

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	7KB (4K × 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18324t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

OUT(2) C10UT — CMOS Comparator C1 output. C2OUT — CMOS Comparator C2 output. NCO1 — CMOS Numerically Controlled Oscillator output. DSM — CMOS Digital Signal Modulator output. TMR0 — CMOS TMR0 clock output. CCP1 — CMOS Capture/Compare/PWM 1 output. CCP2 — CMOS Capture/Compare/PWM 2 output. CCP3 — CMOS Capture/Compare/PWM 3 output. CCP4 — CMOS Capture/Compare/PWM 4 output. CCP4 — CMOS Capture/Compare/PWM 4 output. PWM5 — CMOS Pulse-Width Modulator 5 output. PWM6 — CMOS Pulse-Width Modulator 6 output. CWG1A — CMOS Complementary Waveform Generator 1 output A. CWG2A — CMOS Complementary Waveform Generator 2 output A. CWG1B — CMOS Complementary Waveform Generator 2 output B. CWG2C	Name	Function	Name Function Inpu	e Output Type	Description
C2OUT—CMOSComparator C2 output.NCO1—CMOSNumerically Controlled Oscillator output.DSM—CMOSDigital Signal Modulator output.TMR0—CMOSTMR0 clock output.CCP1—CMOSCapture/Compare/PWM 1 output.CCP2—CMOSCapture/Compare/PWM 2 output.CCP3—CMOSCapture/Compare/PWM 3 output.CCP4—CMOSCapture/Compare/PWM 4 output.PWM5—CMOSCapture/Compare/PWM 4 output.PWM6—CMOSPulse-Width Modulator 5 output.PWM6—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 1 output A.CWG2B—CMOSComplementary Waveform Generator 1 output B.CWG2C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 1 output D.	OUT ⁽²⁾	C1OUT	C1OUT —	CMOS	Comparator C1 output.
NCO1—CMOSNumerically Controlled Oscillator output.DSM—CMOSDigital Signal Modulator output.TMR0—CMOSTMR0 clock output.CCP1—CMOSCapture/Compare/PWM 1 output.CCP2—CMOSCapture/Compare/PWM 2 output.CCP3—CMOSCapture/Compare/PWM 3 output.CCP4—CMOSCapture/Compare/PWM 4 output.PWM5—CMOSCapture/Compare/PWM 4 output.PWM6—CMOSPulse-Width Modulator 5 output.CWG1A—CMOSPulse-Width Modulator 6 output.CWG2A—CMOSComplementary Waveform Generator 1 output A.CWG1B—CMOSComplementary Waveform Generator 2 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 1 output C.CWG1D—CMOSComplementary Waveform Generator 1 output C.		C2OUT	C2OUT —	CMOS	Comparator C2 output.
DSMCMOSDigital Signal Modulator output.TMR0CMOSTMR0 clock output.CCP1CMOSCapture/Compare/PWM 1 output.CCP2CMOSCapture/Compare/PWM 2 output.CCP3CMOSCapture/Compare/PWM 3 output.CCP4CMOSCapture/Compare/PWM 4 output.PWM5CMOSPulse-Width Modulator 5 output.PWM6CMOSPulse-Width Modulator 6 output.CWG1ACMOSComplementary Waveform Generator 1 output A.CWG2ACMOSComplementary Waveform Generator 2 output A.CWG2BCMOSComplementary Waveform Generator 1 output B.CWG1CCMOSComplementary Waveform Generator 2 output B.CWG2CCMOSComplementary Waveform Generator 2 output C.CWG2DCMOSComplementary Waveform Generator 2 output D.		NCO1	NCO1 —	CMOS	Numerically Controlled Oscillator output.
TMR0—CMOSTMR0 clock output.CCP1—CMOSCapture/Compare/PWM 1 output.CCP2—CMOSCapture/Compare/PWM 2 output.CCP3—CMOSCapture/Compare/PWM 3 output.CCP4—CMOSCapture/Compare/PWM 4 output.PWM5—CMOSPulse-Width Modulator 5 output.PWM6—CMOSPulse-Width Modulator 6 output.CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output B.CWG2B—CMOSComplementary Waveform Generator 1 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 1 output C.CWG1D—CMOSComplementary Waveform Generator 1 output D.		DSM	DSM —	CMOS	Digital Signal Modulator output.
CCP1—CMOSCapture/Compare/PWM 1 output.CCP2—CMOSCapture/Compare/PWM 2 output.CCP3—CMOSCapture/Compare/PWM 3 output.CCP4—CMOSCapture/Compare/PWM 4 output.PWM5—CMOSPulse-Width Modulator 5 output.PWM6—CMOSPulse-Width Modulator 6 output.CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output A.CWG1B—CMOSComplementary Waveform Generator 2 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 1 output D.		TMR0	TMR0 —	CMOS	TMR0 clock output.
CCP2—CMOSCapture/Compare/PWM 2 output.CCP3—CMOSCapture/Compare/PWM 3 output.CCP4—CMOSCapture/Compare/PWM 4 output.PWM5—CMOSPulse-Width Modulator 5 output.PWM6—CMOSPulse-Width Modulator 6 output.CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output A.CWG1B—CMOSComplementary Waveform Generator 1 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 1 output C.		CCP1	CCP1 —	CMOS	Capture/Compare/PWM 1 output.
CCP3—CMOSCapture/Compare/PWM 3 output.CCP4—CMOSCapture/Compare/PWM 4 output.PWM5—CMOSPulse-Width Modulator 5 output.PWM6—CMOSPulse-Width Modulator 6 output.CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output A.CWG1B—CMOSComplementary Waveform Generator 1 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 1 output D.		CCP2	CCP2 —	CMOS	Capture/Compare/PWM 2 output.
CCP4—CMOSCapture/Compare/PWM 4 output.PWM5—CMOSPulse-Width Modulator 5 output.PWM6—CMOSPulse-Width Modulator 6 output.CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output A.CWG1B—CMOSComplementary Waveform Generator 1 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 1 output D.		CCP3	CCP3 —	CMOS	Capture/Compare/PWM 3 output.
PWM5—CMOSPulse-Width Modulator 5 output.PWM6—CMOSPulse-Width Modulator 6 output.CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output A.CWG1B—CMOSComplementary Waveform Generator 1 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 2 output C.		CCP4	CCP4 —	CMOS	Capture/Compare/PWM 4 output.
PWM6—CMOSPulse-Width Modulator 6 output.CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output A.CWG1B—CMOSComplementary Waveform Generator 1 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 2 output D.		PWM5	PWM5 —	CMOS	Pulse-Width Modulator 5 output.
CWG1A—CMOSComplementary Waveform Generator 1 output A.CWG2A—CMOSComplementary Waveform Generator 2 output A.CWG1B—CMOSComplementary Waveform Generator 1 output B.CWG2B—CMOSComplementary Waveform Generator 2 output B.CWG1C—CMOSComplementary Waveform Generator 1 output C.CWG2C—CMOSComplementary Waveform Generator 2 output C.CWG1D—CMOSComplementary Waveform Generator 2 output C.		PWM6	PWM6 —	CMOS	Pulse-Width Modulator 6 output.
CWG2A — CMOS Complementary Waveform Generator 2 output A. CWG1B — CMOS Complementary Waveform Generator 1 output B. CWG2B — CMOS Complementary Waveform Generator 2 output B. CWG1C — CMOS Complementary Waveform Generator 1 output C. CWG2C — CMOS Complementary Waveform Generator 2 output C. CWG1D — CMOS Complementary Waveform Generator 2 output C.		CWG1A	CWG1A —	CMOS	Complementary Waveform Generator 1 output A.
CWG1B — CMOS Complementary Waveform Generator 1 output B. CWG2B — CMOS Complementary Waveform Generator 2 output B. CWG1C — CMOS Complementary Waveform Generator 1 output C. CWG2C — CMOS Complementary Waveform Generator 2 output C. CWG1D — CMOS Complementary Waveform Generator 2 output C.		CWG2A	CWG2A —	CMOS	Complementary Waveform Generator 2 output A.
CWG2B — CMOS Complementary Waveform Generator 2 output B. CWG1C — CMOS Complementary Waveform Generator 1 output C. CWG2C — CMOS Complementary Waveform Generator 2 output C. CWG1D — CMOS Complementary Waveform Generator 1 output D.		CWG1B	CWG1B —	CMOS	Complementary Waveform Generator 1 output B.
CWG1C — CMOS Complementary Waveform Generator 1 output C. CWG2C — CMOS Complementary Waveform Generator 2 output C. CWG1D — CMOS Complementary Waveform Generator 1 output D.		CWG2B	CWG2B —	CMOS	Complementary Waveform Generator 2 output B.
CWG2C — CMOS Complementary Waveform Generator 2 output C. CWG1D — CMOS Complementary Waveform Generator 1 output D.		CWG1C	CWG1C —	CMOS	Complementary Waveform Generator 1 output C.
CWG1D — CMOS Complementary Waveform Generator 1 output D.		CWG2C	CWG2C —	CMOS	Complementary Waveform Generator 2 output C.
		CWG1D	CWG1D —	CMOS	Complementary Waveform Generator 1 output D.
CWG2D — CMOS Complementary Waveform Generator 2 output D.		CWG2D	CWG2D —	CMOS	Complementary Waveform Generator 2 output D.
SDA1 ⁽³⁾ I ² C OD I ² C data output.		SDA1 ⁽³⁾	SDA1 ⁽³⁾ I ² C	OD	I ² C data output.
SCL1 ⁽³⁾ I ² C OD I ² C clock output.		SCL1 ⁽³⁾	SCL1 ⁽³⁾ I ² C	OD	I ² C clock output.
SDO1 — CMOS SPI1 data output.		SDO1	SDO1 —	CMOS	SPI1 data output.
SCK1 — CMOS SPI1 clock output.		SCK1	SCK1 —	CMOS	SPI1 clock output.
TX/CK — CMOS Asynchronous TX data/synchronous clock output.		TX/CK	TX/CK —	CMOS	Asynchronous TX data/synchronous clock output.
DT ⁽³⁾ — CMOS EUSART synchronous data output.		DT ⁽³⁾	DT ⁽³⁾ —	CMOS	EUSART synchronous data output.
CLC1OUT — CMOS Configurable Logic Cell 1 source output.		CLC1OUT	CLC1OUT —	CMOS	Configurable Logic Cell 1 source output.
CLC2OUT — CMOS Configurable Logic Cell 2 source output.		CLC2OUT	CLC2OUT —	CMOS	Configurable Logic Cell 2 source output.
CLC3OUT — CMOS Configurable Logic Cell 3 source output.		CLC3OUT	CLC3OUT —	CMOS	Configurable Logic Cell 3 source output.
CLC4OUT — CMOS Configurable Logic Cell 4 source output.		CLC4OUT	CLC4OUT —	CMOS	Configurable Logic Cell 4 source output.
CLKR – CMOS Clock Reference output.		CLKR	CLKR —	CMOS	Clock Reference output.

TABLE 1-2: PIC16(L)F18324 PINOUT DESCRIPTION (CONTINUED)

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD
 = Open-Drain

 TTL = TTL compatible input
 ST
 = Schmitt Trigger input with CMOS levels
 I²C
 = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL
 = Crystal levels
 I
 I
 I

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-1.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

TABLE 4-4: SPECIAL FUNCTION REGISTER SUMMARY BANKS 0-31 (CONTINUED)

MDCLPOL

Address	Name	PIC16(L)F18324 PIC16(L)F18344	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
Bank 7												
					CPU CORE RE	EGISTERS; see 1	Table 4-2 for spe	cifics				
39Ah	CLKRCON		CLKREN	—	—	CLKRD	C<1:0>		CLKRDIV<2:0>		01 0000	01 0001
39Bh	-	—				Unimple	mented				-	_
39Ch	MDCON		MDEN	_	_	MDOPOL	MDOUT	_	_	MDBIT	00 00	00 00
39Dh	MDSRC		_	_	_	_		MDMS	S<3:0>		xxxx	0 uuuu
39Eh	MDCARH		_	MDCHPOL	MDCHSYNC	_		MDCH	1<3:0>		-xx- xxxx	-uu- uuuu

MDCL<3:0>

-xx- xxxx

-uu- uuuu

Legend: x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

MDCLSYNC

Note 1: Only on PIC16F18324/18344.

MDCARL

2: Register accessible from both User and ICD Debugger.

39Fh

Address	Name	PIC16(L)F18324 PIC16(L)F18344	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
Bank 2	8											
					CPU CORE RI	EGISTERS; see ⁻	Table 4-2 for spe	ecifics				
E0Ch	—	—				Unimple	mented				_	_
E0Dh	—	—				Unimple	mented				—	-
E0Eh	—	—				Unimple	mented				—	_
E0Fh	PPSLOCK		_	_	—	_	PPSLOCKED				0	
E10h	INTPPS		_	_	—			INTPPS<4:0>			0 0010	u uuu
E11h	TOCKIPPS		_		—			T0CKIPPS<4:0>			0 0010	u uuu
E12h	T1CKIPPS		_	_	—			T1CKIPPS<4:0>			0 0101	u uuu
E13h	T1GPPS		_	_	—			T1GPPS<4:0>			0 0100	u uuu
E14h	CCP1PPS		—	—	—			CCP1PPS<4:0>			1 0011	u uuu
E15h	CCP2PPS		_	_	—			CCP2PPS<4:0>			1 0101	u uuu
E16h	CCP3PPS		_	_	_			CCP3PPS<4:0>			0 0010	u uuu
E17h	CCP4PPS	X —		—	—			CCP4PPS<4:0>			1 0001	u uuu
		— X	—	_	—			CCP4PPS<4:0>			0 0100	u uuu
E18h	CWG1PPS			—	—			CWG1PPS<4:0>			0 0010	u uuu
E19h	CWG2PPS			—	_			CWG2PPS<4:0>			0 0010	u uuu
E1Ah	MDCIN1PPS		-	-	—		Ν	IDCIN1PPS<4:0	>		1 0010	u uuu
E1Bh	MDCIN2PPS			-	_		N	IDCIN2PPS<4:0	>		1 0101	u uuu
E1Ch	MDMINPPS			—	_		1	MDMINPPS<4:0>	>		1 0011	u uuu
E1Dh	_	—				Unimple	mented				_	_
E1Eh	_	_				Unimple	mented				_	_

Unimplemented

SSP1CLKPPS<4:0>

SSP1CLKPPS<4:0>

PIC16(L)F18324/18344

---1 0000

---0 1110

--u uuuu

--u uuuu

© 2015-2016 Microchip Technology Inc.

E1Fh

E20h

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Legend:

_

_

_

Note 1: Only on PIC16F18324/18344.

SSP1CLKPPS

Register accessible from both User and ICD Debugger. 2:

Х

X

FIGURE 11-5: PROGRAM FLASH MEMORY WRITE FLOWCHART

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0		
WPUB7	WPUB6	WPUB5	WPUB4		—	—	_		
bit 7						•	bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						

REGISTER 12-13: WPUB: WEAK PULL-UP PORTB REGISTER

bit 7-4	WPUB<7:4>: Weak Pull-up Register bits
	1 = Weak Pull-up enabled
	0 = Weak Pull-up disabled
bit 3-0	Unimplemented: Read as '0'

Note: The weak pull-up is disabled if the pin is configured as an output except when the pin is also configured as open-drain. When configured as open-drain, the pull-up is enabled when the output value is high, and disabled when the output value is low.

REGISTER 12-14: ODCONB: PORTB OPEN-DRAIN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
ODCB7	ODCB6	ODCB5	ODCB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	ODCB<7:4>: PORTB Open-Drain Configuration bits
	For RB<7:4> pins, respectively:
	1 = Port pin operates as open-drain drive (sink current only)
	0 = Port pin operates as standard push-pull drive (source and sink current)
bit 3-0	Unimplemented: Read as '0'

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page		
CLCIN2PPS	—	—	—		CLCIN2PPS<4:0>						
CLCIN3PPS	—	_	—		CLCIN3PPS<4:0>						
RA0PPS	—	-	—		RA0PPS<4:0>						
RA1PPS	—		—			RA1PPS<	<4:0>		160		
RA2PPS	—	—	—			RA2PPS<	<4:0>		160		
RA4PPS	—	—	—			RA4PPS<	<4:0>		160		
RA5PPS	—	—	—			RA5PPS<	<4:0>		160		
RB4PPS ⁽¹⁾	—	—	—			RB4PPS<	<4:0>		160		
RB5PPS ⁽¹⁾	—	—	—			RB5PPS<	<4:0>		160		
RB6PPS ⁽¹⁾	—	—	—			RB6PPS<	<4:0>		160		
RB7PPS ⁽¹⁾	—	—	—			RB7PPS<	<4:0>		160		
RC0PPS	—	—	—			RC0PPS<	<4:0>		160		
RC1PPS	—	—	—			RC1PPS<	<4:0>		160		
RC2PPS	—	—	—			RC2PPS<	<4:0>		160		
RC3PPS	—	—	—			RC3PPS<	<4:0>		160		
RC4PPS	—	—	—			RC4PPS<	<4:0>		160		
RC5PPS	—	—	—			RC5PPS<	<4:0>		160		
RC6PPS ⁽¹⁾	—	—	—			RC6PPS<	<4:0>		160		
RC7PPS ⁽¹⁾						RC7PPS<	<4:0>		160		

SUMMARY OF REGISTERS ASSOCIATED WITH THE PPS MODULE (CONTINUED) **TABLE 13-1:**

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the PPS module.

Note 1: PIC16(L)F18344 only.

18.5 Comparator Interrupt

An interrupt can be generated when either the rising edge or falling edge detector detects a change in the output value of each comparator.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- CxON bit of the CMxCON0 register
- CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

Note: Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the CxPOL bit of the CMxCON0 register, or by switching the comparator on or off with the CxON bit of the CMxCON0 register.

18.6 Comparator Positive Input Selection

Configuring the CxPCH<2:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- · CxIN0+ analog pin
- DAC output
- FVR (Fixed Voltage Reference)
- Vss (Ground)

See Section 16.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 24.0 "5-Bit Digital-to-Analog Converter (DAC1) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

18.7 Comparator Negative Input Selection

The CxNCH<2:0> bits of the CMxCON1 register direct an analog input pin and internal reference voltage or analog ground to the inverting input of the comparator:

- CxIN- pin
- FVR (Fixed Voltage Reference)
- · Analog Ground

Note: To use CxINy+ and CxINy- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

18.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 35-14 for more details.

20.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWGx) produces complementary waveforms with dead-band delay from a selection of input sources.

The CWGx module has the following features:

- · Selectable dead-band clock source control
- Selectable input sources
- Output enable control
- Output polarity control
- Dead-band control with independent 6-bit rising and falling edge dead-band counters
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart enable
 - Auto-shutdown pin override control

20.1 Fundamental Operation

The CWG generates two output waveforms from the selected input source.

The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time delay immediately where neither output is driven. This is referred to as dead time and is covered in **Section 20.6 "Dead-Band Control"**.

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in **Section 20.7 "Auto-Shutdown Control"**.

20.2 Operating Modes

The CWGx module can operate in six different modes, as specified by the MODE<2:0> bits of the CWGxCON0 register:

- · Half-Bridge mode
- Push-Pull mode
- Asynchronous Steering mode
- Synchronous Steering mode
- Full-Bridge mode, Forward
- Full-Bridge mode, Reverse

All modes accept a single pulse data input, and provide up to four outputs as described in the following sections.

All modes include auto-shutdown control as described in Section 20.11 "Register Definitions: CWG Control"

Note:	Except as noted for Full-bridge mode
	(Section 20.2.4 "Full-Bridge Modes"),
	mode changes should only be performed
	while EN = 0 (Register 20-1).

20.2.1 HALF-BRIDGE MODE

In Half-Bridge mode, two output signals are generated as true and inverted versions of the input as illustrated in Figure 20-1. A non-overlap (dead-band) time is inserted between the two outputs as described in **Section 20.6 "Dead-Band Control"**. Steering modes are not used in Half-Bridge mode.

The unused outputs, CWGxC and CWGxD, drive similar signals, with polarity independently controlled by POLC and POLD respectively.

FIGURE 20-1: CWGx HALF-BRIDGE MODE OPERATION CWGx clock Input source Rising Event Rising Event **Rising Event** Dead Band Dead Band Dead Band CWGxA Falling Event Falling Event Falling Event Dead Band Dead Band Dead Band CWGxB

© 2015-2016 Microchip Technology Inc.

FIGURE 20-11: SIMPLIFIED CWG BLOCK DIAGRAM (FORWARD AND REVERSE FULL-BRIDGE MODES)

20.11 Register Definitions: CWG Control

					•		
R/W-0/0	R/W/HC-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
EN	LD ⁽¹⁾	—	_	_		MODE<2:0>	
bit 7		<u>.</u>		•			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	ther Resets
'1' = Bit is set '0' = Bit is cleared HS/HC = Bit is set/cleared by hardware							
bit 7	EN: CWGx E	nable bit					
	1 = CWGx is	enabled					
	0 = CWGx is	disabled					
bit 6	LD: CWG Loa	ad Buffers bit ⁽¹⁾)				
	1 = Dead-bai	nd count buffer	s to be loade	d on CWG dat	a rising edge fo	ollowing first falli	ing edge after
	this bit is	set.					
	0 = Buffers re	emain unchang	ed				
bit 5-3	Unimplemen	ted: Read as 'o)'				
bit 2-0	MODE<2:0>:	CWGx Mode b	oits				
	111 = Reser	ved					
	110 = Reser	ved					
	101 = CWG	outputs operate	e in Push-Pull	mode			
	100 = CWG	outputs operate	e in Half-Bridg	je mode			
	011 = CWG	outputs operate	e in Reverse I	⁻ ull-Bridge mo	de		
	010 = CWG	outputs operate	e in Forward F	⁻ ull-Bridge mod	de		
	001 = CWG	outputs operate	e in Synchron	ous Steering n	node		
	000 = CWG	outputs operate	e in Asynchro	nous Steering	mode		

REGISTER 20-1: CWGxCON0: CWGx CONTROL REGISTER 0

Note 1: This bit can only be set after EN = 1; it cannot be set in the same cycle when EN is set.

© 2015-2016 Microchip Technology Inc.

PIC16(L)F18324/18344

© 2015-2016 Microchip Technology Inc.

DS40001800B-page 240

U-0	U-	-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
_	_	_				ADACT<4:0>			
bit 7								bit 0	
Legend:									
R = Readable bit			W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unchanged			x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set			'0' = Bit is cleared						
bit 7-5	Unimp	leme	nted: Read as '	0'					
hit 4-0		T~4·0	>· Auto-Conver	- sion Trigger S	election hits(1)				
	10001	=	Timer5 overflov	,(2)					
	10001	=	Timer3 overflov	v v(2)					
	1111	=	CCP4	•					
	1110	=	CCP3						
	1101	=	CCP2						
	1100	=	CCP1						
	1011	=	CLC4						
	1010	=	CLC3						
	1001	=	CLC2						
	1000	=	CLC1						
	0111	=	Comparator C2	2					
	0110	=	Comparator C1						
	0101	=	Timer2-PR2 ma	atch					
	0100	=	Timer1 overflow	v(2)					
	0011	=	Timer0 overflov	v ⁽²⁾					
	0010	=	Timer6-PR6 ma	atch					
	0001	=	Timer4-PR4 ma	atch					
	0000	=	No auto-conver	sion trigger se	elected				
Note 1:	This is a ris	ing eo	dge sensitive inp	out for all sour	ces.				

REGISTER 22-3: ADACT: A/D AUTO-CONVERSION TRIGGER

2: Trigger corresponds to when the peripheral's interrupt flag is set.

25.0 DATA SIGNAL MODULATOR (DSM) MODULE

The Data Signal Modulator (DSM) is a peripheral which allows the user to mix a data stream, also known as a modulator signal, with a carrier signal to produce a modulated output.

Both the carrier and the modulator signals are supplied to the DSM module either internally from the output of a peripheral, or externally through an input pin.

The modulated output signal is generated by performing a logical "AND" operation of both the carrier and modulator signals and then provided to the MDOUT pin.

The carrier signal is comprised of two distinct and separate signals. A carrier high (CARH) signal and a carrier low (CARL) signal. During the time in which the modulator (MOD) signal is in a logic-high state, the DSM mixes the carrier high signal with the modulator signal. When the modulator signal is in a logic-low state, the DSM mixes the carrier low signal with the modulator signal.

Using this method, the DSM can generate the following types of Key Modulation schemes:

- Frequency-Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Additionally, the following features are provided within the DSM module:

- Carrier Synchronization
- Carrier Source Polarity Select
- Carrier Source Pin Disable
- Programmable Modulator Data
- Modulator Source Pin Disable
- Modulated Output Polarity Select
- Slew Rate Control

Figure 25-1 shows a Simplified Block Diagram of the Data Signal Modulator peripheral.

The I^2C interface supports the following modes and features:

- Master mode
- · Slave mode
- Byte NACKing (Slave mode)
- · Limited multi-master support
- 7-bit and 10-bit addressing
- Start and Stop interrupts
- Interrupt masking
- Clock stretching
- Bus collision detection
- General call address matching
- Address masking
- Selectable SDA hold times

Figure 30-2 is a block diagram of the I^2C interface module in Master mode. Figure 30-3 is a diagram of the I^2C interface module in Slave mode.

FIGURE 30-2: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

FIGURE 30-21: I²C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0)

30.7 Baud Rate Generator

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSP1ADD register (Register 30-6). When a write occurs to SSP1BUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 30-40 triggers the value from SSP1ADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 30-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

EQUATION 30-1:

$$FCLOCK = \frac{FOSC}{(SSP1ADD + 1)(4)}$$

FIGURE 30-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSP1ADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

Fosc	Fcy	BRG Value	FcLock (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note: Refer to the I/O port electrical specifications in Table 35-4 to ensure the system is designed to support IOL requirements.

35.2 Standard Operating Conditions

The standard operating conditions for any device are defined as:	
Operating Voltage:VDDMIN \leq VDD \leq VDDMAXOperating Temperature:Ta \leq Ta \leq Ta \leq MAX	
VDD — Operating Supply Voltage ⁽¹⁾	
PIC16LF18324/18344	
VDDMIN (Fosc ≤ 16 MHz) +1.8V	/
VDDMIN (Fosc ≤ 32 MHz)	/
VDDMAX	/
PIC16F18324/18344	
VDDMIN (Fosc ≤ 16 MHz)	/
VDDMIN (Fosc ≤ 32 MHz) +2.5V	/
VDDMAX	1
TA — Operating Ambient Temperature Range	
Industrial Temperature	
Ta_min	;
TA_MAX	;
Extended Temperature	
Ta_min	;
TA_MAX +125°C	;
Note 1: See Parameter D002. DC Characteristics: Supply Voltage.	

20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν	20		
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.980	1.030	1.060
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eВ	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B