

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Not For New Designs
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	67
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 26x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560p50l3b1abr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR has to be executed. It also provides a wide number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol (PCP) for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the same resource can not preempt each other.

The INTC provides the following features:

- Unique 9-bit vector for each separate interrupt source
- 8 software triggerable interrupt sources
- 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source
- Ability to modify the ISR or task priority: modifying the priority can be used to implement the Priority Ceiling Protocol for accessing shared resources.
- 2 external high priority interrupts directly accessing the main core and I/O processor (IOP) critical interrupt mechanism

1.5.7 System status and configuration module (SSCM)

The system status and configuration module (SSCM) provides central device functionality.

The SSCM includes these features:

- System configuration and status
 - Memory sizes/status
 - Device mode and security status
 - Determine boot vector
 - Search code flash for bootable sector
 - DMA status
- Debug status port enable and selection
- Bus and peripheral abort enable/disable

1.5.8 System clocks and clock generation

The following list summarizes the system clock and clock generation on the SPC560P44Lx, SPC560P50Lx:

- Lock detect circuitry continuously monitors lock status
- Loss of clock (LOC) detection for PLL outputs
- Programmable output clock divider (÷1, ÷2, ÷4, ÷8)
- FlexPWM module and eTimer module can run on an independent clock source
- On-chip oscillator with automatic level control
- Internal 16 MHz RC oscillator for rapid start-up and safe mode: supports frequency trimming by user application

1.5.13 System timer module (STM)

The STM module implements these features:

- One 32-bit up counter with 8-bit prescaler
- Four 32-bit compare channels
- Independent interrupt source for each channel
- Counter can be stopped in debug mode

1.5.14 Software watchdog timer (SWT)

The SWT has the following features:

- 32-bit time-out register to set the time-out period
- Programmable selection of system or oscillator clock for timer operation
- Programmable selection of window mode or regular servicing
- Programmable selection of reset or interrupt on an initial time-out
- Master access protection
- Hard and soft configuration lock bits
- Reset configuration inputs allow timer to be enabled out of reset

1.5.15 Fault collection unit (FCU)

The FCU provides an independent fault reporting mechanism even if the CPU is malfunctioning.

The FCU module has the following features:

- FCU status register reporting the device status
- Continuous monitoring of critical fault signals
- User selection of critical signals from different fault sources inside the device
- Critical fault events trigger 2 external pins (user selected signal protocol) that can be used externally to reset the device and/or other circuitry (for example, safety relay or FlexRay transceiver)
- Faults are latched into a register

1.5.16 System integration unit – Lite (SIUL)

The SPC560P44Lx, SPC560P50Lx SIUL controls MCU pad configuration, external interrupt, general purpose I/O (GPIO), and internal peripheral multiplexing.

The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU.

The sources of the ECC errors are:

- Flash memory
- SRAM

1.5.19 Peripheral bridge (PBRIDGE)

The PBRIDGE implements the following features:

- Duplicated periphery
- Master access privilege level per peripheral (per master: read access enable; write access enable)
- Write buffering for peripherals
- Checker applied on PBRIDGE output toward periphery
- Byte endianess swap capability

1.5.20 Controller area network (FlexCAN)

The SPC560P44Lx, SPC560P50Lx MCU contains one controller area network (FlexCAN) module. This module is a communication controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module contains 32 message buffers.

Port	Pad	Alternate			I/O	Pad s	peed ⁽⁵⁾	Pin	Pin No.	
pin	configuration register (PCR)	(0)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin	
		ALT0	GPIO[14]	SIUL	I/O					
		ALT1	TXD	Safety Port_0	0					
A[14]	PCR[14]	ALT2	ETC[4]	eTimer_1	I/O	Slow	Medium	99	143	
		ALT3	—	—	—					
		—	EIRQ[13]	SIUL	I					
		ALT0	GPIO[15]	SIUL	I/O					
		ALT1	—	—	—					
A[15]	PCR[15]	ALT2	ETC[5]	eTimer_1	I/O	Slow	Medium	100	144	
A[15]	FCR[15]	ALT3	—	—	—	310W	Medium	100	144	
		—	RXD	Safety Port_0	I					
		—	EIRQ[14]	SIUL	I					
				Port B (16-bit)						
		ALT0	GPIO[16]	SIUL	I/O					
		ALT1	TXD	FlexCAN_0	0					
B[0]	PCR[16]	ALT2	ETC[2]	eTimer_1	I/O	Slow	Medium	76	109	
		ALT3	DEBUG[0]	SSCM	—					
		—	EIRQ[15]	SIUL	I					
		ALT0	GPIO[17]	SIUL	I/O					
		ALT1	—	—	—					
B[1]	PCR[17]	ALT2	ETC[3]	eTimer_1	I/O	Slow	Medium	77	110	
D[1]	FCR[17]	ALT3	DEBUG[1]	SSCM	—	310W	Medium	11	110	
		—	RXD	FlexCAN_0	I					
		—	EIRQ[16]	SIUL	I					
		ALT0	GPIO[18]	SIUL	I/O					
		ALT1	TXD	LIN_0	0					
B[2]	PCR[18]	ALT2	—	—	—	Slow	Medium	79	114	
		ALT3	DEBUG[2]	SSCM	—					
		—	EIRQ[17]	SIUL	I					
		ALT0	GPIO[19]	SIUL	I/O					
		ALT1	—	—	—					
B[3]	PCR[19]	ALT2	—	—	—	Slow	Medium	80	116	
		ALT3	DEBUG[3]	SSCM	—					
		—	RXD	LIN_0	I					
		ALT0	GPIO[22]	SIUL	I/O					
		ALT1	CLKOUT	MC_CGL	0					
B[6]	PCR[22]	ALT2	CS2	DSPI_2	0	Slow	Medium	96	138	
		ALT3	—	—	—					
		—	EIRQ[18]	SIUL	I					

Port	Pad	Alternate			I/O	Pad sp	Pin No.		
nin	configuration register (PCR)	function ^{(1),} (2)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin
		ALT0	GPIO[23]	SIUL					
		ALT1		—					
B[7]	PCR[23]	ALT2		—	Input only	_	_	29	43
		ALT3		ADC_0					
		_	AN[0] RXD	LIN_0					
		ALT0							
		ALT0 ALT1	GPIO[24]	SIUL					
		ALT2	_	_				31	
B[8]	PCR[24]	ALT3		_	Input only	—	—		47
		_	AN[1]	ADC_0					
		—	ETC[5]	eTimer_0					
		ALT0	GPIO[25]	SIUL					
		ALT1	_	—					
B[9]	PCR[25]	ALT2		—	Input only	—	—	35	52
		ALT3	—	—					
		—	AN[11]	ADC_0 / ADC_1					
		ALT0	GPIO[26]	SIUL					
DI (O)	DODION	ALT1		—					
B[10]	PCR[26]	ALT2 ALT3		—	Input only	_	_	36	53
		ALI3 —	 AN[12]	 ADC_0 / ADC_1					
		ALT0	GPIO[27]	SIUL					
		ALT1	—						
B[11]	PCR[27]	ALT2	_	_	Input only	_	_	37	54
		ALT3		_					
		—	AN[13]	ADC_0 / ADC_1					
		ALT0	GPIO[28]	SIUL					
		ALT1	_	—					
B[12]	PCR[28]	ALT2		—	Input only	—	—	38	55
		ALT3	—	—					
		_	AN[14]	ADC_0 / ADC_1					
		ALT0	GPIO[29]	SIUL					
		ALT1	_	—					
B[13]	PCR[29]	ALT2 ALT3	_		Input only	—	—	42	60
		ALIS	 AN[0]	ADC_1					
		_	RXD	LIN_1					

Port	Pad	Alternate			I/O	Pad s	peed ⁽⁵⁾	Pin	No.
pin	configuration register (PCR)	(0)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin
D[5]	PCR[53]	ALTO ALT1 ALT2 ALT3	GPIO[53] CS3 F[0] SOUT	SIUL DSPI_0 FCU_0 DSPI_3	I/O O O	Slow	Medium	22	33
D[6]	PCR[54]	ALTO ALT1 ALT2 ALT3 —	GPIO[54] CS2 SCK — FAULT[1]	SIUL DSPI_0 DSPI_3 — FlexPWM_0	I/O O I/O — I	Slow	Medium	23	34
D[7]	PCR[55]	ALTO ALT1 ALT2 ALT3 —	GPIO[55] CS3 F[1] CS4 SIN	SIUL DSPI_1 FCU_0 DSPI_0 DSPI_3	I/O O O I	Slow	Medium	26	37
D[8]	PCR[56]	ALTO ALT1 ALT2 ALT3 —	GPIO[56] CS2 — CS5 FAULT[3]	SIUL DSPI_1 — DSPI_0 FlexPWM_0	I/O O — O I	Slow	Medium	21	32
D[9]	PCR[57]	ALTO ALT1 ALT2 ALT3	GPIO[57] X[0] TXD —	SIUL FlexPWM_0 LIN_1 —	I/O I/O O —	Slow	Medium	15	26
D[10]	PCR[58]	ALTO ALT1 ALT2 ALT3	GPIO[58] A[0] CS0 —	SIUL FlexPWM_0 DSPI_3 —	I/O O I/O —	Slow	Medium	53	76
D[11]	PCR[59]	ALTO ALT1 ALT2 ALT3	GPIO[59] B[0] CS1 SCK	SIUL FlexPWM_0 DSPI_3 DSPI_3	I/O O O I/O	Slow	Slow Medium		78
D[12]	PCR[60]	ALTO ALT1 ALT2 ALT3 —	GPIO[60] X[1] — RXD	SIUL FlexPWM_0 — LIN_1	I/O I/O — I	Slow	Medium	70	99
D[13]	PCR[61]	ALTO ALT1 ALT2 ALT3	GPIO[61] A[1] CS2 SOUT	SIUL FlexPWM_0 DSPI_3 DSPI_3	I/O O O O	Slow	Medium	67	95

Port	Pad	Alternate	-		I/O	Pad s	peed ⁽⁵⁾	Pin	No.
pin	configuration register (PCR)	function ^{(1),} (2)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin
		ALT0	GPIO[62]	SIUL	I/O				
		ALT1	B[1]	FlexPWM_0	0				
D[14]	PCR[62]	ALT2	CS3	DSPI_3	0	Slow	Medium	73	105
		ALT3	—	—	—				
		—	SIN	DSPI_3	I				
		ALT0	GPIO[63]	SIUL					
		ALT1	—	—					
D[15]	PCR[63]	ALT2	_	—	Input only	—	—	41	58
		ALT3	—	—					
		—	AN[4]	ADC_1					
				Port E(16-bit)					
		ALT0	GPIO[64]	SIUL					
		ALT1	—	—					
E[0]	PCR[64]	ALT2	_	—	Input only	—	—	46	68
		ALT3	—	—					
		—	AN[5]	ADC_1					
		ALT0	GPIO[65]	SIUL				27	
		ALT1	—	—	Input only	_			
E[1]	PCR[65]	ALT2	—	—			_		39
		ALT3	—	—					
		—	AN[4]	ADC_0					
		ALT0	GPIO[66]	SIUL					
		ALT1	—	—					
E[2]	PCR[66]	ALT2	—	—	Input only	—	—	32	49
		ALT3	—	—					
		—	AN[5]	ADC_0					
		ALT0	GPIO[67]	SIUL					
		ALT1	—	—					
E[3]	PCR[67]	ALT2	—	—	Input only	—	—		40
		ALT3	— • • • • • • •	—					
		_	AN[6]	ADC_0					
		ALT0	GPIO[68]	SIUL					
		ALT1	—	—					
E[4]	PCR[68]	ALT2	—	—	Input only	—	_		42
		ALT3		—					
		—	AN[7]	ADC_0					

Port	Pad	Alternate			I/O	Pad s	peed ⁽⁵⁾	Pin	No.
pin	configuration register (PCR)	(0)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin
F[14]	PCR[94]	ALTO ALT1 ALT2 ALT3	GPIO[94] TXD — —	SIUL LIN_1 —	V0 0	Slow	Medium	_	115
F[15]	PCR[95]	ALT0 ALT1 ALT2 ALT3 —	GPIO[95] — — RXD	SIUL — — LIN_1	I/O 	Slow	Slow Medium		113
				Port G (12-bit)					
G[0]	PCR[96]	ALTO ALT1 ALT2 ALT3 —	GPIO[96] F[0] — EIRQ[30]	SIUL FCU_0 — SIUL	I/O O — I	Slow	Medium	_	38
G[1]	PCR[97]	ALTO ALT1 ALT2 ALT3 —	GPIO[97] F[1] — — EIRQ[31]	SIUL FCU_0 — SIUL	I/O O — I	Slow	Medium		141
G[2]	PCR[98]	ALTO ALT1 ALT2 ALT3	GPIO[98] X[2] —	SIUL FlexPWM_0 —	I/O I/O —	Slow	Medium		102
G[3]	PCR[99]	ALT0 ALT1 ALT2 ALT3	GPIO[99] A[2] — —	SIUL FlexPWM_0 —	I/O O —	Slow	Medium	_	104
G[4]	PCR[100]	ALTO ALT1 ALT2 ALT3	GPIO[100] B[2] — —	SIUL FlexPWM_0 —	I/O O —	Slow	Medium	_	100
G[5]	PCR[101]	ALTO ALT1 ALT2 ALT3	GPIO[101] X[3] — —	SIUL FlexPWM_0 —	I/O I/O —	Slow	Medium	_	85
G[6]	PCR[102]	ALTO ALT1 ALT2 ALT3	GPIO[102] A[3] — —	SIUL FlexPWM_0 — —	I/O O —	Slow	Medium	_	98

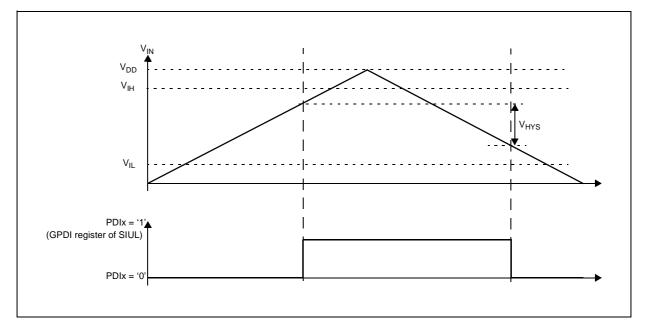


Figure 14. Input DC electrical characteristics definition

3.10.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in *Table 25*.

Table 25.	I/O supply segment
-----------	--------------------

Package			ę	Supply segme	nt		
	1	2	3	4	5	6	7
LQFP144	pin8 – pin20	pin23 – pin38	pin39 – pin55	pin58 – pin68	pin73 – pin89	pin92 – pin125	pin128 – pin5
LQFP100	pin15 – pin26	pin27 – pin38	pin41 – pin46	pin51 – pin61	pin64 – pin86	pin89 – pin10	—

Table 26 provides the weight of concurrent switching I/Os.

In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain below 100%.

Table 26. I/O weight

Pad	LQ	FP144	LQFP100					
Pau	Weight 5V	Weight 3.3V	Weight 5V	Weight 3.3V				
NMI	1%	1%	1%	1%				
PAD[6]	6%	5%	14%	13%				
PAD[49]	5%	4%	14%	12%				
PAD[84]	14%	10%	—	_				
PAD[85]	9%	7%	—	_				

Table 26.	I/O weight ((continued)
-----------	--------------	-------------

Ded	LQ	FP144	LQI	FP100
Pad	Weight 5V	Weight 3.3V	Weight 5V	Weight 3.3V
PAD[86]	9%	6%	—	_
MODO[0]	12%	8%	_	
PAD[7]	4%	4%	11%	10%
PAD[36]	5%	4%	11%	9%
PAD[8]	5%	4%	10%	9%
PAD[37]	5%	4%	10%	9%
PAD[5]	5%	4%	9%	8%
PAD[39]	5%	4%	9%	8%
PAD[35]	5%	4%	8%	7%
PAD[87]	12%	9%	—	_
PAD[88]	9%	6%	—	
PAD[89]	10%	7%	—	_
PAD[90]	15%	11%	—	_
PAD[91]	6%	5%	—	_
PAD[57]	8%	7%	8%	7%
PAD[56]	13%	11%	13%	11%
PAD[53]	14%	12%	14%	12%
PAD[54]	15%	13%	15%	13%
PAD[55]	25%	22%	25%	22%
PAD[96]	27%	24%	—	_
PAD[65]	1%	1%	1%	1%
PAD[67]	1%	1%	—	_
PAD[33]	1%	1%	1%	1%
PAD[68]	1%	1%	—	_
PAD[23]	1%	1%	1%	1%
PAD[69]	1%	1%	—	_
PAD[34]	1%	1%	1%	1%
PAD[70]	1%	1%	—	_
PAD[24]	1%	1%	1%	1%
PAD[71]	1%	1%	—	_
PAD[66]	1%	1%	1%	1%
PAD[25]	1%	1%	1%	1%
PAD[26]	1%	1%	1%	1%

Symbol		С	Parameter	Condit	ions ⁽¹⁾		Value		Unit						
Symbol		C				Min	Тур	Max	Unit						
				C _L = 25 pF, 13 MHz		—	_	6.6							
				C _L = 25 pF, 40 MHz	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		—	13.4							
	сс	Р		C _L = 100 pF, 13 MHz			—	18.3	mA						
I _{RMSMED} CC		MEDIUM configuration	C _L = 25 pF, 13 MHz			_	5								
		configuration	C _L = 25 pF, 40 MHz	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	8.5								
				C _L = 100 pF, 13 MHz		_	_	11							
										C _L = 25 pF, 40 MHz		_	_	22	
			Root medium square	C _L = 25 pF, 64 MHz	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	33							
	сс			C _L = 100 pF, 40 MHz		_	_	56	mA						
IRMSFST	CC		I/O current for FAST configuration	C _L = 25 pF, 40 MHz		_	_	14	mA						
				C _L = 25 pF, 64 MHz	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	20							
				C _L = 100 pF, 40 MHz		_	_	35							
	0.5		Sum of all the static	V _{DD} = 5.0 V ± 10%, P/	AD3V5V = 0	_	_	70							
IAVGSEG	SR		I/O current within a supply segment	V _{DD} = 3.3 V ± 10%, P/	AD3V5V = 1	_	_	65	mA						

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

3.11 Main oscillator electrical characteristics

The SPC560P44Lx, SPC560P50Lx provides an oscillator/resonator driver.

Table 28.Main oscillator output electrical characteristics (5.0 V,
NVUSRO[PAD3V5V] = 0)

Symbol		С	Parameter	Value		Unit	
		C	Farameter	Min	Max	onit	
fosc	SR	—	Oscillator frequency	4	40	MHz	
9 _m	_	Р	Transconduc tance	6.5	25	mA/V	
V _{OSC}	_	Т	Oscillation amplitude on XTAL pin	1	_	V	
t _{oscsu}	—	Т	Start-up time ^{(1),(2)}	8	_	ms	

1. The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time.

2. Value captured when amplitude reaches 90% of XTAL

Symbol	С	Devenueter		Conditions ⁽¹⁾	Value		Unit	
Symbol C		Parameter		Conditions	Min	Max	onit	
			Short-term jitter ⁽¹⁰⁾	f _{SYS} maximum	-4	4	% f _{CLKOUT}	
C _{JITTER}			Long-term jitter (avg. over 2 ms interval)			10	ns	
t _{lpll}	D	PLL lock time ^{(11), (12)}		_	_	200	μs	
t _{dc}	D	Duty cycle of reference		_	40	60	%	
f _{LCK}	D	Frequency LOCK range		—	-6	6	% f _{SYS}	
f _{UL}	D	Frequency un-LOCK range		_	-18	18	% f _{SYS}	
f _{CS}	CS D Modulation depth			Center spread	±0.25	±4.0 ⁽¹³⁾		
f _{DS}		Modulation depth		Down spread	-0.5	-8.0	% f _{SYS}	
f _{MOD}	D	Modulation frequency ⁽¹⁴⁾		—		70	kHz	

 Table 31.
 FMPLL electrical characteristics (continued)

1. $V_{DD_{L}V_{C}ORx}$ = 1.2 V ±10%; V_{SS} = 0 V; T_A = -40 to 125 °C, unless otherwise specified

2. Considering operation with PLL not bypassed

3. "Loss of Reference Frequency" window is the reference frequency range outside of which the PLL is in self-clocked mode.

4. Self-clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the f_{LOR} window.

f_{VCO} self clock range is 20–150 MHz. f_{SCM} represents f_{SYS} after PLL output divider (ERFD) of 2 through 16 in enhanced mode.

6. This value is determined by the crystal manufacturer and board design.

7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{SYS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDPLL} and V_{SSPLL} and variation in crystal oscillator frequency increase the C_{JITTER} percentage for a given interval.

8. Proper PC board layout procedures must be followed to achieve specifications.

- Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C_{JITTER} and either f_{CS} or f_{DS} (depending on whether center spread or down spread modulation is enabled).
- 10. Short term jitter is measured on the clock rising edge at cycle n and cycle n+4.
- 11. This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this PLL, load capacitors should not exceed these limits.
- 12. This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- 13. This value is true when operating at frequencies above 60 MHz, otherwise f_{CS} is 2% (above 64 MHz).
- 14. Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.

The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C_S and C_{P2} being substantially two switched capacitances, with a frequency equal to the ADC conversion rate, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S+C_{P2} equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (fc \times (C_S+C_{P2}))$), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S+C_{P2}) and the sum of $R_S + R_F$, the external circuit must be designed to respect the *Equation 4*:

Equation 4

$$V_A \bullet \frac{R_S + R_F}{R_{EQ}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on resistive path.

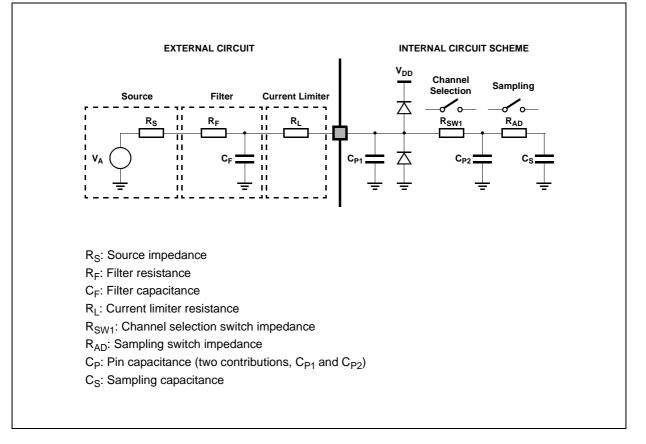
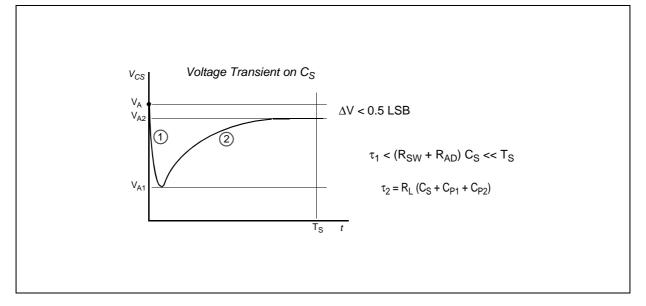



Figure 16. Input equivalent circuit

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit reported in *Figure 16*): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch closed).

Figure 17. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

• A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

Equation 5

$$\tau_1 = (R_{SW} + R_{AD}) \bullet \frac{C_P \bullet C_S}{C_P + C_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T_S is always much longer than the internal time constant:

Equation 6

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll T_S$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to *Equation 7*:

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (T_C). Again the conversion period T_C is longer than the sampling time T_S , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time T_S , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

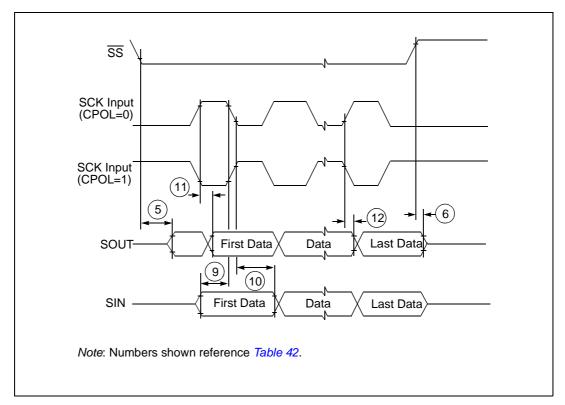
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive *Equation 11* between the ideal and real sampled voltage on C_S :

Equation 11

$$\frac{V_A}{V_{A2}} = \frac{C_{P1} + C_{P2} + C_F}{C_{P1} + C_{P2} + C_F + C_S}$$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Equation 12


$$C_F > 2048 \bullet C_S$$

3.14.2 ADC conversion characteristics

Table 33. ADC conversion characteristics	Table 33.	ADC conversion characteristics
--	-----------	--------------------------------

Symbol C		C	Parameter	Conditions ⁽¹⁾	Value			Unit
Symb			Farameter	Conditions	Min	Тур	Тур Мах	
V _{INAN0}	SR		ADC0 and shared ADC0/1 analog input voltage ^{(2), (3)}	—	V _{SS_HV_ADV0} - 0.3	_	V _{DD_HV_ADV0} + 0.3	V
V _{INAN1}	SR		ADC1 analog input voltage ^{(2),} ⁽⁴⁾	_	V _{SS_HV_ADV1} - 0.3	_	V _{DD_HV_ADV1} + 0.3	V
f _{CK}	SR		ADC clock frequency (depends on ADC configuration) (The duty cycle depends on AD_clk ⁽⁵⁾ frequency)	_	3(6)	_	60	MHz
f _s	SR	_	Sampling frequency	—	_		1.53	MHz
tuno -		D	Sample time ⁽⁷⁾	f _{ADC} = 20 MHz, INPSAMP = 3	125	_	—	ns
t _{ADC_S} — D		U		f _{ADC} = 9 MHz, INPSAMP = 255		_	28.2	μs
t _{ADC_C}	_	Ρ	Conversion time ⁽⁸⁾	f _{ADC} = 20 MHz ⁽⁹⁾ , INPCMP = 1	0.650		_	μs

Figure 36. DSPI modified transfer format timing – Slave, CPHA = 1

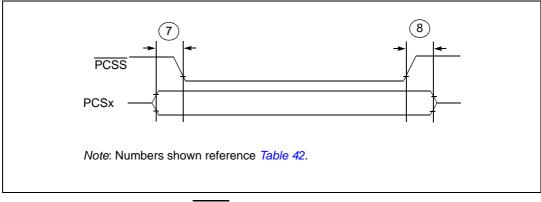


Figure 37. DSPI PCS strobe (PCSS) timing

4 Package characteristics

4.1 ECOPACK[®]

IIn order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.2 Package mechanical data

4.2.1 LQFP144 mechanical outline drawing

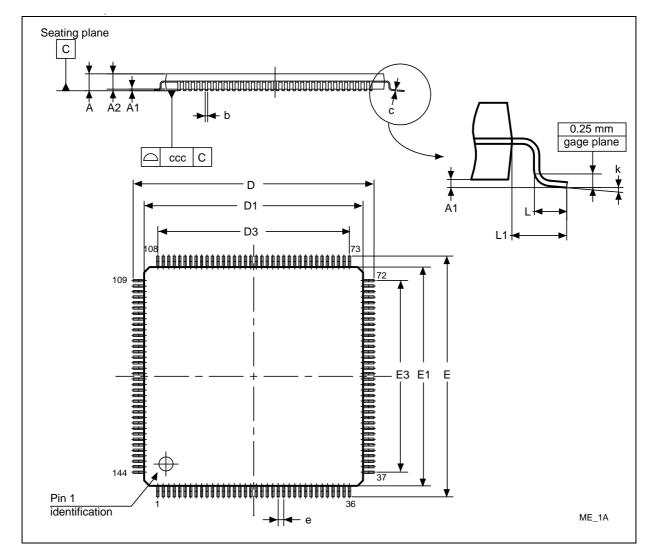


Figure 38. LQFP144 package mechanical drawing

Doc ID 14723 Rev 9

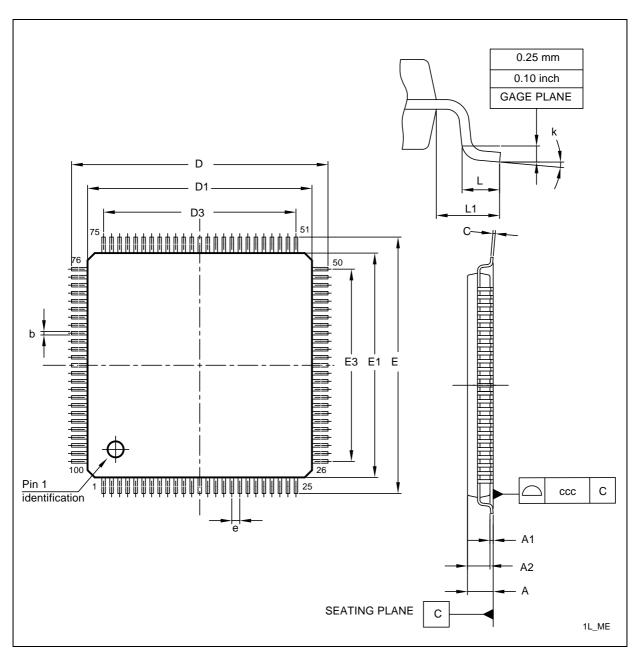

	Dimensions						
Symbol		mm		inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Мах	
А	_	—	1.600	—	—	0.0630	
A1	0.050	—	0.150	0.0020	—	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	—	0.200	0.0035	—	0.0079	
D	21.800	22.000	22.200	0.8583	0.8661	0.8740	
D1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
D3	_	17.500	_	_	0.6890		
Е	21.800	22.000	22.200	0.8583	0.8661	0.8740	
E1	19.800	20.000	20.200	0.7795	0.7874	0.7953	
E3	_	17.500	_	_	0.6890		
е	_	0.500	—	—	0.0197	—	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	_	1.000	—	—	0.0394	—	
k	0.0°	3.5°	7.0°	3.5°	0.0°	7.0°	
ccc ⁽²⁾		0.080	1	0.0031			

Table 43. LQFP144 mechanical data

1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits.

2. Tolerance

4.2.2 LQFP100 mechanical outline drawing

Date	Revision	Changes			
27-Oct-2009	5	 Added "Full Feature" and "Airbag" customization. Removed B[4] and B[5] rows from "Pin muxing" table and inserted them on "System pins" table. Updated package pinout. Rewrote entirely section "Power Up/dpwn Sequencing" section. Renamend "V_{DD_LV}_PLL" and "V_{SS_LV}_PLL" supply pins with respectively "V_{DD_LV}_COR3" and "V_{SS_LV}_COR3". Added explicative figures on "Electrical characteristics" section. Updated "Thermal characteristics" for 100-pin. Proposed two different configuration of "voltage regulator Inserted Power Up/Down sequence. Added explicative figures on "DC Electrical characteristics". Added explicative figures on "DC Electrical characteristics". Added "I/O pad current specification" section. Renamed the "Airbag mode" with "Typical mode"and updated the values on "supply current" tables. Added more order code. 			
06-Apr-2010	6	Inserted label of Y-axis in the "Independent ADC supply" figure. "Recommended Operating Conditions" tables: Moved the T _J row to "Absolute Maximum Ratings" table. Rewrite note 1 and 3 Inverted Min a Typ value of C _{DEC2} on "Voltage Regulator Electrical Characteristics" table Removed an useless duplicate of "Voltage Regulator Electrical Characteristics" table. Inserted the name of C _S into "Input Equivalent Circuit" figure. Removed leakage lvpp from datasheet. Updated "Supply Current" tables. Added note on "Output pin transition times" table. Updated "Temperature Sensor Electrical Characteristics" table. Updated "16 MHz RC Oscillator Electrical Characteristics" table. Removed the note about the condition from "Flash read access timing" table. Removed the notes that assert the values need to be confirmed before validation.			
07-Apr-2011 7 07-Apr-2011 07-Apr-2011 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		 Formatting and editorial changes throughout Removed all content referencing Junction Temperature Sensor Cover page Features: CPU core—specified 64 MHz frequency updated memory features eTimer units: changed "up/down capabilities" to "up/down count capabilities" ADC—changed "2 × 13 input channels" to "2 × 11 input channels, + 4 shared channels" replaced "On-chip CAN/UART/FlexRay bootstrap loader" with "On-chip CAN/UART bootstrap loader" Section 1: Introduction: changed title (was: Overview); reorganized contents SPC560P44Lx, SPC560P50Lx device comparison: ADC feature: changed "16 channels" to "15-channel"; added footnote to to indicate that four channels are shared between the two ADCs removed SPC560P40 column changed "dual channel" to "selectable single or dual channel support" in FlexRay footnote updated "eTimer" feature updated footnote relative to "Digital power supply" feature 			

 Table 46.
 Revision history (continued)

