

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	67
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	64К х 8
RAM Size	36K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 26x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560p44l3cefar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR has to be executed. It also provides a wide number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol (PCP) for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the same resource can not preempt each other.

The INTC provides the following features:

- Unique 9-bit vector for each separate interrupt source
- 8 software triggerable interrupt sources
- 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source
- Ability to modify the ISR or task priority: modifying the priority can be used to implement the Priority Ceiling Protocol for accessing shared resources.
- 2 external high priority interrupts directly accessing the main core and I/O processor (IOP) critical interrupt mechanism

1.5.7 System status and configuration module (SSCM)

The system status and configuration module (SSCM) provides central device functionality.

The SSCM includes these features:

- System configuration and status
 - Memory sizes/status
 - Device mode and security status
 - Determine boot vector
 - Search code flash for bootable sector
 - DMA status
- Debug status port enable and selection
- Bus and peripheral abort enable/disable

1.5.8 System clocks and clock generation

The following list summarizes the system clock and clock generation on the SPC560P44Lx, SPC560P50Lx:

- Lock detect circuitry continuously monitors lock status
- Loss of clock (LOC) detection for PLL outputs
- Programmable output clock divider (÷1, ÷2, ÷4, ÷8)
- FlexPWM module and eTimer module can run on an independent clock source
- On-chip oscillator with automatic level control
- Internal 16 MHz RC oscillator for rapid start-up and safe mode: supports frequency trimming by user application

The SIU provides the following features:

- Centralized general purpose input output (GPIO) control of as many as 80 input/output pins and 26 analog input-only pads (package dependent)
- All GPIO pins can be independently configured to support pull-up, pull down, or no pull
- Reading and writing to GPIO supported both as individual pins and 16-bit wide ports
- All peripheral pins (except ADC channels) can be alternatively configured as both general purpose input or output pins
- ADC channels support alternative configuration as general purpose inputs
- Direct readback of the pin value is supported on all pins through the SIUL
- Configurable digital input filter that can be applied to some general purpose input pins for noise elimination: as many as 4 internal functions can be multiplexed onto 1 pin

1.5.17 Boot and censorship

Different booting modes are available in the SPC560P44Lx, SPC560P50Lx: booting from internal flash memory and booting via a serial link.

The default booting scheme uses the internal flash memory (an internal pull-down is used to select this mode). Optionally, the user can boot via FlexCAN or LINFlex (using the boot assist module software).

A censorship scheme is provided to protect the content of the flash memory and offer increased security for the entire device.

A password mechanism is designed to grant the legitimate user access to the non-volatile memory.

Boot assist module (BAM)

The BAM is a block of read-only one-time programmed memory and is identical for all SPC560Pxx devices that are based on the e200z0h core. The BAM program is executed every time the device is powered on if the alternate boot mode has been selected by the user.

The BAM provides the following features:

- Serial bootloading via FlexCAN or LINFlex
- Ability to accept a password via the used serial communication channel to grant the legitimate user access to the non-volatile memory

1.5.18 Error correction status module (ECSM)

The ECSM provides a myriad of miscellaneous control functions regarding program-visible information about the platform configuration and revision levels, a reset status register, a software watchdog timer, wakeup control for exiting sleep modes, and information on platform memory errors reported by error-correcting codes and/or generic access error information for certain processor cores.

The Error Correction Status Module supports a number of miscellaneous control functions for the platform. The ECSM includes these features:

- Registers for capturing information on platform memory errors if error-correcting codes (ECC) are implemented
- For test purposes, optional registers to specify the generation of double-bit memory errors are enabled on the SPC560P44Lx, SPC560P50Lx.

1.5.22 FlexRay

The FlexRay module provides the following features:

- Full implementation of FlexRay Protocol Specification 2.1
- 32 configurable message buffers can be handled
- Dual channel or single channel mode of operation, each as fast as 10 Mbit/s data rate
- Message buffers configurable as Tx, Rx or RxFIFO
- Message buffer size configurable
- Message filtering for all message buffers based on FrameID, cycle count and message ID
- Programmable acceptance filters for RxFIFO message buffers

1.5.23 Serial communication interface module (LINFlex)

The LINFlex (local interconnect network flexible) on the SPC560P44Lx, SPC560P50Lx features the following:

- Supports LIN Master mode, LIN Slave mode and UART mode
- LIN state machine compliant to LIN1.3, 2.0, and 2.1 specifications
- Handles LIN frame transmission and reception without CPU intervention
- LIN features
 - Autonomous LIN frame handling
 - Message buffer to store Identifier and as much as 8 data bytes
 - Supports message length as long as 64 bytes
 - Detection and flagging of LIN errors (sync field, delimiter, ID parity, bit framing, checksum, and time-out)
 - Classic or extended checksum calculation
 - Configurable Break duration as long as 36-bit times
 - Programmable baud rate prescalers (13-bit mantissa, 4-bit fractional)
 - Diagnostic features: Loop back; Self Test; LIN bus stuck dominant detection
 - Interrupt-driven operation with 16 interrupt sources
- LIN slave mode features
 - Autonomous LIN header handling
 - Autonomous LIN response handling
- UART mode
 - Full-duplex operation
 - Standard non return-to-zero (NRZ) mark/space format
 - Data buffers with 4-byte receive, 4-byte transmit
 - Configurable word length (8-bit or 9-bit words)
 - Error detection and flagging
 - Parity, Noise and Framing errors
 - Interrupt-driven operation with four interrupt sources
 - Separate transmitter and receiver CPU interrupt sources
 - 16-bit programmable baud-rate modulus counter and 16-bit fractional
 - 2 receiver wake-up methods

block is an integration of several individual Nexus blocks that are selected to provide the development support interface for this device. The NDI block interfaces to the host processor and internal busses to provide development support as per the IEEE-ISTO 5001-2003 Class 2+ standard. The development support provided includes access to the MCU's internal memory map and access to the processor's internal registers during run time.

The Nexus Interface provides the following features:

- Configured via the IEEE 1149.1
- All Nexus port pins operate at V_{DDIO} (no dedicated power supply)
- Nexus 2+ features supported
 - Static debug
 - Watchpoint messaging
 - Ownership trace messaging
 - Program trace messaging
 - Real time read/write of any internally memory mapped resources through JTAG pins
 - Overrun control, which selects whether to stall before Nexus overruns or keep executing and allow overwrite of information
 - Watchpoint triggering, watchpoint triggers program tracing
- Auxiliary Output Port
 - 4 MDO (Message Data Out) pins
 - MCKO (Message Clock Out) pin
 - 2 MSEO (Message Start/End Out) pins
 - EVTO (Event Out) pin
- Auxiliary Input Port
 - EVTI (Event In) pin

1.5.30 Cyclic redundancy check (CRC)

The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC module features:

- Support for CRC-16-CCITT (*x*25 protocol):
 - $x^{16} + x^{12} + x^5 + 1$
- Support for CRC-32 (Ethernet protocol):
 - $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$
- Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the maximum frequency

1.5.31 IEEE 1149.1 JTAG controller

The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE standard.

Symbol	Description	Direction	Pad sp	beed ⁽¹⁾	Pin	
Symbol	Description	Direction	SRC = 0	SRC = 1	100-pin	144-pin
TMS	JTAG state machine control	Bidirectional	Slow	Fast	59	87
тск	JTAG clock	Input only	Slow	—	60	88
TDI	Test Data In	Input only	Slow	Medium	58	86
TDO	Test Data Out	Output only	Slow	Fast	61	89
	Reset pin, available on	100-pin and 144-	pin packag	e.		
RESET	Bidirectional reset with Schmitt trigger characteristics and noise filter	Bidirectional	Medium	—	20	31
	Test pin, available on 1	00-pin and 144-p	oin package).		
VPP_TEST	Pin for testing purpose only. To be tied to ground in normal operating mode.	_	_	_	74	107

Table 6. System pins (continued)

1. SCR values refer to the value assigned to the Slew Rate Control bits of the pad configuration register.

2.2.3 Pin muxing

Table 7 defines the pin list and muxing for the SPC560P44Lx, SPC560P50Lx devices.

Each row of *Table 7* shows all the possible ways of configuring each pin, via alternate functions. The default function assigned to each pin after reset is the ALTO function.

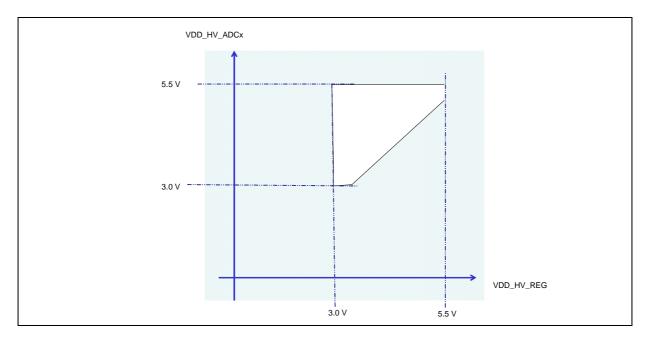
SPC560P44Lx, SPC560P50Lx devices provide four main I/O pad types, depending on the associated functions:

- *Slow pads* are the most common, providing a compromise between transition time and low electromagnetic emission.
- *Medium pads* provide fast enough transition for serial communication channels with controlled current to reduce electromagnetic emission.
- *Fast pads* provide maximum speed. They are used for improved NEXUS debugging capability.
- Symmetric pads are designed to meet FlexRay requirements.

Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance. For more information, see the datasheet's "Pad AC Specifications" section.

Port	Pad	Alternate			I/O	Pad s	peed ⁽⁵⁾	Pin	No.
pin	configuration register (PCR)	(0)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin
D[5]	PCR[53]	ALTO ALT1 ALT2 ALT3	GPIO[53] CS3 F[0] SOUT	SIUL DSPI_0 FCU_0 DSPI_3	I/O O O	Slow	Medium	22	33
D[6]	PCR[54]	ALTO ALT1 ALT2 ALT3 —	GPIO[54] CS2 SCK — FAULT[1]	SIUL DSPI_0 DSPI_3 — FlexPWM_0	I/O O I/O — I	Slow	Medium	23	34
D[7]	PCR[55]	ALTO ALT1 ALT2 ALT3 —	GPIO[55] CS3 F[1] CS4 SIN	SIUL DSPI_1 FCU_0 DSPI_0 DSPI_3	I/O O O I	Slow	Medium	26	37
D[8]	PCR[56]	ALTO ALT1 ALT2 ALT3 —	GPIO[56] CS2 — CS5 FAULT[3]	SIUL DSPI_1 — DSPI_0 FlexPWM_0	I/O O — O I	Slow	Medium	21	32
D[9]	PCR[57]	ALTO ALT1 ALT2 ALT3	GPIO[57] X[0] TXD —	SIUL FlexPWM_0 LIN_1 —	I/O I/O O —	Slow	Medium	15	26
D[10]	PCR[58]	ALTO ALT1 ALT2 ALT3	GPIO[58] A[0] CS0 —	SIUL FlexPWM_0 DSPI_3 —	I/O O I/O —	Slow	Medium	53	76
D[11]	PCR[59]	ALTO ALT1 ALT2 ALT3	GPIO[59] B[0] CS1 SCK	SIUL FlexPWM_0 DSPI_3 DSPI_3	I/O O O I/O	Slow	Medium	54	78
D[12]	PCR[60]	ALTO ALT1 ALT2 ALT3 —	GPIO[60] X[1] — RXD	SIUL FlexPWM_0 — LIN_1	I/O I/O — I	Slow	Medium	70	99
D[13]	PCR[61]	ALTO ALT1 ALT2 ALT3	GPIO[61] A[1] CS2 SOUT	SIUL FlexPWM_0 DSPI_3 DSPI_3	I/O O O O	Slow	Medium	67	95

Table 7. Pin muxing (continued)



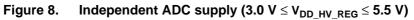

Port	Pad	Alternate			I/O	Pad s	peed ⁽⁵⁾	Pin	No.
pin	configuration register (PCR)	(0)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin
F[14]	PCR[94]	ALTO ALT1 ALT2 ALT3	GPIO[94] TXD — —	SIUL LIN_1 —	V0 0	Slow	Medium	_	115
F[15]	PCR[95]	ALT0 ALT1 ALT2 ALT3 —	GPIO[95] — — RXD	SIUL — — LIN_1	I/O 	Slow	Medium		113
				Port G (12-bit)					
G[0]	PCR[96]	ALTO ALT1 ALT2 ALT3 —	GPIO[96] F[0] — EIRQ[30]	SIUL FCU_0 — SIUL	I/O O — I	Slow	Medium		38
G[1]	PCR[97]	ALTO ALT1 ALT2 ALT3 —	GPIO[97] F[1] — — EIRQ[31]	SIUL FCU_0 — SIUL	I/O O — I	Slow	Medium		141
G[2]	PCR[98]	ALTO ALT1 ALT2 ALT3	GPIO[98] X[2] —	SIUL FlexPWM_0 — —	I/O I/O —	Slow	Medium		102
G[3]	PCR[99]	ALT0 ALT1 ALT2 ALT3	GPIO[99] A[2] — —	SIUL FlexPWM_0 —	I/O O —	Slow	Medium	_	104
G[4]	PCR[100]	ALTO ALT1 ALT2 ALT3	GPIO[100] B[2] — —	SIUL FlexPWM_0 —	I/O O —	Slow	Medium	_	100
G[5]	PCR[101]	ALTO ALT1 ALT2 ALT3	GPIO[101] X[3] — —	SIUL FlexPWM_0 —	I/O I/O —	Slow	Medium	_	85
G[6]	PCR[102]	ALTO ALT1 ALT2 ALT3	GPIO[102] A[3] — —	SIUL FlexPWM_0 — —	I/O O —	Slow	Medium	_	98

Table 7. Pin muxing (continued)

The SPC560P44Lx, SPC560P50Lx supply architecture allows the ADC supply to be managed independently from the standard V_{DD_HV} supply. *Figure 8* shows the constraints of the ADC power supply.

3.5 Thermal characteristics

3.5.1 Package thermal characteristics

	·····			
Symbol	Parameter	Conditions	Typical value	Unit
D	Thermal resistance junction-to-ambient,	Single layer board—1s	54.2	°C/ W
$R_{ hetaJA}$	natural convection ⁽¹⁾	Four layer board— 2s2p	44.4	°C/ W
$R_{ hetaJB}$	Thermal resistance junction-to-board ⁽²⁾	Four layer board— 2s2p	29.9	°C/ W
R _{θJCtop}	Thermal resistance junction-to-case (top) ⁽³⁾	Single layer board—1s	9.3	°C/ W
Ψ_{JB}	Junction-to-board, natural convection ⁽⁴⁾	Operating conditions	30.2	°C/ W
Ψ_{JC}	Junction-to-case, natural convection ⁽⁵⁾	Operating conditions	0.8	°C/ W

Table 12. Thermal characteristics for 144-pin LQFP

 Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board meets JEDEC specification for this package.

- C.E. Triplett and B. Joiner, An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module, Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. G. Kromann, S. Shidore, and S. Addison, *Thermal Modeling of a PBGA for Air-Cooled Applications*, Electronic Packaging and Production, pp. 53–58, March 1998.
- 3. B. Joiner and V. Adams, *Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling*, Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

3.6 Electromagnetic interference (EMI) characteristics

Symbol	Parameter	Conditions	Clocks	Frequency	Level (Max)	Unit
		1) ovice contiguration test	f _{OSC} 8 MHz	150 kHz–150 MHz	16	dBµV
		and EM testing par	f _{CPU} 64 MHz No PLL frequency	150–1000 MHz	15	uυμν
V	Radiated emissions	standard IEC61067.2	modulation	IEC Level	М	—
V _{EME}	Supply voltage = 5 V DC	f _{OSC} 8 MHz f _{CPU} 64 MHz	150 kHz–150 MHz	15	dBµV	
	Ambient temperature = 25 °C		150–1000 MHz	14	ubµv	
		Worst-case orientation	1% PLL frequency modulation	IEC Level	М	—

Table 14. EMI testing specifications

3.7 Electrostatic discharge (ESD) characteristics

Table 15.ESD ratings(1),(2)

Symbol		Parameter	Conditions	Value	Unit
V _{ESD(HBM)} S R Electrostatic discharge (Human Body Model)		_	2000	V	
	s	Electrostatic discharge (Charged Device Model)		750 (corners)	v
VESD(CDM)	R	Electrostatic discharge (Charged Device Model)	_	500 (other)	v

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

3.8 Power management electrical characteristics

3.8.1 Voltage regulator electrical characteristics

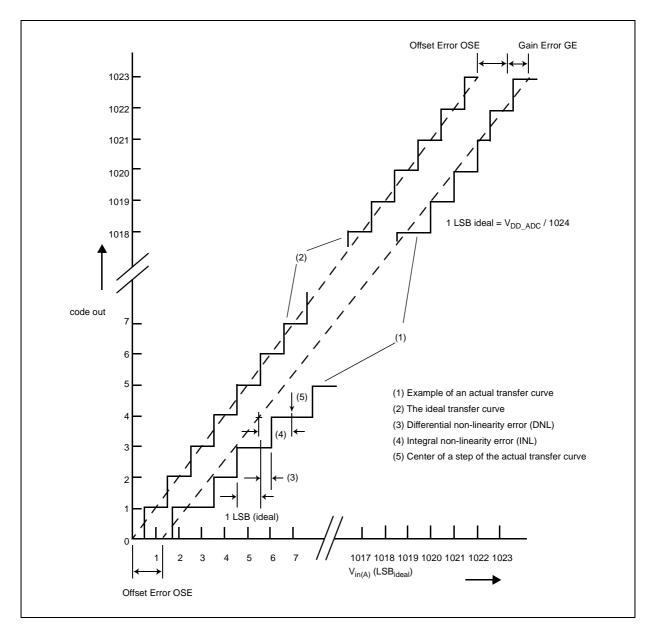

The internal voltage regulator requires an external NPN ballast to be connected as shown in *Figure 9. Table 16* contains all approved NPN ballast components. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the V_{DD HV REG}, BCTRL and V_{DD LV CORx} pins to less than

Table 26.	I/O weight (continued)
-----------	------------------------

D- 1	LQ	FP144	LQI	FP100
Pad	Weight 5V	Weight 3.3V	Weight 5V	Weight 3.3V
PAD[27]	1%	1%	1%	1%
PAD[28]	1%	1%	1%	1%
PAD[63]	1%	1%	1%	1%
PAD[72]	1%	1%	—	_
PAD[29]	1%	1%	1%	1%
PAD[73]	1%	1%	—	_
PAD[31]	1%	1%	1%	1%
PAD[74]	1%	1%	—	
PAD[30]	1%	1%	1%	1%
PAD[75]	1%	1%	—	_
PAD[32]	1%	1%	1%	1%
PAD[76]	1%	1%	—	_
PAD[64]	1%	1%	1%	1%
PAD[0]	23%	20%	23%	20%
PAD[1]	21%	18%	21%	18%
PAD[107]	20%	17%	_	
PAD[58]	19%	16%	19%	16%
PAD[106]	18%	16%	—	
PAD[59]	17%	15%	17%	15%
PAD[105]	16%	14%	—	
PAD[43]	15%	13%	15%	13%
PAD[104]	14%	13%	_	
PAD[44]	13%	12%	13%	12%
PAD[103]	12%	11%	—	_
PAD[2]	11%	10%	11%	10%
PAD[101]	11%	9%	—	_
PAD[21]	10%	8%	10%	8%
TMS	1%	1%	1%	1%
TCK	1%	1%	1%	1%
PAD[20]	16%	11%	16%	11%
PAD[3]	4%	3%	4%	3%
PAD[61]	9%	8%	9%	8%
PAD[102]	11%	10%	—	—

3.14.1 Input impedance and ADC accuracy

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; further, it sources charge during the sampling phase, when the analog signal source is a highimpedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the source impedance value of the transducer or circuit supplying the analog signal to be measured.

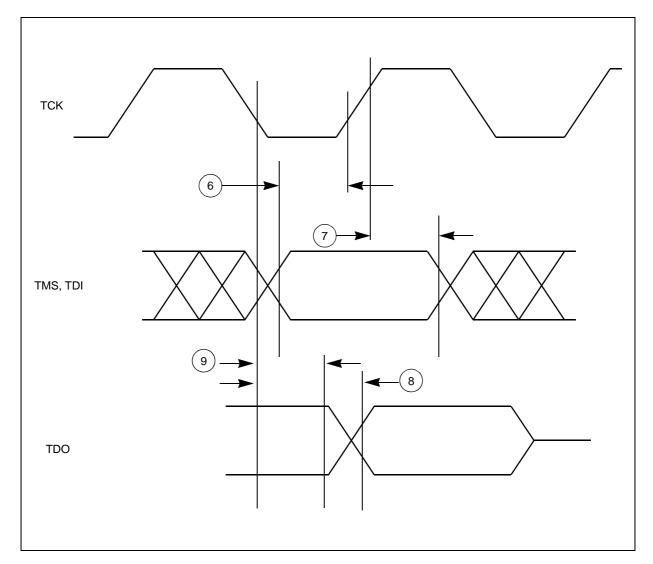


Figure 27. Nexus TDI, TMS, TDO timing

3.17.4 External interrupt timing (IRQ pin)

Table 41.External interrupt timing⁽¹⁾

No	No. Symbol C		C	Parameter	Conditions	Val	lue	Unit
NO.					Conditions	Min	Мах	Onic
1	t _{IPWL}	CC	D	IRQ pulse width low	_	4	_	t _{CYC}
2	t _{IPWH}	CC	D	IRQ pulse width high	_	4	_	t _{CYC}
3	t _{ICYC}	CC	D	IRQ edge to edge time ⁽²⁾	_	4 + N ⁽³⁾		t _{CYC}

1. IRQ timing specified at f_{SYS} = 64 MHz and $V_{DD_HV_IOx}$ = 3.0 V to 5.5 V, $T_A = T_L$ to T_H , and C_L = 200 pF with SRC = 0b00.

2. Applies when IRQ pins are configured for rising edge or falling edge events, but not both.

3. N = ISR time to clear the flag

4 Package characteristics

4.1 ECOPACK[®]

IIn order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.2 Package mechanical data

4.2.1 LQFP144 mechanical outline drawing

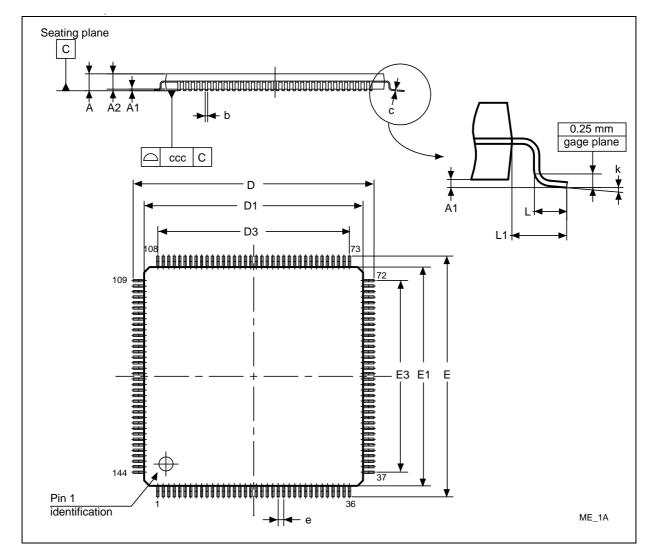


Figure 38. LQFP144 package mechanical drawing

Doc ID 14723 Rev 9

		Dimensions								
Symbol		mm		inches ⁽¹⁾						
	Min	Тур	Max	Min	Тур	Мах				
А	_	—	1.600	—	—	0.0630				
A1	0.050	—	0.150	0.0020	_	0.0059				
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571				
b	0.170	0.220	0.270	0.0067	0.0087	0.0106				
С	0.090	_	0.200	0.0035	_	0.0079				
D	21.800	22.000	22.200	0.8583	0.8661	0.8740				
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953				
D3	_	17.500	_	_	0.6890	_				
Е	21.800	22.000	22.200	0.8583	0.8661	0.8740				
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953				
E3	_	17.500	_	_	0.6890	_				
е	—	0.500	—	—	0.0197	—				
L	0.450	0.600	0.750	0.0177	0.0236	0.0295				
L1	—	1.000	—	—	0.0394	—				
k	0.0°	3.5°	7.0°	3.5°	0.0°	7.0°				
ccc ⁽²⁾		0.080	1		0.0031					

Table 43. LQFP144 mechanical data

1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits.

2. Tolerance

able 44. L		ige mechanica						
			Dimer	nsions				
Symbol		mm		inches ⁽¹⁾				
	Min	Тур	Max	Min	Тур	Мах		
А	—	—	1.600	—	—	0.0630		
A1	0.050	—	0.150	0.0020	_	0.0059		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.170	0.220	0.270	0.0067	0.0087	0.0106		
С	0.090	—	0.200	0.0035	_	0.0079		
D	15.800	16.000	16.200	0.6220	0.6299	0.6378		
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
D3	—	12.000	—	—	0.4724	—		
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378		
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
E3	—	12.000	—	—	0.4724	—		
е	_	0.500	—	—	0.0197	—		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	—	1.000	—	—	0.0394	—		
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°		
ccc ⁽²⁾		0.08	•	0.0031				

Table 44. LQFP100 package mechanical data

1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits.

2. Tolerance

Appendix A Abbreviations

Table 45 lists abbreviations used in this document.

Abbreviation	Meaning		
CMOS	Complementary metal-oxide-semiconductor		
СРНА	Clock phase		
CPOL	Clock polarity		
CS	Peripheral chip select		
DUT	Device under test		
ECC	Error code correction		
EVTO	Event out		
GPIO	General purpose input/output		
MC	Modulus counter		
МСКО	Message clock out		
MCU	Microcontroller unit		
MDO	Message data out		
MSEO	Message start/end out		
MTFE	Modified timing format enable		
NPN	Negative-positive-negative		
NVUSRO	Non-volatile user options register		
PTF	Post trimming frequency		
PWM	Pulse width modulation		
RBW	Resolution bandwidth		
SCK	Serial communications clock		
SOUT	Serial data out		
ТСК	Test clock input		
TDI	Test data input		
TDO	Test data output		
TMS	Test mode select		

Table 45.Abbreviations

Date	Revision	Changes		
07-Jul-2009	4	Through all document: Replaced all "RESET_B" occurrences with "RESET" through all document. AC Timings: 1149.1 (JTAG) Timing, Nexus Timing, External Interrupt Timing, and DSPI Timing sections inserted again. Electrical parameters updated. Section , Features: Section , Features: Section , Features: Added row for Data Flash. Table 2 Added a footnote regarding the decoupling capacitors. Table 6 Removed the "other function" column. Rearranged the contents. Table 14 Updated definition of Condition column. Table 19 merged in an unique Table the power consumption data related to "Maximum mode" and "Airbag mode". Table 29 Updated the parameter definition of Δ RCMVAR. Removed the condition definition of Δ RCMVAR. Removed Rave. Table 29 Added t _{ADC_C} and TUE rows. Table 30 Added t _{ADC_C} and TUE rows. Removed Rave. Table 33 Added. Table 33 Added. Table 29 Updated and added footnotes. Section 3.16.1 RESET Pin Characteristics Replaces whole section. Table 38 Renamed the "Flash (KB)" heading column in "Code Flash / Data Flash (EE) (KB)" Replaced the value of RAM from 32 to 36KB in the last four rows.		

Table 46. Revision history (continued)

Table 46. Revision history (continued)

Date	Revision	Changes			
07-Apr-2011	7 (cont'd)	SPC560P44Lx, SPC560P50Lx device configuration differences: Removed "temperature" rww (temperature information is provided in Order codes) Updated SPC560P44Lx, SPC560P50Lx block diagram Added SPC560P44Lx, SPC560P50Lx series block summary Added Section 1.5 Feature details Section 2.1, Package pinotts: removed alternate functions from pinout diagrams Supply pins: updated descriptions of power supply pins (1.2 V) System pins: updated table Pin muxing: added rows "B[4]" and "B[5] Section 3.3, Absolute maximum ratings: added voltage specifications to titles of <i>Figure 5</i> and <i>Figure 6</i> ; in <i>Table 9</i> , changed row "V _{SS_HV} / Digital Ground" to "V _{SS} / Device Ground"; updated symbols Section 3.4, Recommended operating conditions: added voltage specifications to titles of <i>Figure 7</i> and <i>Figure 8</i> Recommended operating conditions (5.0 V), and Recommended operating conditions (3.3 V): changed row "V _{SS_HV} / Digital Ground" to "V _{SS} / Device Ground"; updated symbols Updated Section 3.6, Electromagnetic interference (EMI) characteristics Section 3.4, 1, Voltage regulator electrical characteristics updated Section 3.6, Electromagnetic interference (EMI) characteristics Section 3.1, 1, Voltage regulator electrical characteristics (configuration without resistor on base) and Voltage regulator electrical characteristics (configuration without resistor on base) and Voltage regulator electrical characteristics: reorganized contents Updated Section 3.10, <i>NUVSRO</i> (PAD3VSV] = 0): updated symbols Corrected parameter descriptions in DC electrical characteristics (3.3 V, NVUSRO[PAD3VSV] = 1): V_{OL_SYM} —was "Symmetric, high level output voltage", is "Symmetric, low level output voltage" V_{OL_SYM} —was "Symmetric, high level output voltage"; is "Symmetric, low level output voltage" V_{OL_SYM} —was "Symmetric, high level output voltage"; is "Symmetric, low level output voltage" V_{OL_SYM} —was "Symmetric, high level output voltage"; is "Symmetric, low level output voltage" V_{OL_SYM} —was "Symmetric, high level output voltage			

Date	Revision	Changes		
18-Jul-2012	8	Updated Table 1 (Device summary) Section 1.5.4, Flash memory: Changed "Data flash memory: 32-bit ECC" to "Data flash memory: 64-bit ECC" Figure 40 (Commercial product code structure), replaced "C = 60 MHz, 5 V" and "D = 60 MHz, 3.3 V" with respectively "C = 40 MHz, 5 V" and "D = 40 MHz, 3.3 V" Table 9 (Absolute maximum ratings), updated TV _{DD} parameter, the minimum value to 3.0 V/s and the maximum ratings), updated TV _{DD} parameter, the minimum value to 3.0 V/s and the maximum ratings), updated TV _{DD} parameter, the minimum value to 3.0 V/s and the maximum ratings), updated TV _{DD} parameter, the minimum value to 3.0 V/s and the maximum ratings), updated TV _{DD} parameter, the minimum value to 3.0 V/s and the maximum value to 0.5 V/µs Table 7 (Pin muxing), changed the description in the column "I/O direction" from "I/O" to "O" for the following port pins: A[10] with function B[0] A[11] with function A[2] A[12] with function A[2] A[12] with function B[2] C[7] with function A[3] C[15] with function A[1] D[0] with function A[1] D[10] with function A[1] D[11] with function A[1] D[12] with function A[1] D[13] with function A[1] D[14] with function A[1] D[15] with function A[1] D[15] with function A[1] D[16] bectrical characteristics: deleted references to "oscillator margin" deleted subsection "NVUSRO[OSCILLATOR_MARGIN] field description" Table 21 (DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 0)), added IPU row for RESET pin Table 23 (DC electrical characteristics), added V _{INAN} entry Removed "Order codes" table Figure 40 (Commercial product code structure): added a footnote updated "E = Data flash memory"		
18-Sep-2013	9	Updated Disclaimer		

Table 46. Revision history (continued	Table 46.	Revision his	story (cont	(inued)
---------------------------------------	-----------	--------------	-------------	---------

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 14723 Rev 9

