

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Not For New Designs
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	67
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	36K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 26x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560p44l3ceabr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		1.5.29	Nexus development interface (NDI)
		1.5.30	Cyclic redundancy check (CRC)27
		1.5.31	IEEE 1149.1 JTAG controller
		1.5.32	On-chip voltage regulator (VREG) 28
2	Packa	age pinc	outs and signal descriptions
	2.1	Package	e pinouts
	2.2	Pin dese	cription
		2.2.1	Power supply and reference voltage pins
		2.2.2	System pins
		2.2.3	Pin muxing
3	Electr	ical cha	aracteristics
	3.1	Introduc	tion
	3.2	Parame	ter classification
	3.3	Absolute	e maximum ratings
	3.4	Recomr	nended operating conditions 53
	3.5	Therma	l characteristics
		3.5.1	Package thermal characteristics
		3.5.2	General notes for specifications at maximum junction temperature 57
	3.6	Electron	nagnetic interference (EMI) characteristics
	3.7	Electros	tatic discharge (ESD) characteristics
	3.8	Power n	nanagement electrical characteristics
		3.8.1	Voltage regulator electrical characteristics
		3.8.2	Voltage monitor electrical characteristics
	3.9	Power u	ıp/down sequencing 63
	3.10	DC elec	trical characteristics
		3.10.1	NVUSRO register
		3.10.2	DC electrical characteristics (5 V)
		3.10.3	DC electrical characteristics (3.3 V)
		3.10.4	Input DC electrical characteristics definition
		3.10.5	I/O pad current specification70
	3.11	Main os	cillator electrical characteristics
	3.12	FMPLL	electrical characteristics
	3.13	16 MHz	RC oscillator electrical characteristics

Feature	Full-featured	Airbag				
FlexRay	Yes	No				
FMPLL (frequency-modulated phase-locked loop) module	2 (one FMPLL, one for FlexRay)	1 (only FMPLL)				

Table 3. SPC560P44Lx, SPC560P50Lx device configuration differences (continued)

1.4 Block diagram

Figure 1 shows a top-level block diagram of the SPC560P44Lx, SPC560P50Lx MCU.

Block	Function
Analog-to-digital converter (ADC)	Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM)	Block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Controller area network (FlexCAN)	Supports the standard CAN communications protocol
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Crossbar switch (XBAR)	Supports simultaneous connections between two master ports and three slave ports; supports a 32-bit address bus width and a 32-bit data bus width
Cyclic redundancy check (CRC)	CRC checksum generator
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Enhanced direct memory access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via "n" programmable channels
Enhanced timer (eTimer)	Provides enhanced programmable up/down modulo counting
Error correction status module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
External oscillator (XOSC)	Provides an output clock used as input reference for FMPLL_0 or as reference clock for specific modules depending on system needs
Fault collection unit (FCU)	Provides functional safety to the device
Flash memory	Provides non-volatile storage for program code, constants and variables
Frequency-modulated phase- locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with minimum load on CPU
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Periodic interrupt timer (PIT)	Produces periodic interrupts and triggers
Peripheral bridge (PBRIDGE)	Interface between the system bus and on-chip peripherals
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU

Table 4. SPC560P44Lx, SPC560P50Lx series block summary

1.5.22 FlexRay

The FlexRay module provides the following features:

- Full implementation of FlexRay Protocol Specification 2.1
- 32 configurable message buffers can be handled
- Dual channel or single channel mode of operation, each as fast as 10 Mbit/s data rate
- Message buffers configurable as Tx, Rx or RxFIFO
- Message buffer size configurable
- Message filtering for all message buffers based on FrameID, cycle count and message ID
- Programmable acceptance filters for RxFIFO message buffers

1.5.23 Serial communication interface module (LINFlex)

The LINFlex (local interconnect network flexible) on the SPC560P44Lx, SPC560P50Lx features the following:

- Supports LIN Master mode, LIN Slave mode and UART mode
- LIN state machine compliant to LIN1.3, 2.0, and 2.1 specifications
- Handles LIN frame transmission and reception without CPU intervention
- LIN features
 - Autonomous LIN frame handling
 - Message buffer to store Identifier and as much as 8 data bytes
 - Supports message length as long as 64 bytes
 - Detection and flagging of LIN errors (sync field, delimiter, ID parity, bit framing, checksum, and time-out)
 - Classic or extended checksum calculation
 - Configurable Break duration as long as 36-bit times
 - Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional)
 - Diagnostic features: Loop back; Self Test; LIN bus stuck dominant detection
 - Interrupt-driven operation with 16 interrupt sources
- LIN slave mode features
 - Autonomous LIN header handling
 - Autonomous LIN response handling
- UART mode
 - Full-duplex operation
 - Standard non return-to-zero (NRZ) mark/space format
 - Data buffers with 4-byte receive, 4-byte transmit
 - Configurable word length (8-bit or 9-bit words)
 - Error detection and flagging
 - Parity, Noise and Framing errors
 - Interrupt-driven operation with four interrupt sources
 - Separate transmitter and receiver CPU interrupt sources
 - 16-bit programmable baud-rate modulus counter and 16-bit fractional
 - 2 receiver wake-up methods

Port	Pad	Alternate		I/O	Pad speed ⁽⁵⁾		Pin No.		
pin	configuration function ⁽¹⁾ , Functions Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin			
		ALT0	GPIO[14]	SIUL	I/O				
		ALT1	TXD	Safety Port_0	0				
A[14]	PCR[14]	ALT2	ETC[4]	eTimer_1	I/O	Slow	Medium	99	143
		ALT3	—	—	—				
		—	EIRQ[13]	SIUL	I				
		ALT0	GPIO[15]	SIUL	I/O				
		ALT1	—	—	—				
A[15]	PCR[15]	ALT2	ETC[5]	eTimer_1	I/O	Slow	Medium	100	144
A[15]	FCR[15]	ALT3	—	—	—	310W	Medium	100	144
		—	RXD	Safety Port_0	I				
		—	EIRQ[14]	SIUL	I				
				Port B (16-bit)					
		ALT0	GPIO[16]	SIUL	I/O				
		ALT1	TXD	FlexCAN_0	0				
B[0]	PCR[16]	ALT2	ETC[2]	eTimer_1	I/O	Slow	Medium	76	109
		ALT3	DEBUG[0]	SSCM	—				
		—	EIRQ[15]	SIUL	I				
		ALT0	GPIO[17]	SIUL	I/O				
		ALT1	—	—	—				
B[1]	PCR[17]	ALT2	ETC[3]	eTimer_1	I/O	Slow	Medium	77	110
D[1]	FOR[17]	ALT3	DEBUG[1]	SSCM	—	310W	Medium	11	110
		—	RXD	FlexCAN_0	I				
		—	EIRQ[16]	SIUL	I				
		ALT0	GPIO[18]	SIUL	I/O				
		ALT1	TXD	LIN_0	0				
B[2]	PCR[18]	ALT2	—	—	—	Slow	Medium	79	114
		ALT3	DEBUG[2]	SSCM	—				
		—	EIRQ[17]	SIUL	I				
		ALT0	GPIO[19]	SIUL	I/O				
		ALT1	—	—	—				
B[3]	PCR[19]	ALT2	—	—	—	Slow	Medium	80	116
		ALT3	DEBUG[3]	SSCM	—				
		—	RXD	LIN_0	I				
		ALT0	GPIO[22]	SIUL	I/O				
		ALT1	CLKOUT	MC_CGL	0				
B[6]	PCR[22]	ALT2	CS2	DSPI_2	0	Slow	Medium	96	138
		ALT3	—	—	—				
		—	EIRQ[18]	SIUL	I				

Table 7. Pin muxing (continued)

Port	Pad	Alternate	Alternate	I/O	Pad speed ⁽⁵⁾		Pin No.		
nin	configuration register (PCR)	function ^{(1),} (2)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin
		ALT0	GPIO[23]	SIUL					
		ALT1		—					
B[7]	PCR[23]	ALT2		—	Input only	_	_	29	43
		ALT3		ADC_0					
		_	AN[0] RXD	LIN_0					
		ALT0							
		ALT0 ALT1	GPIO[24]	SIUL					
		ALT2	_	_					
B[8]	PCR[24]	ALT3		_	Input only	—	—	31	47
		_	AN[1]	ADC_0					
		—	ETC[5]	eTimer_0					
		ALT0	GPIO[25]	SIUL					
		ALT1	_	—					
B[9]	PCR[25]	ALT2		—	Input only	—	—	35	52
		ALT3	—	—					
		—	AN[11]	ADC_0 / ADC_1					
		ALT0	GPIO[26]	SIUL					
DI (O)	DODION	ALT1		—					
B[10]	PCR[26]	ALT2 ALT3		—	Input only	_	_	36	53
		ALI3 —	 AN[12]	ADC_0 / ADC_1					
		ALT0	GPIO[27]	SIUL					
		ALT1	—						
B[11]	PCR[27]	ALT2	_	_	Input only	_	_	37	54
		ALT3		_					
		—	AN[13]	ADC_0 / ADC_1					
		ALT0	GPIO[28]	SIUL					
		ALT1	_	—					
B[12]	PCR[28]	ALT2		—	Input only	—	—	38	55
		ALT3	—	—					
		_	AN[14]	ADC_0 / ADC_1					
		ALT0	GPIO[29]	SIUL					
		ALT1	_	—					
B[13]	PCR[29]	ALT2 ALT3	_		Input only	—	—	42	60
		ALIS	 AN[0]	ADC_1					
		_	RXD	LIN_1					

Table 7. Pin muxing (continued)

Port	Pad	Alternate			I/O	Pad s	peed ⁽⁵⁾	Pin No.	
pin	configuration register (PCR)	function ^{(1),} (2)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin
		ALT0	GPIO[62]	SIUL	I/O				
		ALT1	B[1]	FlexPWM_0	0				
D[14]	PCR[62]	ALT2	CS3	DSPI_3	0	Slow	Medium	73	105
		ALT3	—	—	—				
		—	SIN	DSPI_3	I				
		ALT0	GPIO[63]	SIUL					
		ALT1	—	—					
D[15]	PCR[63]	ALT2	_	—	Input only	—	—	41	58
		ALT3	—	—					
		—	AN[4]	ADC_1					
				Port E(16-bit)					
		ALT0	GPIO[64]	SIUL					
		ALT1	—	—					
E[0]	PCR[64]	ALT2	_	—	Input only	—	—	46	68
		ALT3	—	—					
		—	AN[5]	ADC_1					
		ALT0	GPIO[65]	SIUL					
		ALT1	—	—					
E[1]	PCR[65]	ALT2	—	—	Input only	—	—	27	39
		ALT3	—	—					
		—	AN[4]	ADC_0					
		ALT0	GPIO[66]	SIUL					
		ALT1	—	—					
E[2]	PCR[66]	ALT2	—	—	Input only	—	—	32	49
		ALT3	—	—					
		—	AN[5]	ADC_0					
		ALT0	GPIO[67]	SIUL					
		ALT1	—	—					
E[3]	PCR[67]	ALT2	—	—	Input only	—	—		40
		ALT3	— • • • • • • •	—					
		_	AN[6]	ADC_0					
		ALT0	GPIO[68]	SIUL					
		ALT1	—	—					
E[4]	PCR[68]	ALT2	—	—	Input only	—	_		42
		ALT3		—					
		—	AN[7]	ADC_0					

Table 7. Pin muxing (continued)

3 Electrical characteristics

3.1 Introduction

This section contains device electrical characteristics as well as temperature and power considerations.

This microcontroller contains input protection against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This can be done by the internal pull-up or pull-down resistors, which are provided by the device for most general purpose pins.

The following tables provide the device characteristics and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

Caution: All of the following parameter values can vary depending on the application and must be confirmed during silicon characterization or silicon reliability trial.

3.2 Parameter classification

The electrical parameters are guaranteed by various methods. To give the customer a better understanding, the classifications listed in *Table 8* are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description			
Р	Those parameters are guaranteed during production testing on each individual device.			
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.			
T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the ty column are within this category.				
D	Those parameters are derived mainly from simulations.			

Table 8.Parameter classifications

Note: The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute maximum ratings

0 mm h a l	Deromotor		O an alliticana		Unit		
Symbol		Parameter	Conditions	Min	Max ⁽²⁾		
V _{SS}	SR	Device ground	—	0	0	V	
V _{DD_HV_IOx} ⁽³⁾	SR	3.3 V / 5.0 V input/output supply voltage with respect to ground (V _{SS})	—	-0.3	6.0	V	
V _{SS_HV_IOx}	SR	Input/output ground voltage with respect to ground (V _{SS})	—	-0.1	0.1	V	
		3.3 V / 5.0 V code and data flash	—		6.0		
V _{DD_HV_FL}	SR	supply voltage with respect to ground (V_{SS})	Relative to V _{DD_HV_IOx}	-0.3	V _{DD_HV_IOx} + 0.3	V	
$V_{SS_HV_FL}$	SR	Code and data flash ground with respect to ground (V _{SS})	—	-0.1	0.1	V	
		3.3 V / 5.0 V crystal oscillator	—		6.0		
V _{DD_HV_OSC}	SR	amplifier supply voltage with respect to ground (V_{SS})	Relative to V _{DD_HV_IOx}	-0.3	V _{DD_HV_IOx} + 0.3	V	
V _{SS_HV_OSC}	SR	3.3 V / 5.0 V crystal oscillator amplifier reference voltage with respect to ground (V _{SS})	—	-0.1	0.1	V	
		3.3 V / 5.0 V voltage regulator suppl	—		6.0		
$V_{DD_HV_REG}$	SR	voltage with respect to ground (V _{SS})	Relative to V _{DD_HV_IOx}	-0.3	V _{DD_HV_IOx} + 0.3	V	
V _{DD_HV_} ADC0	QD	3.3 V / 5.0 V ADC_0 supply and high reference voltage with respect to	V _{DD_HV_REG} < 2.7 V	-0.3	$V_{DD_{HV_{REG}}} + 0.3$	V	
- (4)-	SIX	ground (V _{SS})	V _{DD_HV_REG} > 2.7 V	-0.3	6.0	v	
V _{SS_HV_ADC0}	SR	ADC_0 ground and low reference voltage with respect to ground (V _{SS})	—	-0.1	0.1	V	
V _{DD_HV_ADC1} (сD	3.3 V / 5.0 V ADC_0 supply and high reference voltage with respect to	V _{DD_HV_REG} < 2.7 V	-0.3	V _{DD_HV_REG} + 0.3	V	
- 4)-	SN	ground (V _{SS})	V _{DD_HV_REG} > 2.7 V	-0.3	6.0	v	
V _{SS_HV_ADC1}	SR	ADC_1 ground and low reference voltage with respect to ground (V _{SS})	—	-0.1	0.1	V	
TV _{DD}	SR	Slope characteristics on all V_{DD} during power up ⁽⁵⁾ with respect to ground (V _{SS})	_	3.0	500 x 10 ³ (0.5 [V/µs])	V/s	
		Voltage on any pin with respect to	—		6.0		
V _{IN}	SR	ground (V_{SS_HV_IOx}) with respect to ground (V_{SS})	Relative to V _{DD_HV_IOx}	-0.3	V _{DD_HV_IOx} + 0.3	V	

Table 9. Absolute maximum ratings⁽¹⁾

- C.E. Triplett and B. Joiner, An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module, Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. G. Kromann, S. Shidore, and S. Addison, *Thermal Modeling of a PBGA for Air-Cooled Applications*, Electronic Packaging and Production, pp. 53–58, March 1998.
- 3. B. Joiner and V. Adams, *Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling*, Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

3.6 Electromagnetic interference (EMI) characteristics

Symbol	Parameter	Conditions	Clocks	Frequency	Level (Max)	Unit
		1) ovice contiguration test	f _{OSC} 8 MHz	150 kHz–150 MHz	16	dBµV
		adiated emissions Supply voltage = 5 V DC Ambient temperature = 25 °C Worst-case orientation	f _{CPU} 64 MHz No PLL frequency modulation	150–1000 MHz	15	uυμν
V	Radiated emissions			IEC Level	М	—
V _{EME}			f _{OSC} 8 MHz f _{CPU} 64 MHz	150 kHz–150 MHz	15	dBµV
				150–1000 MHz	14	ubµv
			1% PLL frequency modulation	IEC Level	М	—

Table 14. EMI testing specifications

3.7 Electrostatic discharge (ESD) characteristics

Table 15.ESD ratings(1),(2)

Symbol		Parameter	Conditions	Value	Unit
V _{ESD(HBM)}	S R	Electrostatic discharge (Human Body Model)	_	2000	V
	s	Electrostatic discharge (Charged Device Model)		750 (corners)	v
VESD(CDM) F	R	Electrostatic discharge (Charged Device Model)	_	500 (other)	v

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

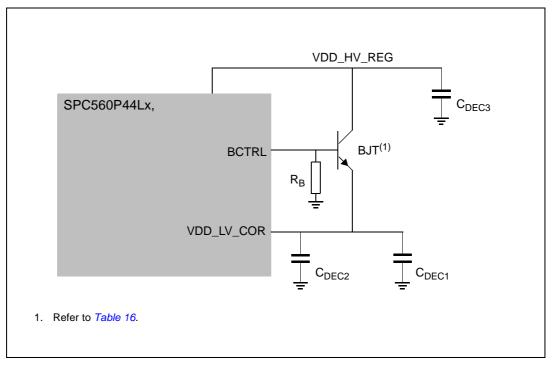
2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

3.8 Power management electrical characteristics

3.8.1 Voltage regulator electrical characteristics

The internal voltage regulator requires an external NPN ballast to be connected as shown in *Figure 9. Table 16* contains all approved NPN ballast components. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the V_{DD HV REG}, BCTRL and V_{DD LV CORx} pins to less than

L_{Rea}, see Table 17.


Note:

The voltage regulator output cannot be used to drive external circuits. Output pins are used only for decoupling capacitances.

 $V_{DD_LV_COR}$ must be generated using internal regulator and external NPN transistor. It is not possible to provide $V_{DD_LV_COR}$ through external regulator.

For the SPC560P44Lx, SPC560P50Lx microcontroller, capacitors, with total values not below C_{DEC1} , should be placed between $V_{DD_LV_CORx}/V_{SS_LV_CORx}$ close to external ballast transistor emitter. 4 capacitors, with total values not below C_{DEC2} , should be placed close to microcontroller pins between each $V_{DD_LV_CORx}/V_{SS_LV_CORx}$ supply pairs and the $V_{DD_LV_REGCOR}/V_{SS_LV_REGCOR}$ pair . Additionally, capacitors with total values not below C_{DEC3} , should be placed between the $V_{DD_HV_REG}/V_{SS_HV_REG}$ pins close to ballast collector. Capacitors values have to take into account capacitor accuracy, aging and variation versus temperature.

All reported information are valid for voltage and temperature ranges described in recommended operating condition, *Table 10* and *Table 11*.

Table 16. Approved NPN ballast components (configuration with resistor on base)

Part	Manufacturer	Approved derivatives ⁽¹⁾
	ON Semi	BCP68
BCP68	NXP	BCP68-25
	Infineon	BCP68-25
BCX68	Infineon	BCX68-10;BCX68-16;BCX68-25
BC868	NXP	BC868

Part	Manufacturer	Approved derivatives ⁽¹⁾
BC817	Infineon	BC817-16;BC817-25;BC817SU;
BCOTT	NXP	BC817-16;BC817-25
	ST	BCP56-16
BCP56	Infineon	BCP56-10;BCP56-16
BCP56	ON Semi	BCP56-10
	NXP	BCP56-10;BCP56-16

Table 16. Approved NPN ballast components (configuration with resistor on base)

1. For automotive applications please check with the appropriate transistor vendor for automotive grade certification

Symbol		с	Parameter	Conditions		Value		Unit	
Symbol		C	Parameter	Conditions	Min	Тур	Max	Unit	
V _{DD_LV_REGCOR}	сс	Ρ	Output voltage under maximum load run supply current configuration	Post-trimming	1.15	_	1.32	V	
R _B	SR	—	External resistance on bipolar junction transistor (BJT) base	_	18		22	kΩ	
C _{DEC1}	SR	_	External decoupling/stability ceramic capacitor	BJT from <i>Table 16</i> . 3 capacitances (i.e. X7R or X8R capacitors) with nominal value of 10 µF	19.5	Min Typ Max 1.15 1.32 18 22 19.5 30 14.3 22 14.3 22 10 40 1200 1760	μF		
				BJT BC817, one capacitance of 22 μF	7, one capacitance 14.3 22		μF		
				Resulting ESR of all three capacitors of C _{DEC1}	BJT from <i>Table 16</i> . 3x10 μF. Absolute maximum value between 100 kHz and 10 MHz	_	_	50	mΩ
R _{REG}	SR		Resulting ESR of the unique capacitor C _{DEC1}	BJT BC817, 1x 22 µF. Absolute maximum value between 100 kHz and 10 MHz	10		40	mΩ	
C _{DEC2}	SR	_	External decoupling/stability ceramic capacitor	4 capacitances (i.e. X7R or X8R capacitors) with nominal value of 440 nF	1200	1760	_	nF	
C _{DEC3}	SR		External decoupling/stability ceramic capacitor on V _{DD_HV_REG}	3 capacitances (i.e. X7R or X8R capacitors) with nominal value of 10 μ F; C _{DEC3} has to be equal or greater than C _{DEC1}	19.5	30		μF	
L _{Reg}	SR	—	Resulting ESL of V_DD_HV_REG BCTRL and V_DD_LV_CORx pins	_	_	—	15	nH	

Table 17. Voltage regulator electrical characteristics (configuration with resistor on base)

0	~	Descustor	O an dition o	Va	alue	11	
Symbol	C	Parameter	Conditions	Min	Max V _{DD_HV_IOx} + 0.1 ⁽²⁾ 0.5 0.5 0.5 0.5 10 10	Unit	
V	Ρ	High level input voltage	—	$0.65 V_{DD_HV_IOx}$	—	V	
V _{IH}	D	i lightlevel linput voltage	—	—	$V_{DD_HV_IOx} + 0.1^{(2)}$	V	
V _{HYS}	Т	Schmitt trigger hysteresis	—	$0.1 V_{DD_HV_IOx}$	—	V	
V_{OL_S}	Ρ	Slow, low level output voltage	I _{OL} = 1.5 mA	—	0.5	V	
V _{OH_S}	Ρ	Slow, high level output voltage	I _{OH} = -1.5 mA	$V_{DD_HV_IOx} - 0.8$	—	V	
V _{OL_M}	Ρ	Medium, low level output voltage	I _{OL} = 2 mA	—	0.5	V	
V _{OH_M}	Ρ	Medium, high level output voltage	I _{OH} = -2 mA	$V_{DD_HV_IOx} - 0.8$	—	V	
V_{OL_F}	Ρ	Fast, low level output voltage	I _{OL} = 1.5 mA	—	0.5	V	
V _{OH_F}	Ρ	Fast, high level output voltage	I _{OH} = -1.5 mA	$V_{DD_HV_IOx} - 0.8$	—	V	
V _{OL_SYM}	Ρ	Symmetric, low level output voltage	I _{OL} = 1.5 mA	—	0.5	V	
V _{OH_SYM}	Ρ	Symmetric, high level output voltage	I _{OH} = -1.5 mA	$V_{DD_HV_IOx} - 0.8$	—	V	
	р	Equivalent pull-up current	$V_{IN} = V_{IL}$	-130	—		
I _{PU}	Г	Equivalent pull-up current	$V_{IN} = V_{IH}$	—	-10	μA	
	р	Equivalent pull-down current	$V_{IN} = V_{IL}$	10	—		
I _{PD}	Г	Equivalent pull-down current	$V_{IN} = V_{IH}$	—	130	μA	
IIL	Ρ	Input leakage current (all bidirectional ports)	$T_{A} = -40$ to 125 °C	_	1	μA	
Ι _{ΙL}	Ρ	Input leakage current (all ADC input- only ports)	$T_{A} = -40$ to 125 °C	_	0.5	μA	
C _{IN}	D	Input capacitance	—	—	10	pF	
		RESET, equivalent pull-up current	$V_{IN} = V_{IL}$	-130	—		
I _{PU}	טן	RESET, equivalent pull-up current	V _{IN} = V _{IH}	—	-10	μA	

Table 23.DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)⁽¹⁾ (continued)

1. These specifications are design targets and subject to change per device characterization.

2. "SR" parameter values must not exceed the absolute maximum ratings shown in Table 9.

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (T_C). Again the conversion period T_C is longer than the sampling time T_S , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time T_S , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive *Equation 11* between the ideal and real sampled voltage on C_S :

Equation 11

$$\frac{V_A}{V_{A2}} = \frac{C_{P1} + C_{P2} + C_F}{C_{P1} + C_{P2} + C_F + C_S}$$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Equation 12

$$C_F > 2048 \bullet C_S$$

3.14.2 ADC conversion characteristics

Table 33. ADC conversion characteristics	Table 33.	ADC conversion characteristics
--	-----------	--------------------------------

Symbo	ol	с	Parameter	Conditions ⁽¹⁾	N	Unit			
Symb		C	raiametei	Conditions	Min	Тур	Max	Unit	
V _{INAN0}	SR		ADC0 and shared ADC0/1 analog input voltage ^{(2), (3)}	_	V _{SS_HV_ADV0} - 0.3	_	V _{DD_HV_ADV0} + 0.3	V	
V _{INAN1}	SR		ADC1 analog input voltage ^{(2),} ⁽⁴⁾	_	V _{SS_HV_ADV1} - 0.3	_	V _{DD_HV_ADV1} + 0.3	V	
f _{CK}	SR		ADC clock frequency (depends on ADC configuration) (The duty cycle depends on AD_clk ⁽⁵⁾ frequency)	_	3(6)	_	60	MHz	
f _s	SR	—	Sampling frequency	—	_		1.53	MHz	
tuna	tapc s — D Sample		(7)	f _{ADC} = 20 MHz, INPSAMP = 3	125	_	—	ns	
t _{ADC_S} —			f _{ADC} = 9 MHz, INPSAMP = 255		_	28.2	μs		
t _{ADC_C}	_	Ρ	Conversion time ⁽⁸⁾	f _{ADC} = 20 MHz ⁽⁹⁾ , INPCMP = 1	0.650	_	_	μs	

Na	No. Symbol		с	Parameter	Conditions	Value		Unit
NO.			C	Falameter	Conditions	Min	Max	Unit
5	t _{TMSH} , t _{TDIH}	CC	D	TMS, TDI data hold time	—	25	—	ns
6	t _{TDOV}	СС	D	TCK low to TDO data valid	—		40	ns
7	t _{TDOI}	CC	D	TCK low to TDO data invalid	—	0	—	ns
8	t _{TDOHZ}	CC	D	TCK low to TDO high impedance	_	40	—	ns
11	t _{BSDV}	CC	D	TCK falling edge to output valid	—		50	ns
12	t _{BSDVZ}	СС	D	TCK falling edge to output valid out of high impedance	_	_	50	ns
13	t _{BSDHZ}	CC	D	TCK falling edge to output high impedance	—		50	ns
14	t _{BSDST}	CC	D	Boundary scan input valid to TCK rising edge		50	_	ns
15	t _{BSDHT}	CC	D	TCK rising edge to boundary scan input invalid	_	50	—	ns

 Table 39.
 JTAG pin AC electrical characteristics (continued)

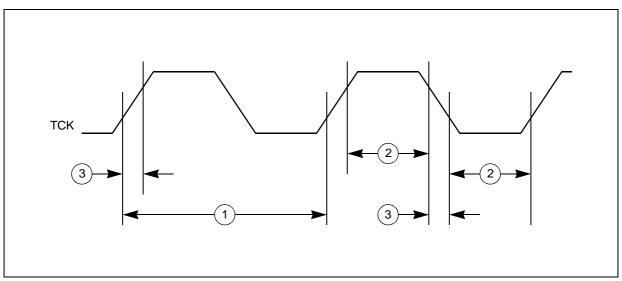


Figure 22. JTAG test clock input timing

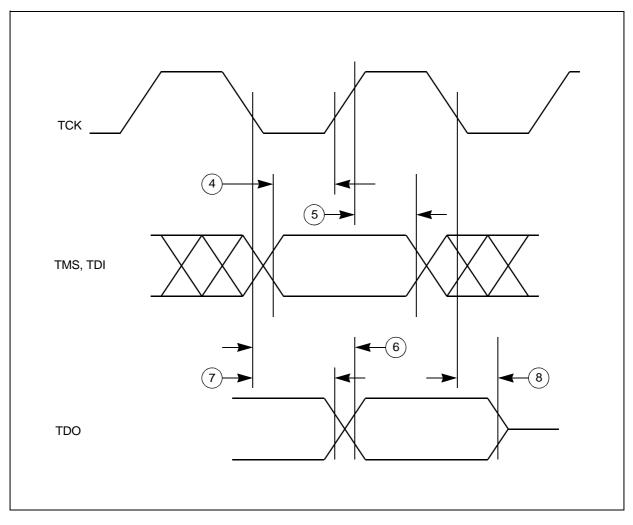


Figure 23. JTAG test access port timing

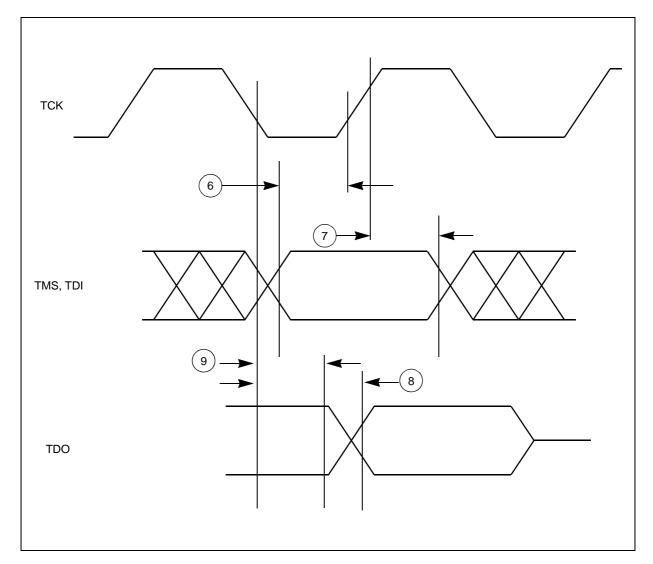


Figure 27. Nexus TDI, TMS, TDO timing

3.17.4 External interrupt timing (IRQ pin)

Table 41.External interrupt timing⁽¹⁾

No.	Symbol		Symbol		с	Parameter	Conditions	Val	lue	Unit
NO.	Synn	501	C	r ai ainetei	Conditions	Min	Мах	Onic		
1	t _{IPWL}	CC	D	IRQ pulse width low	—	4	_	t _{CYC}		
2	t _{IPWH}	CC	D	IRQ pulse width high	—	4	_	t _{CYC}		
3	t _{ICYC}	CC	D	IRQ edge to edge time ⁽²⁾		4 + N ⁽³⁾		t _{CYC}		

1. IRQ timing specified at f_{SYS} = 64 MHz and $V_{DD_HV_IOx}$ = 3.0 V to 5.5 V, $T_A = T_L$ to T_H , and C_L = 200 pF with SRC = 0b00.

2. Applies when IRQ pins are configured for rising edge or falling edge events, but not both.

3. N = ISR time to clear the flag

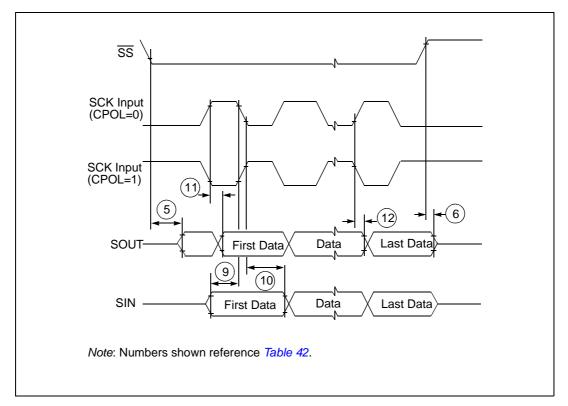


Figure 32. DSPI classic SPI timing – Slave, CPHA = 1

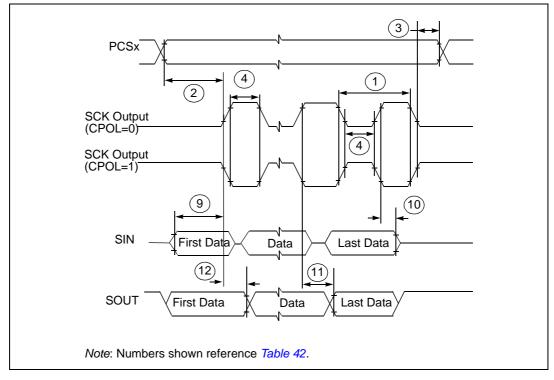
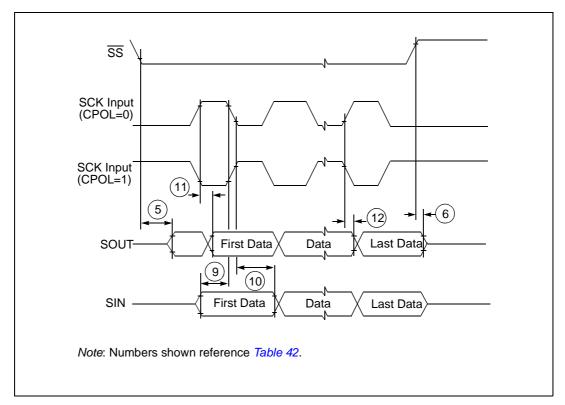



Figure 33. DSPI modified transfer format timing – Master, CPHA = 0

Doc ID 14723 Rev 9

Figure 36. DSPI modified transfer format timing – Slave, CPHA = 1

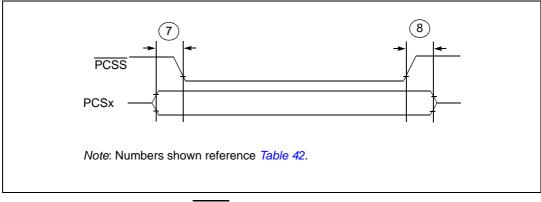


Figure 37. DSPI PCS strobe (PCSS) timing

Date	Revision	Changes
18-Jul-2012	8	Updated Table 1 (Device summary) Section 1.5.4, Flash memory: Changed "Data flash memory: 32-bit ECC" to "Data flash memory: 64-bit ECC" Figure 40 (Commercial product code structure), replaced "C = 60 MHz, 5 V" and "D = 60 MHz, 3.3 V" with respectively "C = 40 MHz, 5 V" and "D = 40 MHz, 3.3 V" Table 9 (Absolute maximum ratings), updated TV _{DD} parameter, the minimum value to 3.0 V/s and the maximum ratings), updated TV _{DD} parameter, the minimum value to 3.0 V/s and the maximum ratings), updated TV _{DD} parameter, the minimum value to 3.0 V/s and the maximum ratings), updated TV _{DD} parameter, the minimum value to 3.0 V/s and the maximum ratings), updated TV _{DD} parameter, the minimum value to 3.0 V/s and the maximum value to 0.5 V/µs Table 7 (Pin muxing), changed the description in the column "I/O direction" from "I/O" to "O" for the following port pins: A[10] with function B[0] A[11] with function A[2] A[12] with function A[2] A[12] with function B[2] C[7] with function A[3] C[15] with function A[1] D[0] with function A[1] D[10] with function A[1] D[11] with function A[1] D[13] with function A[1] D[14] with function A[1] D[15] with function A[1] D[14] with function B[1] Updated Section 3.8.1, Voltage regulator electrical characteristics Added Table 27 (I/O consumption) Section 3.10, DC electrical characteristics: deleted references to "oscillator margin" deleted subsection "NVUSRO[OSCILLATOR_MARGIN] field description" Table 21 (DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)), added IPU row for RESET pin Table 23 (DC electrical characteristics), added V _{INAN} entry Removed "Order codes" table Figure 40 (Commercial product code structure): added a footnote updated "E = Data flash memory"
18-Sep-2013	9	Updated Disclaimer

Table 46. Revision history (continued	Table 46.	Revision	history ((continued))
---------------------------------------	-----------	----------	-----------	-------------	---

