location). The occurrence of a hardware trap is also indicated by a single bit in the trap flag register (TFR). Unless another higher-priority trap service is in progress, a hardware trap will interrupt any ongoing program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Depending on the package option up to 3 External Service Request (ESR) pins are provided. The ESR unit processes their input values and allows to implement user controlled trap functions (System Requests SR0 and SR1). In this way reset, wakeup and power control can be efficiently realized.

Software interrupts are supported by the 'TRAP' instruction in combination with an individual trap (interrupt) number. Alternatively to emulate an interrupt by software a program can trigger interrupt requests by writing the Interrupt Request (IR) bit of an interrupt control register.

3.7 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system built into the XC238xC provides a broad range of debug and emulation features. User software running on the XC238xC can be debugged within the target system environment.

The OCDS is controlled by an external debugging device via the debug interface. This either consists of the 2-pin Device Access Port (DAP) or of the JTAG port conforming to IEEE-1149. The debug interface can be completed with an optional break interface.

The debugger controls the OCDS with a set of dedicated registers accessible via the debug interface (DAP or JTAG). In addition the OCDS system can be controlled by the CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-generated instructions by the CPU.

Multiple breakpoints can be triggered by on-chip hardware, by software, or by an external trigger input. Single stepping is supported, as is the injection of arbitrary instructions and read/write access to the complete internal address space. A breakpoint trigger can be answered with a CPU halt, a monitor call, a data transfer, or/and the activation of an external signal.

Tracing of data can be obtained via the debug interface, or via the external bus interface for increased performance.

Tracing of program execution is supported by the XC2000 Family emulation device. With this device the DAP can operate on clock rates of up to 20 MHz.

The DAP interface uses two interface signals, the JTAG interface uses four interface signals, to communicate with external circuitry. The debug interface can be amended with two optional break lines.

XC2387C, XC2388C XC2000 Family / High Line

Functional Description

Figure 7 CCU6 Block Diagram

Timer T12 can work in capture and/or compare mode for its three channels. The modes can also be combined. Timer T13 can work in compare mode only. The multi-channel control unit generates output patterns that can be modulated by timer T12 and/or timer T13. The modulation sources can be selected and combined for signal modulation.

3.12 A/D Converters

For analog signal measurement, up to two 10-bit A/D converters (ADC0, ADC1) with 16 + 8 multiplexed input channels and a sample and hold circuit have been integrated on-chip. 4 inputs can be converted by both A/D converters. Conversions use the successive approximation method. The sample time (to charge the capacitors) and the conversion time are programmable so that they can be adjusted to the external circuit. The A/D converters can also operate in 8-bit conversion mode, further reducing the conversion time.

Several independent conversion result registers, selectable interrupt requests, and highly flexible conversion sequences provide a high degree of programmability to meet the application requirements. Both modules can be synchronized to allow parallel sampling of two input channels.

For applications that require more analog input channels, external analog multiplexers can be controlled automatically. For applications that require fewer analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converters of the XC238xC support two types of request sources which can be triggered by several internal and external events.

- Parallel requests are activated at the same time and then executed in a predefined sequence.
- Queued requests are executed in a user-defined sequence.

In addition, the conversion of a specific channel can be inserted into a running sequence without disturbing that sequence. All requests are arbitrated according to the priority level assigned to them.

Data reduction features reduce the number of required CPU access operations allowing the precise evaluation of analog inputs (high conversion rate) even at a low CPU speed. Result data can be reduced by limit checking or accumulation of results.

The Peripheral Event Controller (PEC) can be used to control the A/D converters or to automatically store conversion results to a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer. Each A/D converter contains eight result registers which can be concatenated to build a result FIFO. Wait-for-read mode can be enabled for each result register to prevent the loss of conversion data.

In order to decouple analog inputs from digital noise and to avoid input trigger noise, those pins used for analog input can be disconnected from the digital input stages. This can be selected for each pin separately with the Port x Digital Input Disable registers.

The Auto-Power-Down feature of the A/D converters minimizes the power consumption when no conversion is in progress.

Broken wire detection for each channel and a multiplexer test mode provide information to verify the proper operation of the analog signal sources (e.g. a sensor system).

3.16 System Timer

The System Timer consists of a programmable prescaler and two concatenated timers (10 bits and 6 bits). Both timers can generate interrupt requests. The clock source can be selected and the timers can also run during power reduction modes.

Therefore, the System Timer enables the software to maintain the current time for scheduling functions or for the implementation of a clock.

3.17 Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Watchdog Timer overflows, generating a prewarning interrupt and then a reset request.

The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384 or 256. The Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Watchdog Timer is reloaded and the prescaler is cleared.

Time intervals between 3.2 μ s and 13.4 s can be monitored (@ 80 MHz).

Time intervals between 2.56 μ s and 10.71 s can be monitored (@ 100 MHz).

The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).

3.18 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XC238xC from a number of external or internal clock sources:

- External clock signals with pad voltage or core voltage levels
- External crystal or resonator using the on-chip oscillator
- On-chip clock source for operation without crystal/resonator
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals, a clock input signal, or from the on-chip clock source. See also **Section 4.7.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

Mnemonic	Description	Bytes
NOP	Null operation	2
CoMUL/CoMAC	Multiply (and accumulate)	4
CoADD/CoSUB	Add/Subtract	4
Co(A)SHR	(Arithmetic) Shift right	4
CoSHL	Shift left	4
CoLOAD/STORE	Load accumulator/Store MAC register	4
CoCMP	Compare	4
CoMAX/MIN	Maximum/Minimum	4
CoABS/CoRND	Absolute value/Round accumulator	4
CoMOV	Data move	4
CoNEG/NOP	Negate accumulator/Null operation	4

Table 11 Instruction Set Summary (cont'd)

 The Enter Power Down Mode instruction is not used in the XC238xC, due to the enhanced power control scheme. PWRDN will be correctly decoded, but will trigger no action.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Input low voltage (all except XTAL1)	V_{IL} SR	-0.3	-	0.3 x V _{DDP}	V	
Output High voltage ⁷⁾	V _{OH} CC	V _{DDP} - 1.0	-	-	V	$I_{OH} \ge I_{OHmax}$
		V _{DDP} - 0.4	_	-	V	$I_{OH} \ge I_{OHnom}^{8)}$
Output Low Voltage ⁷⁾	$V_{\rm OL}{\rm CC}$	-	-	0.4	V	$I_{OL} \le I_{OLnom}^{9)}$
		-	-	1.0	V	$I_{OL} \leq I_{OLmax}$

Table 17 DC Characteristics for Lower Voltage Range (cont'd)

1) Because each double bond pin is connected to two pads (standard pad and high-speed pad), it has twice the normal value. For a list of affected pins refer to the pin definitions table in chapter 2.

- Not subject to production test verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.
- 3) If the input voltage exceeds the respective supply voltage due to ground bouncing ($V_{\rm IN} < V_{\rm SS}$) or supply ripple ($V_{\rm IN} > V_{\rm DDP}$), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current ($I_{\rm INJ}$) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor $K_{\rm OV}$.
- 4) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (*T*_J = junction temperature [°C]): *I*_{OZ} = 0.05 x e^(1.5 + 0.028 x TJ-) [µA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 µA. Leakage derating depending on voltage level (DV = *V*_{DDP} *V*_{PIN} [V]): *I*_{OZ} = *I*_{OZtempmax} (1.6 x DV) (µA]. This voltage derating formula is an approximation which applies for maximum temperature.
- Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device.
- 6) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level.
- 7) The maximum deliverable output current of a port driver depends on the selected output driver mode. This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS, VOH->VDDP). However, only the levels for nominal output currents are verified.
- 9) As a rule, with decreasing output current the output levels approach the respective supply level (V_{OL} -> V_{SS} , V_{OH} -> V_{DDP}). However, only the levels for nominal output currents are verified.

- 1) The supply current caused by leakage depends mainly on the junction temperature and the supply voltage. The temperature difference between the junction temperature T_J and the ambient temperature T_A must be taken into account. As this fraction of the supply current does not depend on device activity, it must be added to other power consumption values.
- All inputs (including pins configured as inputs) are set at 0 V to 0.1 V or at V_{DDP} 0.1 V to V_{DDP} and all outputs (including pins configured as outputs) are disconnected.

Note: A fraction of the leakage current flows through domain DMP_A (pin V_{DDPA}). This current can be calculated as 7,000 × $e^{-\alpha}$, with $\alpha = 5000 / (273 + 1.3 \times T_J)$. For $T_J = 150^{\circ}$ C, this results in a current of 160 μ A.

The leakage power consumption can be calculated according to the following formulas:

Parameter B must be replaced by

- 1.1 for typical values
- 1.4 for maximum values

Figure 16 Leakage Supply Current as a Function of Temperature

4.7 AC Parameters

These parameters describe the dynamic behavior of the XC238xC.

4.7.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).

Figure 18 Input Output Waveforms

4.7.4 Pad Properties

The output pad drivers of the XC238xC can operate in several user-selectable modes. Strong driver mode allows controlling external components requiring higher currents such as power bridges or LEDs. Reducing the driving power of an output pad reduces electromagnetic emissions (EME). In strong driver mode, selecting a slower edge reduces EME.

The dynamic behavior, i.e. the rise time and fall time, depends on the applied external capacitance that must be charged and discharged. Timing values are given for a capacitance of 20 pF, unless otherwise noted.

In general, the performance of a pad driver depends on the available supply voltage V_{DDP} . Therefore the following tables list the pad parameters for the upper voltage range and the lower voltage range, respectively.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 29 is valid under the following conditions: V_{DDP} typ. 5 V; $V_{\text{DDP}} \ge 4.5$ V; $V_{\text{DDP}} \le 5.5$ V

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Maximum output driver current (absolute value) ¹⁾	I _{Omax} CC	-	-	4.0	mA	Driver_Strength = Medium
		-	-	10	mA	Driver_Strength = Strong
		-	-	0.5	mA	Driver_Strength = Weak
Nominal output driver current (absolute value)	I _{Onom} CC	-	-	1.0	mA	Driver_Strength = Medium
		-	-	2.5	mA	Driver_Strength = Strong
		_	-	0.1	mA	Driver_Strength = Weak

Table 29 Standard Pad Parameters for Upper Voltage Range

4.7.5 External Bus Timing

The following parameters specify the behavior of the XC238xC bus interface.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 31 Parameters

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
CLKOUT Cycle Time ¹⁾	t ₅ CC	-	$1/f_{\rm SYS}$	-	ns	
CLKOUT high time	t ₆ CC	2	-	-		
CLKOUT low time	t ₇ CC	2	_	-		
CLKOUT rise time	t ₈ CC	-	-	3	ns	
CLKOUT fall time	t ₉ CC	-	-	3		

1) The CLKOUT cycle time is influenced by PLL jitter. For longer periods the relative deviation decreases (see PLL deviation formula).

Figure 23 CLKOUT Signal Timing

Note: The term CLKOUT refers to the reference clock output signal which is generated by selecting f_{SYS} as the source signal for the clock output signal EXTCLK on pin P2.8 and by enabling the high-speed clock driver on this pin.

Table 41 is valid under the following conditions: C_{L} = 20 pF; voltage_range= lower

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
DAP0 clock period ¹⁾	<i>t</i> ₁₁ SR	25	-	-	ns	
DAP0 high time	<i>t</i> ₁₂ SR	8	-	-	ns	
DAP0 low time ¹⁾	t ₁₃ SR	8	-	-	ns	
DAP0 clock rise time	t ₁₄ SR	_	-	4	ns	
DAP0 clock fall time	t ₁₅ SR	-	-	4	ns	
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	3	-	-	ns	pad_type= high speed ²⁾
		6	-	-	ns	pad_type= stan dard
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	4	-	-	ns	pad_type= high speed ²⁾
		6	-	-	ns	pad_type= stan dard
DAP1 valid per DAP0 clock period ³⁾	<i>t</i> ₁₉ CC	19	21	-	ns	pad_type= high speed ²⁾
		12	17	-	ns	pad_type= stan dard

 Table 41
 DAP Interface Timing for Lower Voltage Range

1) See the DAP chapter for clock rate restrictions in the Active::IDLE protocol state.

2) Available high speed pins can be found in the pin definitions table in chapter 2.

3) The Host has to find a suitable sampling point by analyzing the sync telegram response.

