

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Not For New Designs
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	67
Program Memory Size	384КВ (384К х 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	36K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 26x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560p44l3beaar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1. SPC560P44Lx, SPC560P50Lx block diagram

10/112

Doc ID 14723 Rev 9

The FlexCAN module provides the following features:

- Full implementation of the CAN protocol specification, version 2.0B
 - Standard data and remote frames
 - Extended data and remote frames
 - Up to 8-bytes data length
 - Programmable bit rate up to 1 Mbit/s
- 32 message buffers of up to 8-bytes data length
- Each message buffer configurable as Rx or Tx, all supporting standard and extended messages
- Programmable loop-back mode supporting self-test operation
- 3 programmable mask registers
- Programmable transmit-first scheme: lowest ID or lowest buffer number
- Time stamp based on 16-bit free-running timer
- Global network time, synchronized by a specific message
- Maskable interrupts
- Independent of the transmission medium (an external transceiver is assumed)
- High immunity to EMI
- Short latency time due to an arbitration scheme for high-priority messages
- Transmit features
 - Supports configuration of multiple mailboxes to form message queues of scalable depth
 - Arbitration scheme according to message ID or message buffer number
 - Internal arbitration to guarantee no inner or outer priority inversion
 - Transmit abort procedure and notification
- Receive features
 - Individual programmable filters for each mailbox
 - 8 mailboxes configurable as a six-entry receive FIFO
 - 8 programmable acceptance filters for receive FIFO
- Programmable clock source
 - System clock
 - Direct oscillator clock to avoid PLL jitter

1.5.21 Safety port (FlexCAN)

The SPC560P44Lx, SPC560P50Lx MCU has a second CAN controller synthesized to run at high bit rates to be used as a safety port. The CAN module of the safety port provides the following features:

- Identical to the FlexCAN module
- Bit rate as fast as 7.5 Mbit/s at 60 MHz CPU clock using direct connection between CAN modules (no physical transceiver required)
- 32 message buffers of up to 8 bytes data length
- Can be used as a second independent CAN module

1.5.24 Deserial serial peripheral interface (DSPI)

The deserial serial peripheral interface (DSPI) module provides a synchronous serial interface for communication between the SPC560P44Lx, SPC560P50Lx MCU and external devices.

The DSPI modules provide these features:

- Full duplex, synchronous transfers
- Master or slave operation
- Programmable master bit rates
- Programmable clock polarity and phase
- End-of-transmission interrupt flag
- Programmable transfer baud rate
- Programmable data frames from 4 to 16 bits
- Up to 20 chip select lines available
 - 8 on DSPI_0
 - 4 each on DSPI_1, DSPI_2 and DSPI_3
- 8 clock and transfer attributes registers
- Chip select strobe available as alternate function on one of the chip select pins for deglitching
- FIFOs for buffering as many as 5 transfers on the transmit and receive side
- Queueing operation possible through use of the eDMA
- General purpose I/O functionality on pins when not used for SPI

1.5.25 Pulse width modulator (FlexPWM)

The pulse width modulator module (PWM) contains four PWM submodules, each capable of controlling a single half-bridge power stage. There are also four fault channels.

This PWM is capable of controlling most motor types: AC induction motors (ACIM), permanent magnet AC motors (PMAC), both brushless (BLDC) and brush DC motors (BDC), switched (SRM) and variable reluctance motors (VRM), and stepper motors.

block is an integration of several individual Nexus blocks that are selected to provide the development support interface for this device. The NDI block interfaces to the host processor and internal busses to provide development support as per the IEEE-ISTO 5001-2003 Class 2+ standard. The development support provided includes access to the MCU's internal memory map and access to the processor's internal registers during run time.

The Nexus Interface provides the following features:

- Configured via the IEEE 1149.1
- All Nexus port pins operate at V_{DDIO} (no dedicated power supply)
- Nexus 2+ features supported
 - Static debug
 - Watchpoint messaging
 - Ownership trace messaging
 - Program trace messaging
 - Real time read/write of any internally memory mapped resources through JTAG pins
 - Overrun control, which selects whether to stall before Nexus overruns or keep executing and allow overwrite of information
 - Watchpoint triggering, watchpoint triggers program tracing
- Auxiliary Output Port
 - 4 MDO (Message Data Out) pins
 - MCKO (Message Clock Out) pin
 - 2 MSEO (Message Start/End Out) pins
 - EVTO (Event Out) pin
- Auxiliary Input Port
 - EVTI (Event In) pin

1.5.30 Cyclic redundancy check (CRC)

The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC module features:

- Support for CRC-16-CCITT (*x*25 protocol):
 - $x^{16} + x^{12} + x^5 + 1$
- Support for CRC-32 (Ethernet protocol):
 - $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$
- Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the maximum frequency

1.5.31 IEEE 1149.1 JTAG controller

The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE standard.

2 Package pinouts and signal descriptions

2.1 Package pinouts

The LQFP pinouts are shown in the following figures.

Figure 2. 144-pin LQFP pinout – Full featured configuration (top view)

Doc ID 14723 Rev 9

Table 5.Supply pins

		Pin				
Symbol	Description	100-pin	144-pin			
VREG	144-pin packa	ge.				
BCTRL	Voltage regulator external NPN ballast base control pin	47	69			
V _{DD_HV_REG} (3.3 V or 5.0 V)	Voltage regulator supply voltage	50	72			
V _{DD_LV_REGCOR}	1.2 V decoupling pins for core logic and regulator feedback. Decoupling capacitor must be connected between this pins and $V_{SS_LV_REGCOR}$.	48	70			
V _{SS_LV_REGCOR}	1.2 V decoupling pins for core logic and regulator feedback. Decoupling capacitor must be connected between this pins and $V_{DD_LV_REGCOR}$.	49	71			
ADC_0/AD	$^{\rm DC}$ 1 reference and supply voltage. Pins available on 100-pin a	and 144-pin pa	ackage.			
V _{DD_HV_ADC0} ⁽¹⁾	ADC_0 supply and high reference voltage	33	50			
V _{SS_HV_ADC0}	ADC_0 ground and low reference voltage	34	51			
V _{DD_HV_ADC1}	ADC_1 supply and high reference voltage	39	56			
V _{SS_HV_ADC1}	ADC_1 ground and low reference voltage	40	57			
Power supply pins (3.3 V or 5.0 V). All pins available on 144-pin package. Five pairs (V_{DD} ; V_{SS}) available on 100-pin package.						
V _{DD_HV_IO0} ⁽²⁾	Input/Output supply voltage		6			
V _{SS_HV_IO0} ⁽²⁾	Input/Output ground	_	7			
V _{DD_HV_IO1}	Input/Output supply voltage	13	21			
V _{SS_HV_IO1}	Input/Output ground	14	22			
V _{DD_HV_IO2}	Input/Output supply voltage	63	91			
V _{SS_HV_IO2}	Input/Output ground	62	90			
V _{DD_HV_IO3}	Input/Output supply voltage	87	126			
V _{SS_HV_IO3}	Input/Output ground	88	127			
V _{DD_HV_FL}	Code and data flash supply voltage	69	97			
V _{SS_HV_FL}	Code and data flash supply ground	68	96			
V _{DD_HV_OSC}	Crystal oscillator amplifier supply voltage	16	27			
V _{SS_HV_OSC}	Crystal oscillator amplifier ground	17	28			
Po	wer supply pins (1.2 V). All pins available on 100-pin and 144	-pin package.				
V _{DD_LV_COR0}	1.2 V Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest $V_{SS_LV_COR}$ pin.	12	18			
V _{SS_LV_COR0}	1.2 V Decoupling pins for core logic. Decoupling capacitor must be connected between these pins and the nearest $V_{DD_LV_COR}$ pin.	11	17			

Port	Pad	Alternate			I/O	Pad speed ⁽⁵⁾		Pin	No.
pin	configuration register (PCR)	function ^{(1),} (2)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin
		ALT0	GPIO[45]	SIUL	I/O				
		ALT1	ETC[1]	eTimer_1	I/O				
C[13]	PCR[45]	ALT2	—	—	—	Slow	Medium	71	101
		ALI3		—	-				
		_	EXI_IN						
					1				
				SIUL	1/0				
C[14]	PCR[46]		ETC[2]		0	Slow	Medium	72	103
		ALT2			_				
			GPIO[47]	SILII	1/0				
		ALT1	CA TR FN	FlexRay 0	0				
		ALT2	ETCIO	eTimer 1	1/0				
C[15]	PCR[47]	ALT3	A[1]	FlexPWM 0	0	Slow	Symmetric	85	124
		_	EXT_IN	CTU_0	I				
		—	EXT_SYNC	FlexPWM_0	I				
				Port D (16-bit)					
		ALT0	GPIO[48]	SIUL	I/O				
DIO	PCR[48]	ALT1	CA_TX	FlexRay_0	0	01	0	00	405
D[0]		ALT2	ETC[1]	eTimer_1	I/O	SIOW	Symmetric	86	125
		ALT3	B[1]	FlexPWM_0	0				
		ALT0	GPIO[49]	SIUL	I/O				
		ALT1	—	—	—				
D[1]	PCR[49]	ALT2	ETC[2]	eTimer_1	I/O	Slow	Medium	3	3
		ALT3	EXT_TRG	CTU_0	0				
		—	CA_RX	FlexRay_0	I				
		ALT0	GPIO[50]	SIUL	I/O				
		ALT1	—		_				
D[2]	PCR[50]	ALT2	ETC[3]	eTimer_1	I/O	Slow	Medium	97	140
		ALI3	X[3]	FlexPWM_0	1/0				
			CB_RX	FlexRay_0	I				
		ALT0	GPIO[51]	SIUL	I/O				
D[3]	PCR[51]	ALI1	CB_IX	FlexRay_0	0	Slow	Symmetric	89	128
		ALI2	EIC[4]	elimer_1	1/0				
		ALI3	A[3]	FIEXPVVIVI_0	0				
		ALT0	GPIO[52]	SIUL	1/0				
D[4]	PCR[52]	ALT1	CB_IR_EN	FlexRay_0	0	Slow	Symmetric	90	129
		ALI2			1/0				
		ALI 3	B[3]	FIEXP VVIVI_0					

Table 7. Pin muxing (continued)

Symbol		Doromotor	Conditions	Va	l Init	
Symbol		Parameter	Conditions	Min	Max ⁽²⁾	Unit
V S		ADC0 and shared ADC0/1 analog	$V_{DD_HV_REG} > 2.7 V$	V _{SS_HV_ADV0} - 0.3	V _{DD_HV_ADV0} + 0.3	V
VINANO		input voltage ⁽⁶⁾	V _{DD_HV_REG} < 2.7 V	V _{SS_HV_ADV0}	V _{DD_HV_ADV0}	V
		ADC1 appleg input voltage ⁽⁷⁾	V _{DD_HV_REG} > 2.7 V	V _{SS_HV_ADV1} - 0.3	V _{DD_HV_ADV1} + 0.3	V
VINAN1	SK		V _{DD_HV_REG} < 2.7 V	V _{SS_HV_ADV1}	V _{DD_HV_ADV1}	V
I _{INJPAD}	SR	Injected input current on any pin during overload condition	_	-10	10	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	mA
I _{VDD_LV}	SR	Low voltage static current sink through V_{DD_LV}	_	_	155	mA
T _{STG}	SR	Storage temperature	—	-55	150	°C
TJ	SR	Junction temperature under bias	_	-40	150	°C

 Table 9.
 Absolute maximum ratings⁽¹⁾ (continued)

1. Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device.

2. Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined.

3. The difference between each couple of voltage supplies must be less than 300 mV, $|V_{DD_HV_IOy}-V_{DD_HV_IOx}|<$ 300 mV.

4. The difference between ADC voltage supplies must be less than 100 mV, $|V_{DD} H_{VADC1} - V_{DD} H_{VADC0}| < 100 mV$.

5. Guaranteed by device validation

6. Not allowed to refer this voltage to $V_{DD_{-}HV_{-}ADV1}$, $V_{SS_{-}HV_{-}ADV1}$

7. Not allowed to refer this voltage to $V_{DD_HV_ADV0},\,V_{SS_HV_ADV0}$

Figure 5 shows the constraints of the different power supplies.

L_{Rea}, see Table 17.

Note:

The voltage regulator output cannot be used to drive external circuits. Output pins are used only for decoupling capacitances.

 $V_{DD_LV_COR}$ must be generated using internal regulator and external NPN transistor. It is not possible to provide $V_{DD_LV_COR}$ through external regulator.

For the SPC560P44Lx, SPC560P50Lx microcontroller, capacitors, with total values not below C_{DEC1} , should be placed between $V_{DD_LV_CORx}/V_{SS_LV_CORx}$ close to external ballast transistor emitter. 4 capacitors, with total values not below C_{DEC2} , should be placed close to microcontroller pins between each $V_{DD_LV_CORx}/V_{SS_LV_CORx}$ supply pairs and the $V_{DD_LV_REGCOR}/V_{SS_LV_REGCOR}$ pair . Additionally, capacitors with total values not below C_{DEC3} , should be placed between the $V_{DD_HV_REG}/V_{SS_HV_REG}$ pins close to ballast collector. Capacitors values have to take into account capacitor accuracy, aging and variation versus temperature.

All reported information are valid for voltage and temperature ranges described in recommended operating condition, *Table 10* and *Table 11*.

Table 16. Approved NPN ballast components (configuration with resistor on base)

Part	Manufacturer	Approved derivatives ⁽¹⁾
	ON Semi	BCP68
BCP68	NXP	BCP68-25
	Infineon	BCP68-25
BCX68	Infineon	BCX68-10;BCX68-16;BCX68-25
BC868	NXP	BC868

3.8.2 Voltage monitor electrical characteristics

The device implements a Power-on Reset module to ensure correct power-up initialization, as well as three low voltage detectors to monitor the V_{DD} and the $V_{DD_{LV}}$ voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10 % range
- LVDLVCOR monitors low voltage digital power domain

Symbol	6	Berometer	Conditions	Value		Unit
Symbol C		Parameter	(1)	Min	Max	Unit
V _{PORH}	Т	Power-on reset threshold	—	1.5	2.7	V
V _{PORUP}	Р	Supply for functional POR module	T _A = 25 °C	1.0	_	V
V _{REGLVDMOK_H}	Р	Regulator low voltage detector high threshold	_	—	2.95	V
V _{REGLVDMOK_L}	Р	Regulator low voltage detector low threshold	_	2.6	—	V
V _{FLLVDMOK_H}	Р	Flash low voltage detector high threshold	_	—	2.95	V
V _{FLLVDMOK_L}	Р	Flash low voltage detector low threshold	_	2.6	—	V
V _{IOLVDMOK_H}	Р	I/O low voltage detector high threshold	—		2.95	V
V _{IOLVDMOK_L}	Р	I/O low voltage detector low threshold	_	2.6	—	V
V _{IOLVDM5OK_H}	Р	I/O 5V low voltage detector high threshold	_	—	4.4	V
V _{IOLVDM5OK_L}	Р	I/O 5V low voltage detector low threshold	_	3.8	—	V
V _{MLVDDOK_H}	Р	Digital supply low voltage detector high	—	—	1.145	V
V _{MLVDDOK_L}	Р	Digital supply low voltage detector low	_	1.08	_	V

 Table 19.
 Low voltage monitor electrical characteristics

1. V_{DD} = 3.3V \pm 10% / 5.0V \pm 10%, T_A = -40 °C to T_A $_{MAX}$, unless otherwise specified

3.9 Power up/down sequencing

To prevent an overstress event or a malfunction within and outside the device, the SPC560P44Lx, SPC560P50Lx implements the following sequence to ensure each module is started only when all conditions for switching it ON are available:

- A POWER_ON module working on voltage regulator supply controls the correct startup of the regulator. This is a key module ensuring safe configuration for all voltage regulator functionality when supply is below 1.5V. Associated POWER_ON (or POR) signal is active low.
- Several low voltage detectors, working on voltage regulator supply monitor the voltage of the critical modules (voltage regulator, I/Os, flash memory and low voltage domain). LVDs are gated low when POWER_ON is active.
- A POWER_OK signal is generated when all critical supplies monitored by the LVD are available. This signal is active high and released to all modules including I/Os, flash

Table 26. I/O weight (continue)

	LQ	FP144	LQFP100		
Pad	Weight 5V	Weight 3.3V	Weight 5V	Weight 3.3V	
PAD[60]	11%	10%	11%	10%	
PAD[100]	12%	10%	_	_	
PAD[45]	12%	10%	12%	10%	
PAD[98]	12%	11%	_	_	
PAD[46]	12%	11%	12%	11%	
PAD[99]	13%	11%	_	_	
PAD[62]	13%	11%	13%	11%	
PAD[92]	13%	12%	_	_	
VPP_TEST	1%	1%	1%	1%	
PAD[4]	14%	12%	14%	12%	
PAD[16]	13%	12%	13%	12%	
PAD[17]	13%	11%	13%	11%	
PAD[42]	13%	11%	13%	11%	
PAD[93]	12%	11%	—	—	
PAD[95]	12%	11%	_	_	
PAD[18]	12%	10%	12%	10%	
PAD[94]	11%	10%	_	_	
PAD[19]	11%	10%	11%	10%	
PAD[77]	10%	9%	_	_	
PAD[10]	10%	9%	10%	9%	
PAD[78]	9%	8%	_	—	
PAD[11]	9%	8%	9%	8%	
PAD[79]	8%	7%	—	—	
PAD[12]	7%	7%	7%	7%	
PAD[41]	7%	6%	7%	6%	
PAD[47]	5%	4%	5%	4%	
PAD[48]	4%	4%	4%	4%	
PAD[51]	4%	4%	4%	4%	
PAD[52]	5%	4%	5%	4%	
PAD[40]	5%	5%	6%	5%	
PAD[80]	9%	8%	—	—	
PAD[9]	10%	9%	11%	10%	
PAD[81]	10%	9%	—		

Symbol		C Parameter		Condit	$C_{and}(t) = m_{a}^{(1)}$		Value													
Бутвоі		C	Parameter	Parameter Conditions ⁽¹⁾		Min	Тур	Max	Unit											
				C _L = 25 pF, 13 MHz		—	—	6.6												
I _{RMSMED} CC			Poot modium aquara	C _L = 25 pF, 40 MHz	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		—	13.4												
	00		I/O current for	C _L = 100 pF, 13 MHz		_	—	18.3	m۸											
	U	MEDIUM	C _L = 25 pF, 13 MHz		_	_	5	ШA												
										comguration	C _L = 25 pF, 40 MHz	$V_{DD} = 3.3 V \pm 10\%,$ PAD3V5V = 1	_	_	8.5					
				C _L = 100 pF, 13 MHz		_	_	11												
			Root medium square	C _L = 25 pF, 40 MHz	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		_	_	22											
I _{RMSFST} C				C _L = 25 pF, 64 MHz		_	—	33												
	<u> </u>			C _L = 100 pF, 40 MHz		_	_	56	m۸											
	CC	CC			CC			CC	CC	CC	CC			configuration	C _L = 25 pF, 40 MHz		_	_	14	mA
										C _L = 25 pF, 64 MHz	$V_{DD} = 3.3 V \pm 10\%,$ PAD3V5V - 1	_	_	20	1					
				C _L = 100 pF, 40 MHz		_	_	35												
		_	Sum of all the static	V _{DD} = 5.0 V ± 10%, P	AD3V5V = 0	_	—	70												
IAVGSEG	SR	D	D I/O current within a supply segment	V _{DD} = 3.3 V ± 10%, P/	AD3V5V = 1	_	—	65	mA											

Table 27. I/O consumption (continued	Table 27.	I/O consumption	(continued)
--------------------------------------	-----------	-----------------	-------------

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

3.11 Main oscillator electrical characteristics

The SPC560P44Lx, SPC560P50Lx provides an oscillator/resonator driver.

Table 28.Main oscillator output electrical characteristics (5.0 V,
NVUSRO[PAD3V5V] = 0)

Sum	abol	C	Baramatar	Va	Unit	
Syn		C	Parameter Min Max			Unit
fosc	SR	—	Oscillator frequency	4	40	MHz
9 _m	_	Р	Transconduc tance	6.5	25	mA/V
V _{OSC}	_	т	Oscillation amplitude on XTAL pin	1	_	V
t _{oscsu}	_	Т	Start-up time ^{(1),(2)}	8	_	ms

1. The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time.

2. Value captured when amplitude reaches 90% of XTAL

Table 29.Main oscillator output electrical characteristics (3.3 V,
NVUSRO[PAD3V5V] = 1)

Symb		c	Barameter	Va	lue	Unit
Synt		C	Min Max		onit	
f _{OSC}	SR	—	Oscillator frequency	4	40	MHz
9 _m		Ρ	Transconductance	4	20	mA/V
V _{OSC}		Т	Oscillation amplitude on XTAL pin	1		V
t _{OSCSU}		Т	Start-up time ^{(1),(2)}	8	_	ms

1. The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time.

2. Value captured when amplitude reaches 90% of XTAL

T -1.1. 00	1			
Table 30.	Input	CIOCK	cnaracteristics	;

Sym		Parameter		Unit		
Symbol		, diamotol			Тур	Max
fosc	SR	Oscillator frequency	4	—	40	MHz
f _{CLK}	SR	Frequency in bypass			64	MHz
t _{rCLK}	SR	Rise/fall time in bypass			1	ns
t _{DC}	SR	Duty cycle	47.5	50	52.5	%

3.12 FMPLL electrical characteristics

Table 31. FMPLL electrical characteristics

Symbol	c	Parameter	Conditions ⁽¹⁾	Va	Unit		
Symbol	0	Falameter	Conditions	Min	Max	Onic	
f _{ref_crystal} f _{ref_ext}	D	PLL reference frequency range ⁽²⁾	Crystal reference	4	40	MHz	
f _{PLLIN}	D	Phase detector input frequency range (after pre-divider)	_	4	16	MHz	
f _{FMPLLOUT}	D	Clock frequency range in normal mode	_	16	120	MHz	
f _{FREE}	Ρ	Free-running frequency	Measured using clock division — typically /16	20	150	MHz	
t _{CYC}	D	System clock period	—	—	1 / f _{SYS}	ns	
f _{LORL}	П	Loss of reference frequency window ⁽³⁾	Lower limit	1.6	3.7	MHz	
f _{LORH}			Upper limit	24	56		
f _{SCM}	D	Self-clocked mode frequency ^{(4),(5)}	_	20	150	MHz	

Symbol	C	Parameter		Conditions ⁽¹⁾	Va	Unit		
Symbol				Conditions	Min	Max	Onic	
C _{JITTER}		CLKOUT period jitter ^{(6),(7),(8),(9)}	Short-term jitter ⁽¹⁰⁾	f _{SYS} maximum	-4	4	% f _{CLKOUT}	
	т		Long-term jitter (avg. over 2 ms interval)	f _{PLLIN} = 16 MHz (resonator), f _{PLLCLK} at 64 MHz, 4000 cycles	_	10	ns	
t _{lpll}	D	PLL lock time (11),	(12)	—	_	200	μs	
t _{dc}	D	Duty cycle of refer	rence	—	40	60	%	
f _{LCK}	D	Frequency LOCK	range	_	-6	6	% f _{SYS}	
f _{UL}	D	Frequency un-LO	CK range	—	-18	18	% f _{SYS}	
f _{CS}		Modulation donth		Center spread	±0.25	$\pm 4.0^{(13)}$	0/ f	
f _{DS}	D	modulation depth		Down spread	-0.5	-8.0	⁷⁰ ISYS	
f _{MOD}	D	Modulation freque	ency ⁽¹⁴⁾	—		70	kHz	

 Table 31.
 FMPLL electrical characteristics (continued)

1. $V_{DD_LV_CORx}$ = 1.2 V ±10%; V_{SS} = 0 V; T_A = -40 to 125 °C, unless otherwise specified

- 2. Considering operation with PLL not bypassed
- 3. "Loss of Reference Frequency" window is the reference frequency range outside of which the PLL is in self-clocked mode.
- Self-clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the f_{LOR} window.
- f_{VCO} self clock range is 20–150 MHz. f_{SCM} represents f_{SYS} after PLL output divider (ERFD) of 2 through 16 in enhanced mode.
- 6. This value is determined by the crystal manufacturer and board design.
- 7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{SYS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDPLL} and V_{SSPLL} and variation in crystal oscillator frequency increase the C_{JITTER} percentage for a given interval.
- 8. Proper PC board layout procedures must be followed to achieve specifications.
- Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C_{JITTER} and either f_{CS} or f_{DS} (depending on whether center spread or down spread modulation is enabled).
- 10. Short term jitter is measured on the clock rising edge at cycle n and cycle n+4.
- 11. This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this PLL, load capacitors should not exceed these limits.
- 12. This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- 13. This value is true when operating at frequencies above 60 MHz, otherwise f_{CS} is 2% (above 64 MHz).
- 14. Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.

3.17 AC timing characteristics

3.17.1 RESET pin characteristics

The SPC560P44Lx, SPC560P50Lx implements a dedicated bidirectional RESET pin.

Figure 20. Start-up reset requirements

Doc ID 14723 Rev 9

Na	Na Cumha		~	Deremeter	Conditions	Va	lue	l lmit
NO.	Symbo	1	C	Parameter	Conditions	Min	Max	Unit
5	t _{TMSH} , t _{TDIH}	СС	D	TMS, TDI data hold time	—	25	_	ns
6	t _{TDOV}	СС	D	TCK low to TDO data valid	—	—	40	ns
7	t _{TDOI}	СС	D	TCK low to TDO data invalid	—	0	—	ns
8	t _{TDOHZ}	СС	D	TCK low to TDO high impedance	—	40	_	ns
11	t _{BSDV}	СС	D	TCK falling edge to output valid	—	—	50	ns
12	t _{BSDVZ}	СС	D	TCK falling edge to output valid out of high impedance	_	_	50	ns
13	t _{BSDHZ}	СС	D	TCK falling edge to output high impedance	—	_	50	ns
14	t _{BSDST}	CC	D	Boundary scan input valid to TCK rising edge		50	—	ns
15	t _{BSDHT}	СС	D TCK rising edge to boundary scan input invalid		_	50	—	ns

 Table 39.
 JTAG pin AC electrical characteristics (continued)

Figure 22. JTAG test clock input timing

Figure 27. Nexus TDI, TMS, TDO timing

3.17.4 External interrupt timing (IRQ pin)

Table 41.External interrupt timing⁽¹⁾

No	lo. Symbol		C	Parameter	Conditions	Val	Unit	
NO.					Conditions	Min	Мах	Onic
1	t _{IPWL}	CC	D	IRQ pulse width low	—	4	_	t _{CYC}
2	t _{IPWH}	CC	D	IRQ pulse width high	—	4	—	t _{CYC}
3	t _{ICYC}	CC	D	IRQ edge to edge time ⁽²⁾	—	4 + N ⁽³⁾	—	t _{CYC}

1. IRQ timing specified at f_{SYS} = 64 MHz and $V_{DD_HV_IOx}$ = 3.0 V to 5.5 V, $T_A = T_L$ to T_H , and C_L = 200 pF with SRC = 0b00.

2. Applies when IRQ pins are configured for rising edge or falling edge events, but not both.

3. N = ISR time to clear the flag

No Symbol		6	Decemeter	Conditions	Va	Unit			
NO.	Synn	Symbol C Parameter		Conditions	Min	Max	Unit		
					Master (MTFE = 0)	—	12		
11	+	_{suo} CC D				Slave	—	36	
				00			Data valid (alter SCIV edge)	Master (MTFE = 1, CPHA = 0)	—
				Master (MTFE = 1, CPHA = 1)	—	12			
						Master (MTFE = 0)	-2	—	
10				~~~			Slave	6	—
		<u>ט</u> ן	Data noid time for outputs	Master (MTFE = 1, CPHA = 0)	6	—	115		
					Master (MTFE = 1, CPHA = 1)	-2	—		

 Table 42.
 DSPI timing⁽¹⁾ (continued)

1. All timing is provided with 50 pF capacitance on output, 1 ns transition time on input signal.

Figure 29. DSPI classic SPI timing – Master, CPHA = 0

	Dimensions								
Symbol		mm		inches ⁽¹⁾					
	Min	Тур	Max	Min	Тур	Мах			
А	—	—	1.600	—	—	0.0630			
A1	0.050	—	0.150	0.0020	—	0.0059			
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571			
b	0.170	0.220	0.270	0.0067	0.0087	0.0106			
С	0.090	—	0.200	0.0035	—	0.0079			
D	21.800	22.000	22.200	0.8583	0.8661	0.8740			
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953			
D3	—	17.500	—	—	0.6890	—			
E	21.800	22.000	22.200	0.8583	0.8661	0.8740			
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953			
E3	—	17.500	—	—	0.6890	—			
е	—	0.500	—	—	0.0197	—			
L	0.450	0.600	0.750	0.0177	0.0236	0.0295			
L1	—	1.000	—	—	0.0394	—			
k	0.0°	3.5°	7.0°	3.5°	0.0°	7.0°			
ccc ⁽²⁾		0.080			0.0031	•			

Table 43. LQFP144 mechanical data

1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits.

2. Tolerance

Date	Revision	Changes
18-Jul-2012	8	Updated Table 1 (Device summary) Section 1.5.4, Flash memory: Changed "Data flash memory: 32-bit ECC" to "Data flash memory: 64-bit ECC" Figure 40 (Commercial product code structure), replaced "C = 60 MHz, 5 V" and "D = 60 MHz, 3.3 V" with respectively "C = 40 MHz, 5 V" and "D = 40 MHz, 3.3 V" Table 9 (Absolute maximum ratings), updated TV _{DD} parameter, the minimum value to 3.0 V/s and the maximum value to 0.5 V/µs Table 7 (Pin muxing), changed the description in the column "I/O direction" from "I/O" to "O" for the following port pins: A[10] with function A[0] A[11] with function A[2] A[12] with function A[2] A[13] with function A[2] A[13] with function A[3] C[17] with function A[4] C[10] with function A[3] C[15] with function A[1] D[10] with function A[3] C[15] with function A[1] D[10] with function A[1] D[10] with function A[1] D[11] with function A[1] D[12] with function B[1] Updated Section 3.8.1, Voltage regulator electrical characteristics Added Table 27 (I/O consumption) Section 3.0.0 L electrical characteristics: deleted references to "oscillator margin" deleted subsection "NVUSRO[OSCILLATOR_MARGIN] field description" Table 21 (DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)), added IPU row for RESET pin Table 23 (DC electrical characteristics), added V _{INAN} entry Removed "Order codes" table Figure 40 (Commercial product code structure): added a footnote updated "E = Data flash memory"
18-Sep-2013	9	Updated Discialmer

Table 46.	Revision	history ((continued)
-----------	----------	-----------	-------------

