Microchip Technology - PIC16F18324-E/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18324-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN ALLOCATION TABLES

Preliminary

I/O ⁽²⁾	14-Pin PDIP/SOIC/TSSOP	16-Pin UQFN	ADC	Reference	Comparator	NCO	DAC	WSQ	Timers	ссь	MWd	CWG	MSSP	EUSART	CLC	CLKR	Interrupt	dn-IInA	Basic
RA0	13	12	ANA0	—	C1IN0+	_	DAC10UT	_	_	—	_	_	—		_	_	IOC	Y	ICDDAT/ ICSPDAT
RA1	12	11	ANA1	VREF+	C1IN0- C2IN0-	_	DAC1REF+	_	_	—	_	_	—	_	_	_	IOC	Y	ICDCLK/
RA2	11	10	ANA2	VREF-	—	_	DAC1REF-	—	T0CKI ⁽¹⁾	CCP3 ⁽¹⁾	—	CWG1IN ⁽¹⁾ CWG2IN ⁽¹⁾	—	_	_	_	INT ⁽¹⁾ IOC	Y	_
RA3	4	3	_	—	—	_	_	_	_	—	—	_	—		_	—	IOC	Y	MCLR VPP
RA4	3	2	ANA4	_	—	—	—	—	T1G ⁽¹⁾ SOSCO	—	—	—	—	_	_	_	IOC	Y	CLKOUT OSC2
RA5	2	1	ANA5	—	_	—	_	_	T1CKI ⁽¹⁾ SOSCIN SOSCI	_	_	-	_	_	CLCIN3 ⁽¹⁾	_	IOC	Y	CLKIN OSC1
RC0	10	9	ANC0	—	C2IN0+	_	_	_	T5CKI ⁽¹⁾	_	_	—	SCK1 ⁽¹⁾ SCL1 ^(1,3,4)		_	_	IOC	Y	_
RC1	9	8	ANC1	—	C1IN1- C2IN1-	_	_	_	_	CCP4 ⁽¹⁾	—	_	SDI1 ⁽¹⁾ SDA1 ^(1,3,4)		CLCIN2 ⁽¹⁾	—	IOC	Y	—
RC2	8	7	ANC2	_	C1IN2- C2IN2-	_	_	MDCIN1 ⁽¹⁾	_	—	_	_	—		_	—	IOC	Y	_
RC3	7	6	ANC3	_	C1IN3- C2IN3-	_	_	MDMIN ⁽¹⁾	T5G ⁽¹⁾	CCP2 ⁽¹⁾	_	_	SS1(1)	l	CLCIN0 ⁽¹⁾	_	IOC	Y	_
RC4	6	5	ANC4	_	_	_	_	_	T3G ⁽¹⁾	_	_	_	_		CLCIN1 ⁽¹⁾	_	IOC	Y	-
RC5	5	4	ANC5	_	—	—	—	MDCIN2 ⁽¹⁾	T3CKI ⁽¹⁾	CCP1 ⁽¹⁾	—	-	—	RX ⁽¹⁾	—	_	IOC	Y	_
Vdd	1	16	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	VDD
Vss	14	13	—	—	—	_	—	_	—	—	—	—	_	_	—	_	_	—	Vss

TABLE 1: 14/16-PIN ALLOCATION TABLE (PIC16(L)F18324)

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: These pins are configured for I²C logic levels; clock and data signals may be assigned to any of these pins. Assignments to the other pins (e.g., RA5) will operate, but logic levels will be standard TTL/ ST as selected by the INLVL register.

OUT(2) C10UT — CMOS Comparator C1 output. C2OUT — CMOS Comparator C2 output. NCO1 — CMOS Numerically Controlled Oscillator output. DSM — CMOS Digital Signal Modulator output. TMR0 — CMOS TMR0 clock output. CCP1 — CMOS Capture/Compare/PWM 1 output. CCP2 — CMOS Capture/Compare/PWM 2 output. CCP3 — CMOS Capture/Compare/PWM 3 output. CCP4 — CMOS Capture/Compare/PWM 4 output. CCP4 — CMOS Capture/Compare/PWM 4 output. PWM5 — CMOS Pulse-Width Modulator 5 output. PWM6 — CMOS Pulse-Width Modulator 6 output. CWG1A — CMOS Complementary Waveform Generator 1 output A. CWG2A — CMOS Complementary Waveform Generator 2 output A. CWG1B — CMOS Complementary Waveform Generator 2 output B. CWG2C	Name	Function	Name Function Inpu	e Output Type	Description
C2OUT—CMOSComparator C2 output.NCO1—CMOSNumerically Controlled Oscillator output.DSM—CMOSDigital Signal Modulator output.TMR0—CMOSTMR0 clock output.CCP1—CMOSCapture/Compare/PWM 1 output.CCP2—CMOSCapture/Compare/PWM 2 output.CCP3—CMOSCapture/Compare/PWM 3 output.CCP4—CMOSCapture/Compare/PWM 4 output.PWM5—CMOSCapture/Compare/PWM 4 output.PWM6—CMOSPulse-Width Modulator 5 output.PWM6—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 1 output A.CWG2B—CMOSComplementary Waveform Generator 1 output B.CWG2C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 1 output D.	OUT ⁽²⁾	C1OUT	C1OUT —	CMOS	Comparator C1 output.
NCO1—CMOSNumerically Controlled Oscillator output.DSM—CMOSDigital Signal Modulator output.TMR0—CMOSTMR0 clock output.CCP1—CMOSCapture/Compare/PWM 1 output.CCP2—CMOSCapture/Compare/PWM 2 output.CCP3—CMOSCapture/Compare/PWM 3 output.CCP4—CMOSCapture/Compare/PWM 4 output.PWM5—CMOSCapture/Compare/PWM 4 output.PWM6—CMOSPulse-Width Modulator 5 output.CWG1A—CMOSPulse-Width Modulator 6 output.CWG2A—CMOSComplementary Waveform Generator 1 output A.CWG1B—CMOSComplementary Waveform Generator 2 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 1 output C.CWG1D—CMOSComplementary Waveform Generator 1 output C.		C2OUT	C2OUT —	CMOS	Comparator C2 output.
DSMCMOSDigital Signal Modulator output.TMR0CMOSTMR0 clock output.CCP1CMOSCapture/Compare/PWM 1 output.CCP2CMOSCapture/Compare/PWM 2 output.CCP3CMOSCapture/Compare/PWM 3 output.CCP4CMOSCapture/Compare/PWM 4 output.PWM5CMOSPulse-Width Modulator 5 output.PWM6CMOSPulse-Width Modulator 6 output.CWG1ACMOSComplementary Waveform Generator 1 output A.CWG2ACMOSComplementary Waveform Generator 2 output A.CWG2BCMOSComplementary Waveform Generator 1 output B.CWG1CCMOSComplementary Waveform Generator 2 output B.CWG2CCMOSComplementary Waveform Generator 2 output C.CWG2DCMOSComplementary Waveform Generator 2 output D.		NCO1	NCO1 —	CMOS	Numerically Controlled Oscillator output.
TMR0—CMOSTMR0 clock output.CCP1—CMOSCapture/Compare/PWM 1 output.CCP2—CMOSCapture/Compare/PWM 2 output.CCP3—CMOSCapture/Compare/PWM 3 output.CCP4—CMOSCapture/Compare/PWM 4 output.PWM5—CMOSPulse-Width Modulator 5 output.PWM6—CMOSPulse-Width Modulator 6 output.CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output B.CWG2B—CMOSComplementary Waveform Generator 1 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 1 output C.CWG1D—CMOSComplementary Waveform Generator 1 output D.		DSM	DSM —	CMOS	Digital Signal Modulator output.
CCP1—CMOSCapture/Compare/PWM 1 output.CCP2—CMOSCapture/Compare/PWM 2 output.CCP3—CMOSCapture/Compare/PWM 3 output.CCP4—CMOSCapture/Compare/PWM 4 output.PWM5—CMOSPulse-Width Modulator 5 output.PWM6—CMOSPulse-Width Modulator 6 output.CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output A.CWG1B—CMOSComplementary Waveform Generator 2 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 1 output C.		TMR0	TMR0 —	CMOS	TMR0 clock output.
CCP2—CMOSCapture/Compare/PWM 2 output.CCP3—CMOSCapture/Compare/PWM 3 output.CCP4—CMOSCapture/Compare/PWM 4 output.PWM5—CMOSPulse-Width Modulator 5 output.PWM6—CMOSPulse-Width Modulator 6 output.CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output A.CWG1B—CMOSComplementary Waveform Generator 1 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 1 output C.		CCP1	CCP1 —	CMOS	Capture/Compare/PWM 1 output.
CCP3—CMOSCapture/Compare/PWM 3 output.CCP4—CMOSCapture/Compare/PWM 4 output.PWM5—CMOSPulse-Width Modulator 5 output.PWM6—CMOSPulse-Width Modulator 6 output.CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output A.CWG1B—CMOSComplementary Waveform Generator 1 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 1 output D.		CCP2	CCP2 —	CMOS	Capture/Compare/PWM 2 output.
CCP4—CMOSCapture/Compare/PWM 4 output.PWM5—CMOSPulse-Width Modulator 5 output.PWM6—CMOSPulse-Width Modulator 6 output.CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output A.CWG1B—CMOSComplementary Waveform Generator 1 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 1 output D.		CCP3	CCP3 —	CMOS	Capture/Compare/PWM 3 output.
PWM5—CMOSPulse-Width Modulator 5 output.PWM6—CMOSPulse-Width Modulator 6 output.CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output A.CWG1B—CMOSComplementary Waveform Generator 1 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 2 output C.		CCP4	CCP4 —	CMOS	Capture/Compare/PWM 4 output.
PWM6—CMOSPulse-Width Modulator 6 output.CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output A.CWG1B—CMOSComplementary Waveform Generator 1 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 2 output D.		PWM5	PWM5 —	CMOS	Pulse-Width Modulator 5 output.
CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output A.CWG1B—CMOSComplementary Waveform Generator 1 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 2 output C.		PWM6	PWM6 —	CMOS	Pulse-Width Modulator 6 output.
CWG2A — CMOS Complementary Waveform Generator 2 output A. CWG1B — CMOS Complementary Waveform Generator 1 output B. CWG2B — CMOS Complementary Waveform Generator 2 output B. CWG1C — CMOS Complementary Waveform Generator 1 output C. CWG2C — CMOS Complementary Waveform Generator 2 output C. CWG1D — CMOS Complementary Waveform Generator 2 output C.		CWG1A	CWG1A —	CMOS	Complementary Waveform Generator 1 output A.
CWG1B — CMOS Complementary Waveform Generator 1 output B. CWG2B — CMOS Complementary Waveform Generator 2 output B. CWG1C — CMOS Complementary Waveform Generator 1 output C. CWG2C — CMOS Complementary Waveform Generator 2 output C. CWG1D — CMOS Complementary Waveform Generator 2 output C.		CWG2A	CWG2A —	CMOS	Complementary Waveform Generator 2 output A.
CWG2B — CMOS Complementary Waveform Generator 2 output B. CWG1C — CMOS Complementary Waveform Generator 1 output C. CWG2C — CMOS Complementary Waveform Generator 2 output C. CWG1D — CMOS Complementary Waveform Generator 1 output D.		CWG1B	CWG1B —	CMOS	Complementary Waveform Generator 1 output B.
CWG1C — CMOS Complementary Waveform Generator 1 output C. CWG2C — CMOS Complementary Waveform Generator 2 output C. CWG1D — CMOS Complementary Waveform Generator 1 output D.		CWG2B	CWG2B —	CMOS	Complementary Waveform Generator 2 output B.
CWG2C — CMOS Complementary Waveform Generator 2 output C. CWG1D — CMOS Complementary Waveform Generator 1 output D.		CWG1C	CWG1C —	CMOS	Complementary Waveform Generator 1 output C.
CWG1D — CMOS Complementary Waveform Generator 1 output D.		CWG2C	CWG2C —	CMOS	Complementary Waveform Generator 2 output C.
		CWG1D	CWG1D —	CMOS	Complementary Waveform Generator 1 output D.
CWG2D — CMOS Complementary Waveform Generator 2 output D.		CWG2D	CWG2D —	CMOS	Complementary Waveform Generator 2 output D.
SDA1 ⁽³⁾ I ² C OD I ² C data output.		SDA1 ⁽³⁾	SDA1 ⁽³⁾ I ² C	OD	I ² C data output.
SCL1 ⁽³⁾ I ² C OD I ² C clock output.		SCL1 ⁽³⁾	SCL1 ⁽³⁾ I ² C	OD	I ² C clock output.
SDO1 — CMOS SPI1 data output.		SDO1	SDO1 —	CMOS	SPI1 data output.
SCK1 — CMOS SPI1 clock output.		SCK1	SCK1 —	CMOS	SPI1 clock output.
TX/CK — CMOS Asynchronous TX data/synchronous clock output.		TX/CK	TX/CK —	CMOS	Asynchronous TX data/synchronous clock output.
DT ⁽³⁾ — CMOS EUSART synchronous data output.		DT ⁽³⁾	DT ⁽³⁾ —	CMOS	EUSART synchronous data output.
CLC1OUT — CMOS Configurable Logic Cell 1 source output.		CLC1OUT	CLC1OUT —	CMOS	Configurable Logic Cell 1 source output.
CLC2OUT — CMOS Configurable Logic Cell 2 source output.		CLC2OUT	CLC2OUT —	CMOS	Configurable Logic Cell 2 source output.
CLC3OUT — CMOS Configurable Logic Cell 3 source output.		CLC3OUT	CLC3OUT —	CMOS	Configurable Logic Cell 3 source output.
CLC4OUT — CMOS Configurable Logic Cell 4 source output.		CLC4OUT	CLC4OUT —	CMOS	Configurable Logic Cell 4 source output.
CLKR – CMOS Clock Reference output.		CLKR	CLKR —	CMOS	Clock Reference output.

TABLE 1-2: PIC16(L)F18324 PINOUT DESCRIPTION (CONTINUED)

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD
 = Open-Drain

 TTL = TTL compatible input
 ST
 = Schmitt Trigger input with CMOS levels
 I²C
 = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL
 = Crystal levels
 I
 I
 I

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-1.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

Address	Name	PIC16(L)F18324 PIC16(L)F18344	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0					
Bank 2	8											
					CPU CORE RI	EGISTERS; see ⁻	Table 4-2 for spe	ecifics				
E0Ch	—	—				Unimple	mented				_	_
E0Dh	—	—		Unimplemented							—	-
E0Eh	—	—				Unimple	Unimplemented					_
E0Fh	PPSLOCK		_	_	—	—	_	_		PPSLOCKED	0	
E10h	INTPPS		_	_	—			INTPPS<4:0>			0 0010	u uuu
E11h	TOCKIPPS		_		—		T0CKIPPS<4:0>					u uuu
E12h	T1CKIPPS		_	_	—	T1CKIPPS<4:0>					0 0101	u uuu
E13h	T1GPPS		_	_	—	T1GPPS<4:0>					0 0100	u uuu
E14h	CCP1PPS		—	—	—		CCP1PPS<4:0>					u uuu
E15h	CCP2PPS		_	_	—		CCP2PPS<4:0>					u uuu
E16h	CCP3PPS		_	_	_			CCP3PPS<4:0>			0 0010	u uuu
E17h	CCP4PPS	X —		—	—			CCP4PPS<4:0>			1 0001	u uuu
		— X	—	_	—		CCP4PPS<4:0>				0 0100	u uuu
E18h	CWG1PPS			—	—			CWG1PPS<4:0>			0 0010	u uuu
E19h	CWG2PPS			—	_			CWG2PPS<4:0>			0 0010	u uuu
E1Ah	MDCIN1PPS		-	-	—		Ν	IDCIN1PPS<4:0	>		1 0010	u uuu
E1Bh	MDCIN2PPS			-	_		N	IDCIN2PPS<4:0	>		1 0101	u uuu
E1Ch	MDMINPPS			—	_		1	MDMINPPS<4:0>	>		1 0011	u uuu
E1Dh	—	—				Unimple	mented				_	_
E1Eh	_	_	Unimplemented				mented				_	_

Unimplemented

SSP1CLKPPS<4:0>

SSP1CLKPPS<4:0>

PIC16(L)F18324/18344

---1 0000

---0 1110

--u uuuu

--u uuuu

© 2015-2016 Microchip Technology Inc.

E1Fh

E20h

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

_

_

_

Note 1: Only on PIC16F18324/18344.

SSP1CLKPPS

Register accessible from both User and ICD Debugger. 2:

Х

X

TABLE	4-4: SPEC	IAL F	UNCTION RE		UMMARY B	ANKS 0-31	CONTINUE	D)				
Address	Name	PIC16(L)F18324 PIC16(L)F18344	Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Value on: POR, BOR								Value on all other resets
Bank 3 ^r	Bank 31 — only accessible from Debug Executive, unless otherwise specified											
	CPU CORE REGISTERS; see Table 4-2 for specifics											
F8Ch to FE3h	_	_		Unimplemented						_	_	
FE4h ⁽²⁾	STATUS_SHAD		_	_	_	—	—	Z	DC	С	xxx	uuu
FE5h ⁽²⁾	WREG_SHAD				Work	ing Register Norn	nal (Non-ICD) Sh	adow			xxxx xxxx	uuuu uuuu
FE6h ⁽²⁾	BSR_SHAD		_	_	_		Bank Select Reg	gister Normal (No	on-ICD) Shadow		x xxxx	u uuuu
FE7h ⁽²⁾	PCLATH_SHAD		_	Program Counter Latch High Register Normal (Non-ICD) Shadow							-xxx xxxx	-uuu uuuu
FE8h ⁽²⁾	FSR0L_SHAD			Indi	rect Data Memo	ory Address 0 Lov	Pointer Normal	(Non-ICD) Shad	ow		xxxx xxxx	uuuu uuuu
FE9h ⁽²⁾	FSR0H_SHAD			Indi	rect Data Memo	ry Address 0 Hig	n Pointer Normal	(Non-ICD) Shad	low		xxxx xxxx	uuuu uuuu
FEAh ⁽²⁾	FSR1L SHAD			Indi	rect Data Memo	orv Address 1 Lov	Pointer Normal	(Non-ICD) Shad	ow		xxxx xxxx	uuuu uuuu

Indirect Data Memory Address 1 High Pointer Normal (Non-ICD) Shadow

Unimplemented

Top of Stack Low byte

Top of Stack High byte

Current Stack pointer

_

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', x = reserved. Shaded locations unimplemented, read as '0'.

© 2015-2016 Microchip Technology Inc.

DS40001800B-page 54

uuuu uuuu

---1 1111

XXXX XXXX

-xxx xxxx

XXXX XXXX

---x xxxx

XXXX XXXX

-xxx xxxx

FEBh⁽²⁾

FEDh⁽²⁾

FEEh⁽²⁾

FEFh⁽²⁾

Legend:

Note 1:

2:

FECh

FSR1H_SHAD

STKPTR

TOSL

TOSH

_

Only on PIC16F18324/18344.

_

Register accessible from both User and ICD Debugger.

7.4 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, ECL, ECM, ECH, and Secondary Oscillator).

7.4.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 7-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

FIGURE 7-10: FSCM TIMING DIAGRAM

7.4.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to the HFINTOSC at 1 MHz clock frequency and sets the bit flag OSFIF of the PIR3 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE3 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation, by writing to the NOSC<2:0> and NDIV<3:0>bits of the OSCCON1 register.

7.4.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the NOSC<2:0> and NDIV<3:0> bits of the OSCCON1 register. When switching to the external oscillator or external oscillator with PLL, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON1. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again be set by hardware.

7.4.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC Clock modes so that the external clock signal can be stopped if required. Therefore, the device will always be executing code while the OST is operating when using one of the EC modes.

8.3 Interrupts During Sleep

All interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 9.0** "**Power-Saving Operation Modes**" for more details.

8.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the PIE0 register. The INTEDG bit of the INTCON register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the PIR0 register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

8.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

9.4 Register Definitions: Voltage Regulator Control

REGISTER 9-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

INE OIGTEN U								
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1	
—	_	—	_	_	_	VREGPM	Reserved	
bit 7			•				bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is			wn	alue at all other A	Resets			
'1' = Bit is set		'0' = Bit is clear	ed					

bit 7-2	Unimplemented: Read as '0'
bit 1	 VREGPM: Voltage Regulator Power Mode Selection bit 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾; Draws lowest current in Sleep, slower wake-up 0 = Normal-Power Sleep mode enabled in Sleep⁽²⁾; Draws higher current in Sleep, faster wake-up
bit 0	Reserved: Read as '1'. Maintain bit set.

Note 1: PIC16F18324/18344 only.

2: See Section 35.0 "Electrical Specifications".

REGISTER 9-2: CPUDOZE: DOZE AND IDLE REGISTER

R/W-0/u	R/W/HC/HS-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
IDLEN	DOZEN ^(1,2)	ROI	DOE	—		DOZE<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	IDLEN: Idle Enable bit 1 = A SLEEP instruction inhibits the CPU clock, but not the peripheral clock(s) 0 = A GLEEP instruction places the device into Full Sleep mode
bit 6	 DOZEN: Doze Enable bit^(1,2) 1 = The CPU executes instruction cycles according to DOZE setting. 0 = The CPU executes all instruction cycles (fastest, highest power operation).
bit 5	 ROI: Recover-on-interrupt bit 1 = Entering the interrupt service routine (ISR) makes DOZEN = 0 bit, bringing the CPU to full-speed operation. 0 = Interrupt entry does not change DOZEN.
bit 4	 DOE: Doze-on-Exit bit 1 = Executing RETFIE makes DOZEN = 1, bringing the CPU to reduced speed operation. 0 = RETFIE does not change DOZEN.
bit 3	Unimplemented: Read as '0'.
bit 2-0	DOZE<2:0>: Ratio of CPU instruction cycles to peripheral instruction cycles 111 = 1:256 110 = 1:128 101 = 1:64 100 = 1:32 011 = 1:16 010 = 1:8 001 = 1:4 000 = 1:2
Note 1: W	Vhen ROI = 1 or DOE = 1, DOZEN is changed by hardware interrupt entry and/or exit.

2: Entering ICD overrides DOZEN, returning the CPU to full execution speed; this bit is not affected.

12.5 Register Definitions: PORTB

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	U-0	U-0	U-0	U-0			
RB7 RB6		RB5	RB4	_	_	_	_			
bit 7	1	1	1		1		bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared							

REGISTER 12-9: PORTB: PORTB REGISTER

RB<7:4>: PORTB I/O Value bits ⁽¹⁾
1 = Port pin is <u>></u> Vін
0 = Port pin is <u><</u> VIL

bit 3-0 Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register return actual I/O pin values.

REGISTER 12-10: TRISB: PORTB TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0		
TRISB7	TRISB6	TRISB5	TRISB4	_	_	_	_		
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	TRISB<7:4>: PORTB I/O Tri-State Control bits
	1 = PORTB output driver is disabled
bit 3-0	Unimplemented: Read as '0'

		-			-					
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0			
IOCBN7	IOCBN6	IOCBN5	IOCBN4		—	—	-			
bit 7							bit 0			
Legend:	Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'						
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared							

REGISTER 15-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER⁽¹⁾

bit 7-4	 IOCBN<7:4>: Interrupt-on-Change PORTB Negative Edge Enable bits 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge. 0 = Interrupt-on-Change disabled for the associated pin
bit 3-0	Unimplemented: Read as '0'
Note 1:	PIC16(L)F18344 only.

REGISTER 15-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER⁽¹⁾

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	U-0	U-0	U-0	U-0		
IOCBF7	IOCBF6	IOCBF5	IOCBF4	_		—	—		
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-4 IOCBF<7:4>: Interrupt-on-Change PORTB Flag bits

1 = An enabled change was detected on the associated pin.
 Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.

0 = No change was detected, or the user cleared the detected change.

bit 3-0 Unimplemented: Read as '0'

Note 1: PIC16(L)F18344 only.

20.2.2 PUSH-PULL MODE

In Push-Pull mode, two output signals are generated, alternating copies of the input as illustrated in Figure 20-2. This alternation creates the push-pull effect required for driving some transformer based power supply designs. Dead-band control is not used in Push-Pull mode. Steering modes are not used in Push-Pull mode.

The push-pull sequencer is reset whenever EN = 0 or if an auto-shutdown event occurs. The sequencer is clocked by the first input pulse, and the first output appears on CWGxA.

The unused outputs CWGxC and CWGxD drive copies of CWGxA and CWGxB, respectively, but with polarity controlled by POLC and POLD.

20.2.3 STEERING MODES

In both Synchronous and Asynchronous Steering modes, the modulated input signal can be steered to any combination of four CWG outputs and a fixed-value will be presented on all the outputs not used for the PWM output. Each output has independent polarity, steering, and shutdown options. Dead-band control is not used in either Steering mode.

When STRy = 0 (Register 20-5), the corresponding pin is held at the level defined by SDATy (Register 20-5). When STRy = 1, the pin is driven by the modulated input signal.

The POLy bits (Register 20-2) control the signal polarity only when STRy = 1.

The CWG auto-shutdown operation also applies to Steering modes as described in **Section 20.11** "**Register Definitions: CWG Control**".

Note: Only the STRy bits are synchronized; the SDATy (data) bits are not synchronized.

REGISTER 20	J-4. CWOA			SELECTION	INLOISTEN				
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
—	—	—	-	DAT<3:0>					
bit 7							bit 0		
Legend:									

REGISTER 20-4: CWGxDAT: CWGx DATA INPUT SELECTION REGISTER

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-4 Unimplemented: Read as '0'

bit 3-0 DAT<3:0>: CWG Data Input Selection bits

DAT	Data Source
0000	CWGxPPS
0001	C1OUT
0010	C2OUT
0011	CCP1
0100	CCP2
0101	CCP3
0110	CCP4
0111	PWM5
1000	PWM6
1001	NCO1
1010	CLC1
1011	CLC2
1100	CLC3
1101	CLC4
1110	Reserved
1111	Reserved

23.1 NCO1 Operation

The NCO1 operates by repeatedly adding a fixed value to an accumulator. Additions occur at the input clock rate. The accumulator will overflow with a carry periodically, which is the raw NCO1 output (NCO_overflow). This effectively reduces the input clock by the ratio of the addition value to the maximum accumulator value. See Equation 23-1.

The NCO1 output can be further modified by stretching the pulse or toggling a flip-flop. The modified NCO1 output is then distributed internally to other peripherals and can optionally be output to a pin. The accumulator overflow also generates an interrupt (NCO_interrupt).

The NCO1 period changes in discrete steps to create an average frequency.

EQUATION 23-1: NCO1 OVERFLOW FREQUENCY

 $FOVERFLOW = \frac{NCO \ Clock \ Frequency \times Increment \ Value}{2^{20}}$

23.1.1 NCO1 CLOCK SOURCES

Clock sources available to the NCO1 include:

- HFINTOSC
- Fosc
- LC1_out

The NCO1 clock source is selected by configuring the N1CKS<1:0> bits in the NCO1CLK register.

23.1.2 ACCUMULATOR

The accumulator is a 20-bit register. Read and write access to the accumulator is available through three registers:

- NCO1ACCL
- NCO1ACCH
- NCO1ACCU

23.1.3 ADDER

The NCO1 adder is a full adder, which operates independently from the system clock. The addition of the previous result and the increment value replaces the accumulator value on the rising edge of each input clock.

23.1.4 INCREMENT REGISTERS

The increment value is stored in three registers making up a 20-bit increment. In order of LSB to MSB they are:

- NCO1INCL
- NCO1INCH
- NCO1INCU

When the NCO1 module is enabled, the NCO1INCU and NCO1INCH registers should be written first, then the NCO1INCL register. Writing to the NCO1INCL register initiates the increment buffer registers to be loaded simultaneously on the second rising edge of the NCO clk signal.

The registers are readable and writable. The increment registers are double-buffered to allow value changes to be made without first disabling the NCO1 module.

When the NCO1 module is disabled, the increment buffers are loaded immediately after a write to the increment registers.

Note: The increment buffer registers are not user-accessible.

26.0 TIMER0 MODULE

The Timer0 module is an 8/16-bit timer/counter with the following features:

- 16-bit timer/counter
- 8-bit timer/counter with programmable period
- Synchronous or asynchronous operation
- Selectable clock sources
- Programmable prescaler (independent of Watchdog Timer)
- Programmable postscaler
- Operation during Sleep mode
- Interrupt on match or overflow
- Output on I/O pin (via PPS) or to other peripherals

26.1 Timer0 Operation

Timer0 can operate as either an 8-bit timer/counter or a 16-bit timer/counter. The mode is selected with the T016BIT bit of the T0CON register.

When used with FOSC/4 clock source, the module is a timer and increments on every instruction cycle. When used with any other clock source, the module can be used as either a timer or a counter and increments on every rising edge of the external source.

26.1.1 16-BIT MODE

In normal operation, TMR0 increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

26.1.1.1 Timer0 Reads and Writes in 16-Bit Mode

TMR0H is not the actual high byte of Timer0 in 16-bit mode. It is actually a buffered version of the real high byte of Timer0, which is neither directly readable nor writable (see Figure 26-1). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte was valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

26.1.2 8-BIT MODE

In normal operation, TMR0 increments on the rising edge of the clock source. A 15-bit prescaler on the clock input gives several prescale options (see prescaler control bits, T0CKPS<3:0> in the T0CON1 register).

In 8-bit mode, TMR0H no longer functions as the Timer0 high byte, but instead functions as the Period Register (PR). The value of TMR0L is compared to that of TMR0H on each clock cycle. When the two values match, the following events happen:

- TMR0_out goes high for one prescaled clock period
- TMR0L is reset
- The contents of TMR0H are copied to the period buffer

In 8-bit mode, the TMR0L and TMR0H registers are both directly readable and writable. The TMR0L register is cleared on any device Reset, while the TMR0H register initializes at FFh.

Both the prescaler and postscaler counters are cleared on the following events:

- A write to the TMR0L register
- A write to either the T0CON0 or T0CON1 registers.
- Any device Reset Power-on Reset (POR),MCLR Reset, Watchdog Timer Reset (WDTR) or Brown-out Reset (BOR)

26.1.3 COUNTER MODE

In Counter mode, the prescaler is normally disabled by setting the T0CKPS bits of the T0CON1 register to '0000'. Each rising edge of the clock input (or the output of the prescaler if the prescaler is used) increments the counter by '1'.

26.1.4 TIMER MODE

In Timer mode, the Timer0 module will increment every instruction cycle as long as there is a valid clock signal and the T0CKPS bits of the T0CON1 register (Register 26-4) are set to '0000'. When a prescaler is added, the timer will increment at the rate based on the prescaler value.

26.1.5 ASYNCHRONOUS MODE

When the TOASYNC bit of the TOCON1 register is set (TOASYNC = 1), the counter increments with each rising edge of the input source (or output of the prescaler, if used). Asynchronous mode allows the counter to continue operation during Sleep mode provided that the clock also continues to operate during Sleep.

R/W-0/0	U-0	R-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
T0EN	—	TOOUT	T0OUT T016BIT T0OUTPS<3:0>						
bit 7	·						bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7 T0EN: TMR0 Enable bit 1 = The module is enabled and operating 0 = The module is disabled and in the lowest power mode									
bit 6	Unimplement	ted: Read as '	0'						
bit 5	TOOUT:TMR0 TMR0 output) Output bit (rea bit	ad-only)						
bit 4	T016BIT: TMF 1 = TMR0 is 0 = TMR0 is a	R0 Operating a a 16-bit timer an 8-bit timer	is 16-bit Time	r Select bit					
bit 3-0	0 = TMR0 is a 8-bit timer TOOUTPS<3:0>: TMR0 Output Postscaler (divider) Select bits 0000 = 1:1 Postscaler 0010 = 1:2 Postscaler 0010 = 1:3 Postscaler 0010 = 1:5 Postscaler 0100 = 1:5 Postscaler 0101 = 1:6 Postscaler 0110 = 1:7 Postscaler 0111 = 1:8 Postscaler 1000 = 1:9 Postscaler 1001 = 1:10 Postscaler 1001 = 1:11 Postscaler 1011 = 1:12 Postscaler 1011 = 1:12 Postscaler 1101 = 1:14 Postscaler 1101 = 1:15 Postscaler								

REGISTER 26-3: T0CON0: TIMER0 CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	140
ANSELA	_	_	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	141
TRISB ⁽¹⁾	TRISB7	TRISB6	TRISB5	TRISB4	—	_	_	_	146
ANSELB ⁽¹⁾	ANSB7	ANSB6	ANSB5	ANSB4	—	_	_	_	147
TRISC	TRISC7 ⁽¹⁾	TRISC6 ⁽¹⁾	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	153
ANSELC	ANSC7 ⁽¹⁾	ANSC6 ⁽¹⁾	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	154
TMR0L	TMR0L<7:0>							277	
TMR0H			T	//R0H<7:0>	or TMR0<15:8>				277
T0CON0	T0EN	-	TOOUT	T016BIT	Т	00UTPS<	<3:0>		278
T0CON1	1	F0CS<2:0>		T0ASYNC		T0CKPS<	3:0>		279
T0CKIPPS	-	_	_		T0CKIF	PS<4:0>			159
TMR0PPS	-	-	—		TMR0P	PS<4:0>			159
ADACT	-	_	_		ADAC	CT<4:0>			243
CLCxSELy	-	_			LCxDyS<5	:0>			226
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS	S<1:0>	291
INTCON	GIE	PEIE	_	—	—	_	_	INTEDG	98
PIR0	—	—	TMR0IF	IOCIF	—	—	—	INTF	104
PIE0	_		TMR0IE	IOCIE	—	—	—	INTE	99

TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

Note 1: PIC16(L)F18344 only.

2: Unimplemented, read as '1'.

D/A

REGISTER 30-2: SSP1CON1: SSP CONTROL REGISTER 1									
R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
WCOL	SSPOV ⁽¹⁾	SSPEN	CKP		SSPM	I<3:0>			
bit 7							bit 0		
Legend:	L:+		L:4						
R = Readable	DIL	vv = vvritable bit		U = Unimplemented bit, read as U					
u = Bit is unchanged		x = Bit is cleared		-I/III = value at POR and BOR/value at all other Resets					
" = Bit is set									
bit 7	WCOL: Write 1 = The SSPI 0 = No collisi	Collision Dete BUF register is v	ct bit (Transm vritten while it is	nit mode only) s still transmitting	g the previous wo	rd (must be clea	red in software)		
 bit 6 SSPOV: Receive Overflow Indicator bit⁽¹⁾ In SPI mode: A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow the data in SSPSR is lost. Overflow can only occur in Slave mode. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bi is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register (must be cleared in software). No overflow In I²C mode: A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a "don care" in Transmit mode (must be cleared in software). No overflow 							ase of overflow, user must read he overflow bit PBUF register POV is a "don't		
bit 5	SSPEN: Synd In both mode: In SPI mode: 1 = Enables = 0 = Disables $In I^2C mode:$ 1 = Enables = 0 = Disables	chronous Seria s, when enable serial port and c serial port and he serial port ar serial port and	I Port Enable d, the followin onfigures SCk configures th d configures th configures th	bit ng pins must be (, SDO, SDI an nese pins as I/C the SDA and SC nese pins as I/C	e properly config d \overline{SS} as the source of port pins CL pins as the source of port pins	ured as input on ce of the serial urce of the serial	or output port pins ⁽²⁾ Il port pins ⁽³⁾		
bit 4	CKP: Clock F In SPI mode: 1 = Idle state 0 = Idle state $In I^2C Slave r SCL release of 1 = Enable cloon 0 = Holds cloon In I^2C Masternoise Unused in this$	Polarity Select b for clock is a h for clock is a lo node: control ock ck low (clock st <u>mode:</u> s mode	igh level w level retch). (Used	to ensure data	a setup time.)				

31.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 7.2.2.3 "Internal Oscillator Frequency Adjustment"** for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 31.3.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

31.3 EUSART1 Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART1 operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUD1CON register selects 16-bit mode.

The SP1BRGH, SP1BRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TX1STA register and the BRG16 bit of the BAUD1CON register. In Synchronous mode, the BRGH bit is ignored.

Table 31-1 contains the formulas for determining the baud rate. Example 31-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 31-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SP1BRGH, SP1BRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is idle before changing the system clock.

EXAMPLE 31-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit SPR1BRG:

Desired Baud Rate = $\frac{FOSC}{64([SPBRGH:SPBRGL] + 1)}$

Solving for SP1BRGH:SP1BRGL:

 $X = \frac{Fosc}{Desired Baud Rate}{64} - 1$ $= \frac{1600000}{9600}{-1}$ = [25.042] = 25Calculated Baud Rate = $\frac{1600000}{64(25+1)}$ = 9615Error = $\frac{Calc. Baud Rate - Desired Baud Rate}{Desired Baud Rate}$ $= \frac{(9615 - 9600)}{9600} = 0.16\%$

© 2015-2016 Microchip Technology Inc.

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions	
AD01	NR	Resolution			10	bit		
AD02	EIL	Integral Error	—	±0.1	±1.0	LSb	ADCREET = 3.0V, ADCREF- = 0V	
AD03	Edl	Differential Error	—	±0.1	±1.0	LSb	ADCREF+ = 3.0V, ADCREF- = 0V	
AD04	EOFF	Offset Error	—	0.5	±2.0	L/SD-	ADCREF+ = 3,0V, ADCREF- = 0V	
AD05	Egn	Gain Error	—	±0.2	±1.0	7sb	ADCREF+= 3.0V, ADCREF- = 0V	
AD06	VADREF	ADC Reference Voltage (ADREF+) ⁽³⁾	1.8	—		Ň		
AD07	VAIN	Full-Scale Range	Vss		ADREF+	V		
AD06	VADREF	ADC Reference Voltage (ADREF+ - ADREF-) ⁽³⁾	1.8		VDD			
AD07	VAIN	Full-Scale Range	ADREF-	$\langle \prec$	ADREP+	V		
AD08	ZAIN	Recommended Impedance of Analog Voltage Source		10		kΩ		
AD09	RVREF	ADC Voltage Reference Ladder Impedance	+/			kΩ		

TABLE 35-12: ANALOG-TO-DIGITAL CONVERTER (ADC) ACCURACY SPECIFICATIONS^(1,2)

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.

2: The ADC conversion result never decreases with an increase in the input and has no missing codes.

TABLE 35-13: ANALOG-TO DIGITAL CONVERTER (ADC) CONVERSION TIMING SPECIFICATIONS^(1,2)

	Standard	rd Operating Conditions (unless otherwise stated)						
	Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
	AD20	TAD	ADC Clock Period	1		9	us	Using Fosc as the ADC clock source; ADCS ! = x11
	AD21			1	2	6	us	Using ADCRC as the ADC clock source; ADCS = $x11$
\langle	AD22	ТСNV	Conversion Time	_	11	_	TAD	Set of GO/DONE bit to Clear of GO/DONE bit
	AQ23<	TACQ	Acquisition Time	-	2	-	us	
	AD24	Тнср	Sample and Hold Capacitor Disconnect Time	_	—	_	us	Fosc based clock source
				_	_	_		ADCRC based clock source

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16(L)F18324/18344

