

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	80
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	36K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 26x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560p44l5cefby

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Introc	duction	
	1.1	Docume	ent overview
	1.2	Descrip	tion
	1.3	Device	comparison
	1.4	Block di	agram
	1.5	Feature	details
		1.5.1	High performance e200z0 core processor
		1.5.2	Crossbar switch (XBAR)
		1.5.3	Enhanced direct memory access (eDMA)14
		1.5.4	Flash memory
		1.5.5	Static random access memory (SRAM)
		1.5.6	Interrupt controller (INTC)15
		1.5.7	System status and configuration module (SSCM)
		1.5.8	System clocks and clock generation
		1.5.9	Frequency-modulated phase-locked loop (FMPLL)
		1.5.10	Main oscillator
		1.5.11	Internal RC oscillator
		1.5.12	Periodic interrupt timer (PIT)17
		1.5.13	System timer module (STM)
		1.5.14	Software watchdog timer (SWT)18
		1.5.15	Fault collection unit (FCU)18
		1.5.16	System integration unit – Lite (SIUL)
		1.5.17	Boot and censorship
		1.5.18	Error correction status module (ECSM)
		1.5.19	Peripheral bridge (PBRIDGE)
		1.5.20	Controller area network (FlexCAN)
		1.5.21	Safety port (FlexCAN)
		1.5.22	FlexRay
		1.5.23	Serial communication interface module (LINFlex)22
		1.5.24	Deserial serial peripheral interface (DSPI)23
		1.5.25	Pulse width modulator (FlexPWM)23
		1.5.26	eTimer
		1.5.27	Analog-to-digital converter (ADC) module
		1.5.28	Cross triggering unit (CTU)26

List of figures

Figure 1.	SPC560P44Lx, SPC560P50Lx block diagram	10
Figure 2.	144-pin LQFP pinout – Full featured configuration (top view)	29
Figure 3.	100-pin LQFP pinout – Airbag configuration (top view)	30
Figure 4.	100-pin LQFP pinout – Full featured configuration (top view)	31
Figure 5.	Power supplies constraints ($-0.3 \text{ V} \le \text{V}_{\text{DD} \text{ HV}}$ $_{\text{IOx}} \le 6.0 \text{ V}$)	52
Figure 6.	Independent ADC supply ($-0.3 \text{ V} \le \text{V}_{DD}$ HV REG $\le 6.0 \text{ V}$)	52
Figure 7.	Power supplies constraints $(3.0 \text{ V} \le \text{V}_{\text{DD} \text{ HV } 10x} \le 5.5 \text{ V})$.	55
Figure 8.	Independent ADC supply $(3.0 \text{ V} \le \text{V}_{DD \text{ HV BEG}} \le 5.5 \text{ V})$	56
Figure 9.	Configuration with resistor on base	60
Figure 10.	Configuration without resistor on base	62
Figure 11.	Power-up typical sequence.	64
Figure 12.	Power-down typical sequence	64
Figure 13.	Brown-out typical sequence	65
Figure 14.	Input DC electrical characteristics definition	70
Figure 15.	ADC characteristics and error definitions	79
Figure 16.	Input equivalent circuit	80
Figure 17.	Transient behavior during sampling phase	81
Figure 18.	Spectral representation of input signal	82
Figure 19.	Pad output delay	87
Figure 20.	Start-up reset requirements	87
Figure 21.	Noise filtering on reset signal	88
Figure 22.	JTAG test clock input timing	90
Figure 23.	JTAG test access port timing	91
Figure 24.	JTAG boundary scan timing	92
Figure 25.	Nexus output timing	93
Figure 26.	Nexus event trigger and test clock timings	93
Figure 27.	Nexus TDI, TMS, TDO timing	94
Figure 28.	External interrupt timing	95
Figure 29.	DSPI classic SPI timing – Master, CPHA = 0	96
Figure 30.	DSPI classic SPI timing – Master, CPHA = 1	97
Figure 31.	DSPI classic SPI timing – Slave, CPHA = 0	97
Figure 32.	DSPI classic SPI timing – Slave, CPHA = 1	98
Figure 33.	DSPI modified transfer format timing – Master, CPHA = 0	98
Figure 34.	DSPI modified transfer format timing – Master, CPHA = 1	99
Figure 35.	DSPI modified transfer format timing – Slave, CPHA = 0	99
Figure 36.	DSPI modified transfer format timing – Slave, CPHA = 1	00
Figure 37.	DSPI PCS strobe (PCSS) timing	00
Figure 38.	LQFP144 package mechanical drawing 1	01
Figure 39.	LQFP100 package mechanical drawing1	03
Figure 40.	Commercial product code structure 1	05

Figure 1. SPC560P44Lx, SPC560P50Lx block diagram

10/112

Doc ID 14723 Rev 9

The SIU provides the following features:

- Centralized general purpose input output (GPIO) control of as many as 80 input/output pins and 26 analog input-only pads (package dependent)
- All GPIO pins can be independently configured to support pull-up, pull down, or no pull
- Reading and writing to GPIO supported both as individual pins and 16-bit wide ports
- All peripheral pins (except ADC channels) can be alternatively configured as both general purpose input or output pins
- ADC channels support alternative configuration as general purpose inputs
- Direct readback of the pin value is supported on all pins through the SIUL
- Configurable digital input filter that can be applied to some general purpose input pins for noise elimination: as many as 4 internal functions can be multiplexed onto 1 pin

1.5.17 Boot and censorship

Different booting modes are available in the SPC560P44Lx, SPC560P50Lx: booting from internal flash memory and booting via a serial link.

The default booting scheme uses the internal flash memory (an internal pull-down is used to select this mode). Optionally, the user can boot via FlexCAN or LINFlex (using the boot assist module software).

A censorship scheme is provided to protect the content of the flash memory and offer increased security for the entire device.

A password mechanism is designed to grant the legitimate user access to the non-volatile memory.

Boot assist module (BAM)

The BAM is a block of read-only one-time programmed memory and is identical for all SPC560Pxx devices that are based on the e200z0h core. The BAM program is executed every time the device is powered on if the alternate boot mode has been selected by the user.

The BAM provides the following features:

- Serial bootloading via FlexCAN or LINFlex
- Ability to accept a password via the used serial communication channel to grant the legitimate user access to the non-volatile memory

1.5.18 Error correction status module (ECSM)

The ECSM provides a myriad of miscellaneous control functions regarding program-visible information about the platform configuration and revision levels, a reset status register, a software watchdog timer, wakeup control for exiting sleep modes, and information on platform memory errors reported by error-correcting codes and/or generic access error information for certain processor cores.

The Error Correction Status Module supports a number of miscellaneous control functions for the platform. The ECSM includes these features:

- Registers for capturing information on platform memory errors if error-correcting codes (ECC) are implemented
- For test purposes, optional registers to specify the generation of double-bit memory errors are enabled on the SPC560P44Lx, SPC560P50Lx.

block is an integration of several individual Nexus blocks that are selected to provide the development support interface for this device. The NDI block interfaces to the host processor and internal busses to provide development support as per the IEEE-ISTO 5001-2003 Class 2+ standard. The development support provided includes access to the MCU's internal memory map and access to the processor's internal registers during run time.

The Nexus Interface provides the following features:

- Configured via the IEEE 1149.1
- All Nexus port pins operate at V_{DDIO} (no dedicated power supply)
- Nexus 2+ features supported
 - Static debug
 - Watchpoint messaging
 - Ownership trace messaging
 - Program trace messaging
 - Real time read/write of any internally memory mapped resources through JTAG pins
 - Overrun control, which selects whether to stall before Nexus overruns or keep executing and allow overwrite of information
 - Watchpoint triggering, watchpoint triggers program tracing
- Auxiliary Output Port
 - 4 MDO (Message Data Out) pins
 - MCKO (Message Clock Out) pin
 - 2 MSEO (Message Start/End Out) pins
 - EVTO (Event Out) pin
- Auxiliary Input Port
 - EVTI (Event In) pin

1.5.30 Cyclic redundancy check (CRC)

The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC module features:

- Support for CRC-16-CCITT (*x*25 protocol):
 - $x^{16} + x^{12} + x^5 + 1$
- Support for CRC-32 (Ethernet protocol):
 - $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$
- Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the maximum frequency

1.5.31 IEEE 1149.1 JTAG controller

The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE standard.

The JTAG controller provides the following features:

- IEEE Test Access Port (TAP) interface with 4 pins (TDI, TMS, TCK, TDO)
- Selectable modes of operation include JTAGC/debug or normal system operation.
- A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions:
 - BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD
- A 5-bit instruction register that supports the additional following public instructions:
 - ACCESS_AUX_TAP_NPC, ACCESS_AUX_TAP_ONCE
- 3 test data registers: a bypass register, a boundary scan register, and a device identification register.
- A TAP controller state machine that controls the operation of the data registers, instruction register and associated circuitry.

1.5.32 On-chip voltage regulator (VREG)

The on-chip voltage regulator module provides the following features:

- Uses external NPN (negative-positive-negative) transistor
- Regulates external 3.3 V /5.0 V down to 1.2 V for the core logic
- Low voltage detection on the internal 1.2 V and I/O voltage 3.3 V

Figure 3. 100-pin LQFP pinout – Airbag configuration (top view)

Port	Pad	Alternate			I/O	Pad s	peed ⁽⁵⁾	ed ⁽⁵⁾ Pin N	
pin	configuration register (PCR)	function ^{(1),} (2)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin
A[14]	PCR[14]	ALT0 ALT1 ALT2 ALT3 —	GPIO[14] TXD ETC[4] — EIRQ[13]	SIUL Safety Port_0 eTimer_1 — SIUL	I/O O I/O I	Slow	Medium	99	143
A[15]	PCR[15]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[15] — ETC[5] — RXD EIRQ[14]	SIUL — eTimer_1 — Safety Port_0 SIUL	I/O — I/O — I I	Slow	Medium	100	144
				Port B (16-bit)					
B[0]	PCR[16]	ALTO ALT1 ALT2 ALT3 —	GPIO[16] TXD ETC[2] DEBUG[0] EIRQ[15]	SIUL FlexCAN_0 eTimer_1 SSCM SIUL	I/O O I/O — I	Slow	Medium	76	109
B[1]	PCR[17]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[17] — ETC[3] DEBUG[1] RXD EIRQ[16]	SIUL — eTimer_1 SSCM FlexCAN_0 SIUL	I/O — I/O — I I	Slow	Medium	77	110
B[2]	PCR[18]	ALTO ALT1 ALT2 ALT3 —	GPIO[18] TXD — DEBUG[2] EIRQ[17]	SIUL LIN_0 — SSCM SIUL	I/O O — I	Slow	Medium	79	114
B[3]	PCR[19]	ALTO ALT1 ALT2 ALT3 —	GPIO[19] — DEBUG[3] RXD	SIUL — SSCM LIN_0	I/O — — — I	Slow	Medium	80	116
B[6]	PCR[22]	ALTO ALT1 ALT2 ALT3 —	GPIO[22] CLKOUT CS2 — EIRQ[18]	SIUL MC_CGL DSPI_2 — SIUL	I/O O — I	Slow	Medium	96	138

Table 7. Pin muxing (continued)

Bort	Pad	Alternate			I/O	Pad s	Pad speed ⁽⁵⁾ Pi		No.
pin	configuration register (PCR)	function ^{(1),} (2)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin
B[14]	PCR[30]	ALT0 ALT1 ALT2 ALT3 — — —	GPIO[30] — — AN[1] ETC[4] EIRQ[19]	SIUL — — ADC_1 eTimer_0 SIUL	Input only	_	_	44	64
B[15]	PCR[31]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[31] — — — AN[2] EIRQ[20]	SIUL — — ADC_1 SIUL	Input only	_	_	43	62
				Port C (16-bit)				•	
C[0]	PCR[32]	ALTO ALT1 ALT2 ALT3 —	GPIO[32] — — — AN[3]	SIUL — — ADC_1	Input only	_	_	45	66
C[1]	PCR[33]	ALTO ALT1 ALT2 ALT3 —	GPIO[33] — — — — AN[2]	SIUL — — — ADC_0	Input only	_	_	28	41
C[2]	PCR[34]	ALT0 ALT1 ALT2 ALT3 —	GPIO[34] — — — AN[3]	SIUL — — ADC_0	Input only	_	_	30	45
C[3]	PCR[35]	ALTO ALT1 ALT2 ALT3 —	GPIO[35] CS1 ETC[4] TXD EIRQ[21]	SIUL DSPI_0 eTimer_1 LIN_1 SIUL	I/O O I/O O I	Slow	Medium	10	16
C[4]	PCR[36]	ALTO ALT1 ALT2 ALT3 —	GPIO[36] CS0 X[1] DEBUG[4] EIRQ[22]	SIUL DSPI_0 FlexPWM_0 SSCM SIUL	I/O I/O I/O I	Slow	Medium	5	11

Table 7. Pin muxing (continued)

Port	Pad	Alternate			I/O	Pad s	peed ⁽⁵⁾	Pin	No.
pin	configuration register (PCR)	function ^{(1),} (2)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin
F[5]	PCR[85]	ALTO ALT1 ALT2 ALT3	GPIO[85] MDO[2] —	SIUL NEXUS_0 — —	I/O O —	Slow	Fast	_	5
F[6]	PCR[86]	ALTO ALT1 ALT2 ALT3	GPIO[86] MDO[1] —	SIUL NEXUS_0 — —	I/O O —	Slow	Fast	_	8
F[7]	PCR[87]	ALTO ALT1 ALT2 ALT3	GPIO[87] MCKO — —	SIUL NEXUS_0 — —	I/O O —	Slow	Fast	_	19
F[8]	PCR[88]	ALTO ALT1 ALT2 ALT3	GPIO[88] MSEO1 —	SIUL NEXUS_0 — —	I/O O —	Slow	Fast	_	20
F[9]	PCR[89]	ALTO ALT1 ALT2 ALT3	GPIO[89] MSEO0 —	SIUL NEXUS_0 — —	I/O O —	Slow	Fast	_	23
F[10]	PCR[90]	ALTO ALT1 ALT2 ALT3	GPIO[90] EVTO — —	SIUL NEXUS_0 — —	I/O O —	Slow	Fast	_	24
F[11]	PCR[91]	ALTO ALT1 ALT2 ALT3 —	GPIO[91] — — — EVTI	SIUL — — — NEXUS_0	I/O — — — I	Slow	Medium		25
F[12]	PCR[92]	ALTO ALT1 ALT2 ALT3	GPIO[92] ETC[3] —	SIUL eTimer_1 — —	I/O I/O —	Slow	Medium	_	106
F[13]	PCR[93]	ALTO ALT1 ALT2 ALT3	GPIO[92] ETC[4] —	SIUL eTimer_1 —	I/O I/O —	Slow	Medium	_	112

Table 7. Pin muxing (continued)

Symbol		Doromotor	Conditions	Va	Unit	
Symbol		Parameter	Conditions	Min	Max ⁽²⁾	Unit
M	SB	R ADC0 and shared ADC0/1 analog input voltage ⁽⁶⁾	$V_{DD_HV_REG} > 2.7 V$	V _{SS_HV_ADV0} - 0.3	V _{DD_HV_ADV0} + 0.3	V
¥ INAN0			V _{DD_HV_REG} < 2.7 V	V _{SS_HV_ADV0}	V _{DD_HV_ADV0}	V
M	СD	ADC1 appleg input voltage ⁽⁷⁾	V _{DD_HV_REG} > 2.7 V	V _{SS_HV_ADV1} - 0.3	V _{DD_HV_ADV1} + 0.3	V
¥ INAN1	SK	ADOT analog input voltage	V _{DD_HV_REG} < 2.7 V	V _{SS_HV_ADV1}	V _{DD_HV_ADV1}	V
I _{INJPAD}	SR	Injected input current on any pin during overload condition	_	-10	10	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	mA
I _{VDD_LV}	SR	Low voltage static current sink through V_{DD_LV}	_	_	155	mA
T _{STG}	SR	Storage temperature	—	-55	150	°C
TJ	SR	Junction temperature under bias	_	-40	150	°C

 Table 9.
 Absolute maximum ratings⁽¹⁾ (continued)

1. Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device.

2. Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined.

3. The difference between each couple of voltage supplies must be less than 300 mV, $|V_{DD_HV_IOy}-V_{DD_HV_IOx}|<$ 300 mV.

4. The difference between ADC voltage supplies must be less than 100 mV, $|V_{DD} H_{VADC1} - V_{DD} H_{VADC0}| < 100 mV$.

5. Guaranteed by device validation

6. Not allowed to refer this voltage to $V_{DD_{-}HV_{-}ADV1}$, $V_{SS_{-}HV_{-}ADV1}$

7. Not allowed to refer this voltage to $V_{DD_HV_ADV0},\,V_{SS_HV_ADV0}$

Figure 5 shows the constraints of the different power supplies.

- 3. The difference between ADC voltage supplies must be less than 100 mV, $|V_{DD_HV_ADC1} V_{DD_HV_ADC0}| < 100 mV$.
- To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (V_{SS_LV_xxx}) must be shorted to high voltage grounds (V_{SS_HV_xxx}) and the low voltage supply pins (V_{DD_LV_xxx}) must be connected to the external ballast emitter.
- 5. The low voltage supplies (V_DD_LV_xxx) are not all independent.

V_{DD_LV_COR1} and V_{DD_LV_COR2} are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash module. Similarly, V_{SS_LV_COR1} and V_{SS_LV_COR2} are internally shorted.

V_{DD_LV_REGCOR} and V_{DD_LV_REGCORx} are physically shorted internally, as are V_{SS_LV_REGCOR} and V_{SS_LV_CORx}.

Cumb al		D		Value			
Symbol		Parameter	Conditions	Min	Max ⁽¹⁾	Unit	
V _{SS}	SR	Device ground		0	0	V	
V _{DD_HV_IOx} ⁽²⁾	SR	3.3 V input/output supply voltage	_	3.0	3.6	V	
V _{SS_HV_IOx}	SR	Input/output ground voltage	—	0	0	V	
		3 3 V code and data flash	—	3.0	3.6		
V _{DD_HV_FL}	SR	supply voltage	Relative to V _{DD_HV_IOx}	$V_{DD_HV_IOx} - 0.1$	$V_{DD_HV_IOx} + 0.1$	V	
V _{SS_HV_FL}	SR	Code and data flash ground	—	0	0	V	
		3 3 V crystal oscillator amplifier	—	3.0	3.6		
V _{DD_HV_OSC}	SR	supply voltage	Relative to V _{DD_HV_IOx}	$V_{DD_HV_IOx} - 0.1$	$V_{DD_HV_IOx} + 0.1$	V	
V _{SS_HV_OSC}	SR	3.3 V crystal oscillator amplifier reference voltage	—	0	0	V	
		3 3 V voltage regulator supply	—	3.0	3.6		
V _{DD_HV_REG}	SR	voltage	Relative to V _{DD_HV_IOx}	$V_{DD_HV_IOx} - 0.1$	V _{DD_HV_IOx} + 0.1	V	
		$3.3 \vee ADC$ 0 supply and high	—	3.0	5.5		
V _{DD_HV_ADC0} ⁽³⁾	SR	reference voltage	Relative to V _{DD_HV_REG}	$V_{DD_{HV_{REG}}} - 0.1$	5.5	V	
V _{SS_HV_ADC0}	SR	ADC_0 ground and low reference voltage	_	0	0	V	
		$2.2 \times ADC$ 1 supply and high	—	3.0	5.5		
V _{DD_HV_ADC1} ⁽³⁾	SR	reference voltage	Relative to V _{DD_HV_REG}	V _{DD_HV_REG} - 0.1 5.5		V	
V _{SS_HV_ADC1}	SR	ADC_1 ground and low reference voltage	_	0	0	V	
V _{DD_LV_REGCOR} ^{(4),}	сс	Internal supply voltage	_	_	_	V	
V _{SS_LV_REGCOR} ⁽⁴⁾	SR	Internal reference voltage	_	0	0	V	
V _{DD_LV_CORx} ^{(4),(5)}	СС	Internal supply voltage	_	_		V	

Recommended operating conditions (3.3 V) Table 11.

Figure 10. Configuration without resistor on base

Table 18.	Voltage re	gulator electrical characteri	stics (configuration without	ut resistor on bas	se)

Symbol		c	Parameter	Conditions	Value			l Init
Symbol		C	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD_LV_REGCOR}	сс	Ρ	Output voltage under maximum load run supply current configuration	Post-trimming	1.15	_	1.32	V
C _{DEC1}	SR	_	External decoupling/stability ceramic capacitor	4 capacitances	40	56	_	μF
R _{REG}	SR	_	Resulting ESR of all four C _{DEC1}	Absolute maximum value between 100 kHz and 10 MHz	_	_	45	mΩ
C _{DEC2}	SR	_	External decoupling/stability ceramic capacitor	4 capacitances of 100 nF each	400	_	_	nF
C _{DEC3}	SR	_	External decoupling/stability ceramic capacitor on VDD_HV_REG	_	40	_	_	μF
L _{Reg}	SR	_	Resulting ESL of $V_{DD_HV_REG}$, BCTRL and $V_{DD_LV_CORx}$ pins	_		_	15	nH

Cumhal	~		Devementer	Conditions		Va	lue	1.1			
Зутвоі	C		Parameter	Conditions		Тур	Max	Unit			
			PLIN Movimum modo ⁽¹⁾		40 MHz	62	77				
	-			V _{DD LV CORx}	64 MHz	71	88				
	I		DUN Turical made ⁽²⁾	externally forced at 1.3 V	40 MHz	45	56				
			KUN—Typical mode		64 MHz	52	65				
I _{DD_LV_CORx}						RUN—Maximum mode ⁽³⁾	V _{DD_LV_CORx} externally forced at 1.3 V	64 MHz	60	75	
	Ρ	ent	HALT mode ⁽⁴⁾	V _{DD_LV_CORx} externally forced at 1.3 V	_	1.5	10				
		ply curr	STOP mode ⁽⁵⁾	V _{DD_LV_CORx} externally forced at 1.3 V	_	1	10	mA			
		Sup	Flash during read	V _{DD_HV_FL} at 5.0 V	—	10	12				
I _{DD_FLASH}	Т		Flash during erase operation on 1 flash module	V _{DD_HV_FL} at 5.0 V	_	15	19				
			ADC Maximum mada ⁽¹⁾		ADC_1	3.5	5				
	–			V _{DD_HV_ADC0} at 5.0 V	ADC_0	3	4				
'DD_ADC	1			$f_{ADC} = 16 \text{ MHz}$	ADC_1	0.8	1				
					ADC_0	0.005	0.006				
I _{DD_OSC}	Т	1	Oscillator	V _{DD_OSC} at 5.0 V	8 MHz	2.6	3.2				

Table 22.Supply current (5.0 V, NVUSRO[PAD3V5V] = 0)

1. Maximum mode: FlexPWM, ADCs, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, 1st and 2nd PLL enabled. I/O supply current excluded.

2. Typical mode configurations: DSPI, LINFlex, FlexCAN, 15 output pins, 1st PLL only. I/O supply current excluded.

 Code fetched from RAM, PLL_0: 64 MHz system clock (x4 multiplier with 16 MHz XTAL), PLL_1 is ON at PHI_div2 = 120 MHz and PHI_div3 = 80 MHz, auxiliary clock sources set that all peripherals receive maximum frequency, all peripherals enabled.

4. Halt mode configurations: code fetched from RAM, code and data flash memories in low power mode, OSC/PLL_0/PLL_1 are OFF, core clock frozen, all peripherals are disabled.

5. STOP "P" mode Device Under Test (DUT) configuration: code fetched from RAM, code and data flash memories OFF, OSC/PLL_0/PLL_1 are OFF, core clock frozen, all peripherals are disabled.

3.10.3 DC electrical characteristics (3.3 V)

Table 23 gives the DC electrical characteristics at 3.3 V ($3.0 \text{ V} < \text{V}_{\text{DD}_{\text{HV}_{\text{IOx}}}} < 3.6 \text{ V}$, NVUSRO[PAD3V5V] = 1); see *Figure 14*.

Table 23. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)⁽¹⁾

Symbol	c	Parameter	Conditions	Value		
	C		Conditions	Min	Max	Unit
V _{IL}	D	Low level input voltage	—	-0.1 ⁽²⁾	—	V
	Ρ	Low level input voltage			0.35 V _{DD_HV_IOx}	V

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (T_C). Again the conversion period T_C is longer than the sampling time T_S , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time T_S , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive *Equation 11* between the ideal and real sampled voltage on C_S :

Equation 11

$$\frac{V_{A}}{V_{A2}} = \frac{C_{P1} + C_{P2} + C_{F}}{C_{P1} + C_{P2} + C_{F} + C_{S}}$$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Equation 12

$$C_F > 2048 \bullet C_S$$

3.14.2 ADC conversion characteristics

Table 33. ADC conversion characteristic

Symbol		C	Parameter	Conditions ⁽¹⁾	Value					
		C	raiametei	Conditions	Min	Тур	Max	Unit		
V _{INAN0}	SR		ADC0 and shared ADC0/1 analog input voltage ^{(2), (3)}	_	V _{SS_HV_ADV0} - 0.3	_	V _{DD_HV_ADV0} + 0.3	V		
V _{INAN1}	SR		ADC1 analog input voltage ^{(2),} ⁽⁴⁾	_	V _{SS_HV_ADV1} - 0.3		V _{DD_HV_ADV1} + 0.3	V		
f _{CK}	SR		ADC clock frequency (depends on ADC configuration) (The duty cycle depends on AD_clk ⁽⁵⁾ frequency)	_	3(6)	_	60	MHz		
f _s	SR	_	Sampling frequency	_	_	_	1.53	MHz		
t.=		П	Sample time ⁽⁷⁾	f _{ADC} = 20 MHz, INPSAMP = 3	125		_	ns		
'ADC_S						f _{ADC} = 9 MHz, INPSAMP = 255	_		28.2	μs
t _{ADC_C}		Ρ	Conversion time ⁽⁸⁾	f _{ADC} = 20 MHz ⁽⁹⁾ , INPCMP = 1	0.650		_	μs		

No	Symbol		С	Deremeter	Value			l lmit
NO.				Parameter	Min	Тур	Max	Unit
6	t _{NTDIS}	CC	D	TDI data setup time	6	—		ns
ю	t _{NTMSS}	СС	D	TMS data setup time	6	—	_	ns
7	t _{NTDIH}	СС	D	TDI data hold time	10	—		ns
1	t _{NTMSH}	СС	D	TMS data hold time	10	—		ns
8	t _{TDOV} CC D TCK low to TDO data valid		—	—	35	ns		
9	t _{TDOI}	CC	D	TCK low to TDO data invalid	6			ns

 Table 40.
 Nexus debug port timing⁽¹⁾ (continued)

1. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.

2. MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.

3. Lower frequency is required to be fully compliant to standard.

Figure 25. Nexus output timing

Figure 26. Nexus event trigger and test clock timings

Doc ID 14723 Rev 9

No.	Symbol		6	Barometer Conditions		Va	lue	l locit			
			C	Parameter Conditions	Min	Max	Unit				
								Master (MTFE = 0)	—	12	
11 1	+	<u> </u>		Data valid (after SCK edge)	Slave	—	36				
	ISUO				Master (MTFE = 1, CPHA = 0)	—	12	115			
								Master (MTFE = 1, CPHA = 1)	—	12	
12 t _i				Data hold time for outputs	Master (MTFE = 0)	-2	—				
	t _{HO}	~	D		Slave	6	—				
					Master (MTFE = 1, CPHA = 0)	6	—	115			
					Master (MTFE = 1, CPHA = 1)	-2	—				

 Table 42.
 DSPI timing⁽¹⁾ (continued)

1. All timing is provided with 50 pF capacitance on output, 1 ns transition time on input signal.

Figure 29. DSPI classic SPI timing – Master, CPHA = 0

	Dimensions							
Symbol		mm		inches ⁽¹⁾				
	Min	Тур	Мах	Min	Тур	Мах		
А	—	—	1.600	—	—	0.0630		
A1	0.050	—	0.150	0.0020	—	0.0059		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.170	0.220	0.270	0.0067	0.0087	0.0106		
С	0.090	—	0.200	0.0035	—	0.0079		
D	15.800	16.000	16.200	0.6220	0.6299	0.6378		
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
D3	—	12.000	—	—	0.4724	_		
E	15.800	16.000	16.200	0.6220	0.6299	0.6378		
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
E3	—	12.000	—	—	0.4724	_		
е	—	0.500	—	—	0.0197	_		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	_	1.000	—	—	0.0394	—		
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°		
ccc ⁽²⁾	0.08				0.0031			

Table 44. LQFP100 package mechanical data

1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits.

2. Tolerance

Date	Revision	Changes
27-Oct-2009	5	 Added "Full Feature" and "Airbag" customization. Removed B[4] and B[5] rows from "Pin muxing" table and inserted them on "System pins" table. Updated package pinout. Rewrote entirely section "Power Up/dpwn Sequencing" section. Renamend "V_{DD_LV_PLL}" and "V_{SS_LV_PLL}" supply pins with respectively "V_{DD_LV_COR3}" and "V_{SS_LV_COR3}". Added explicative figures on "Electrical characteristics" section. Updated "Thermal characteristics" for 100-pin. Proposed two different configuration of "voltage regulator Inserted Power Up/Down sequence. Added explicative figures on "DC Electrical characteristics". Added explicative figures on "DC Electrical characteristics". Added "I/O pad current specification" section. Renamed the "Airbag mode" with "Typical mode"and updated the values on "supply current" tables. Added more order code.
06-Apr-2010	6	Inserted label of Y-axis in the "Independent ADC supply" figure. "Recommended Operating Conditions" tables: Moved the T _J row to "Absolute Maximum Ratings" table. Rewrite note 1 and 3 Inverted Min a Typ value of C _{DEC2} on "Voltage Regulator Electrical Characteristics" table. Removed an useless duplicate of "Voltage Regulator Electrical Characteristics" table. Inserted the name of C _S into "Input Equivalent Circuit" figure. Removed leakage Ivpp from datasheet. Updated "Supply Current" tables. Added note on "Output pin transition times" table. Updated "Temperature Sensor Electrical Characteristics" table. Updated "16 MHz RC Oscillator Electrical Characteristics" table. Removed the note about the condition from "Flash read access timing" table. Removed the notes that assert the values need to be confirmed before validation.
07-Apr-2011	7	 Formatting and editorial changes throughout Removed all content referencing Junction Temperature Sensor Cover page Features: CPU core—specified 64 MHz frequency updated memory features eTimer units: changed "up/down capabilities" to "up/down count capabilities" ADC—changed "2 × 13 input channels" to "2 × 11 input channels, + 4 shared channels" replaced "On-chip CAN/UART/FlexRay bootstrap loader" with "On-chip CAN/UART bootstrap loader" Section 1: Introduction: changed title (was: Overview); reorganized contents SPC560P44Lx, SPC560P50Lx device comparison: ADC feature: changed "16 channels" to "15-channel"; added footnote to to indicate that four channels are shared between the two ADCs removed SPC560P40 column changed "dual channel" to "selectable single or dual channel support" in FlexRay footnote updated "eTimer" feature updated footnote relative to "Digital power supply" feature

 Table 46.
 Revision history (continued)

Date	Revision	Changes
18-Jul-2012	8	Updated Table 1 (Device summary) Section 1.5.4, Flash memory: Changed "Data flash memory: 32-bit ECC" to "Data flash memory: 64-bit ECC" Figure 40 (Commercial product code structure), replaced "C = 60 MHz, 5 V" and "D = 60 MHz, 3.3 V" with respectively "C = 40 MHz, 5 V" and "D = 40 MHz, 3.3 V" Table 9 (Absolute maximum ratings), updated TV _{DD} parameter, the minimum value to 3.0 V/s and the maximum value to 0.5 V/µs Table 7 (Pin muxing), changed the description in the column "I/O direction" from "I/O" to "O" for the following port pins: A[10] with function A[0] A[11] with function A[2] A[12] with function A[2] A[13] with function A[2] A[13] with function A[3] C[17] with function A[4] C[10] with function A[3] C[15] with function A[1] D[10] with function A[3] C[15] with function A[1] D[10] with function A[1] D[10] with function A[1] D[11] with function A[1] D[12] with function B[1] Updated Section 3.8.1, Voltage regulator electrical characteristics Added Table 27 (I/O consumption) Section 3.0.0 L electrical characteristics: deleted references to "oscillator margin" deleted subsection "NVUSRO[OSCILLATOR_MARGIN] field description" Table 21 (DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)), added IPU row for RESET pin Table 23 (DC electrical characteristics), added V _{INAN} entry Removed "Order codes" table Figure 40 (Commercial product code structure): added a footnote updated "E = Data flash memory"
18-Sep-2013	9	Updated Discialmer

Table 46.	Revision	history ((continued)
-----------	----------	-----------	-------------

