

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	107
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 26x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560p50l5befby

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	1
Table 2.	SPC560P44Lx, SPC560P50Lx device comparison	7
Table 3.	SPC560P44Lx, SPC560P50Lx device configuration differences	8
Table 4.	SPC560P44Lx, SPC560P50Lx series block summary	
Table 5.	Supply pins	32
Table 6.	System pins	
Table 7.	Pin muxing	
Table 8.	Parameter classifications	
Table 9.	Absolute maximum ratings	50
Table 10.	Recommended operating conditions (5.0 V)	53
Table 11.	Recommended operating conditions (3.3 V)	54
Table 12.	Thermal characteristics for 144-pin LQFP	
Table 13.	Thermal characteristics for 100-pin LQFP	57
Table 14.	EMI testing specifications	
Table 15.	ESD ratings,	
Table 16.	Approved NPN ballast components (configuration with resistor on base)	60
Table 17.	Voltage regulator electrical characteristics (configuration with resistor on base)	
Table 18.	Voltage regulator electrical characteristics (configuration without resistor on base)	
Table 19.	Low voltage monitor electrical characteristics.	
Table 20.	PAD3V5V field description	
Table 21.	DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)	
Table 22.	Supply current (5.0 V, NVUSRO[PAD3V5V] = 0)	
Table 23.	DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)	
Table 24.	Supply current (3.3 V, NVUSRO[PAD3V5V] = 1)	
Table 25.	I/O supply segment.	
Table 26.	I/O weight	
Table 27.	I/O consumption	
Table 28.	Main oscillator output electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)	
Table 29.	Main oscillator output electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)	
Table 30.	Input clock characteristics.	
Table 31.	FMPLL electrical characteristics	
Table 32.	16 MHz RC oscillator electrical characteristics	
Table 33.	ADC conversion characteristics	
Table 34.	Program and erase specifications	
Table 35.	Flash memory module life	
Table 36.	Flash memory read access timing	
Table 37.	Output pin transition times	
Table 38.	RESET electrical characteristics	
Table 39.	JTAG pin AC electrical characteristics	
Table 40.	Nexus debug port timing	
Table 41.	External interrupt timing	
Table 42.	DSPI timing	
Table 43.	LQFP144 mechanical data	
Table 44.	LQFP100 package mechanical data	
Table 45.	Abbreviations	
Table 46.	Revision history	

	SPC560P44LX, SPC560P50LX a	• •	•	
	Feature	SPC560P44	SPC560P50	
eDMA (enhan channels	ced direct memory access)	16		
FlexRay		Yes	S ⁽¹⁾	
FlexCAN (con	troller area network)	2 ⁽²⁾	,(3)	
Safety port		Yes (via second F	FlexCAN module)	
FCU (fault col	lection unit)	Ye	es	
CTU (cross tri	ggering unit)	Ye	es	
eTimer		2 (16-bit, 6	channels)	
FlexPWM (pu	se-width modulation) channels	8 (capturing on X-channels)		
ADC (analog-to-digital converter)		2 (10-bit, 15-channel ⁽⁴⁾)		
LINFlex		2		
DSPI (deseria	l serial peripheral interface)	4		
CRC (cyclic re	edundancy check) unit	Yes		
JTAG controlle	ər	Yes		
Nexus port co	ntroller (NPC)	Yes (Le	evel 2+)	
	Digital power supply ⁽⁵⁾	3.3 V or 5 V single suppl	y with external transistor	
Supply	Analog power supply	3.3 V	or 5 V	
Supply	Internal RC oscillator	16 M	ЛНz	
	External crystal oscillator	4–40 MHz		
Packages		LQFI	P100	
i uonayes		LQFP144		
Temperature	Standard ambient temperature	–40 to	125 °C	

Table 2.	SPC560P44Lx, SP	C560P50Lx device	comparison	(continued)
			••••••••••••••••••••••••••••••••••••••	(•• ••••••••••••••••••••••••••••••••••

1. 32 message buffers, selectable single or dual channel support

2. Each FlexCAN module has 32 message buffers.

3. One FlexCAN module can act as a Safety Port with a bit rate as high as 7.5 Mbit/s.

4. Four channels shared between the two ADCs

5. The different supply voltages vary according to the part number ordered.

SPC560P44Lx, SPC560P50Lx is available in two configurations having different features: full-featured and airbag. *Table 3* shows the main differences between the two versions.

Table 3. SPC560P44Lx, SPC560P50Lx device configuration differences

Feature	Full-featured	Airbag
CTU (cross triggering unit)	Yes	No
FlexPWM	Yes	No

Introduction

Block	Function
Pulse width modulator (FlexPWM)	Contains four PWM submodules, each of which is capable of controlling a single half-bridge power stage and two fault input channels
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device
Static random-access memory (SRAM)	Provides storage for program code, constants, and variables
System integration unit lite (SIUL)	Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration
System status and configuration module (SSCM)	Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)	Provides a set of output compare events to support AUTOSAR ⁽¹⁾ and operating system tasks
System watchdog timer (SWT)	Provides protection from runaway code
Wakeup unit (WKPU)	Supports up to 18 external sources that can generate interrupts or wakeup events, 1 of which can cause non-maskable interrupt requests or wakeup events

Table 4. SPC560P44Lx, SPC560P50Lx series block summary (continued)

1. AUTOSAR: AUTomotive Open System ARchitecture (see www.autosar.org)

1.5 Feature details

1.5.1 High performance e200z0 core processor

The e200z0 Power Architecture core provides the following features:

- High performance e200z0 core processor for managing peripherals and interrupts
- Single issue 4-stage pipeline in-order execution 32-bit Power Architecture CPU
- Harvard architecture
 - Variable length encoding (VLE), allowing mixed 16-bit and 32-bit instructions
 - Results in smaller code size footprint
 - Minimizes impact on performance
- Branch processing acceleration using lookahead instruction buffer
- Load/store unit
 - 1 cycle load latency
 - Misaligned access support
 - No load-to-use pipeline bubbles
- Thirty-two 32-bit general purpose registers (GPRs)
- Separate instruction bus and load/store bus Harvard architecture
- Hardware vectored interrupt support
- Reservation instructions for implementing read-modify-write constructs
- Long cycle time instructions, except for guarded loads, do not increase interrupt latency
- Extensive system development support through Nexus debug port
- Non-maskable interrupt support

1.5.2 Crossbar switch (XBAR)

The XBAR multi-port crossbar switch supports simultaneous connections between four master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 32-bit data bus width.

The crossbar allows for two concurrent transactions to occur from any master port to any slave port; but one of those transfers must be an instruction fetch from internal flash memory. If a slave port is simultaneously requested by more than one master port, arbitration logic will select the higher priority master and grant it ownership of the slave port. All other masters requesting that slave port will be stalled until the higher priority master completes its transactions. Requesting masters will be treated with equal priority and will be granted access to a slave port in round-robin fashion, based upon the ID of the last master to be granted access.

The flash memory module provides the following features:

- As much as 576 KB flash memory
 - 8 blocks (32 KB + 2×16 KB + 32 KB + 32 KB + 3×128 KB) code flash
 - 4 blocks (16 KB + 16 KB + 16 KB + 16 KB) data flash
 - Full Read While Write (RWW) capability between code and data flash
- Four 128-bit wide prefetch buffers to provide single cycle in-line accesses (prefetch buffers can be configured to prefetch code or data or both)
- Typical flash memory access time: 0 wait states for buffer hits, 2 wait states for page buffer miss at 64 MHz
- Hardware managed flash memory writes handled by 32-bit RISC Krypton engine
- Hardware and software configurable read and write access protections on a per-master basis
- Configurable access timing allowing use in a wide range of system frequencies
- Multiple-mapping support and mapping-based block access timing (up to 31 additional cycles) allowing use for emulation of other memory types.
- Software programmable block program/erase restriction control
- Erase of selected block(s)
- Read page sizes
 - Code flash memory: 128 bits (4 words)
 - Data flash memory: 32 bits (1 word)
- ECC with single-bit correction, double-bit detection for data integrity
 - Code flash memory: 64-bit ECC
 - Data flash memory: 64-bit ECC
- Embedded hardware program and erase algorithm
- Erase suspend, program suspend and erase-suspended program
- Censorship protection scheme to prevent flash memory content visibility
- Hardware support for EEPROM emulation

1.5.5 Static random access memory (SRAM)

The SPC560P44Lx, SPC560P50Lx SRAM module provides up to 40 KB of general-purpose memory.

The SRAM module provides the following features:

- Supports read/write accesses mapped to the SRAM from any master
- Up to 40 KB general purpose SRAM
- Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of memory
- Typical SRAM access time: 0 wait-state for reads and 32-bit writes; 1 wait state for 8and 16-bit writes if back to back with a read to same memory block

1.5.6 Interrupt controller (INTC)

The interrupt controller (INTC) provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time systems. The INTC handles 147 selectable-priority interrupt sources.

Doc ID 14723 Rev 9

For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR has to be executed. It also provides a wide number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol (PCP) for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the same resource can not preempt each other.

The INTC provides the following features:

- Unique 9-bit vector for each separate interrupt source
- 8 software triggerable interrupt sources
- 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source
- Ability to modify the ISR or task priority: modifying the priority can be used to implement the Priority Ceiling Protocol for accessing shared resources.
- 2 external high priority interrupts directly accessing the main core and I/O processor (IOP) critical interrupt mechanism

1.5.7 System status and configuration module (SSCM)

The system status and configuration module (SSCM) provides central device functionality.

The SSCM includes these features:

- System configuration and status
 - Memory sizes/status
 - Device mode and security status
 - Determine boot vector
 - Search code flash for bootable sector
 - DMA status
- Debug status port enable and selection
- Bus and peripheral abort enable/disable

1.5.8 System clocks and clock generation

The following list summarizes the system clock and clock generation on the SPC560P44Lx, SPC560P50Lx:

- Lock detect circuitry continuously monitors lock status
- Loss of clock (LOC) detection for PLL outputs
- Programmable output clock divider (÷1, ÷2, ÷4, ÷8)
- FlexPWM module and eTimer module can run on an independent clock source
- On-chip oscillator with automatic level control
- Internal 16 MHz RC oscillator for rapid start-up and safe mode: supports frequency trimming by user application

block is an integration of several individual Nexus blocks that are selected to provide the development support interface for this device. The NDI block interfaces to the host processor and internal busses to provide development support as per the IEEE-ISTO 5001-2003 Class 2+ standard. The development support provided includes access to the MCU's internal memory map and access to the processor's internal registers during run time.

The Nexus Interface provides the following features:

- Configured via the IEEE 1149.1
- All Nexus port pins operate at V_{DDIO} (no dedicated power supply)
- Nexus 2+ features supported
 - Static debug
 - Watchpoint messaging
 - Ownership trace messaging
 - Program trace messaging
 - Real time read/write of any internally memory mapped resources through JTAG pins
 - Overrun control, which selects whether to stall before Nexus overruns or keep executing and allow overwrite of information
 - Watchpoint triggering, watchpoint triggers program tracing
- Auxiliary Output Port
 - 4 MDO (Message Data Out) pins
 - MCKO (Message Clock Out) pin
 - 2 MSEO (Message Start/End Out) pins
 - EVTO (Event Out) pin
- Auxiliary Input Port
 - EVTI (Event In) pin

1.5.30 Cyclic redundancy check (CRC)

The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC module features:

- Support for CRC-16-CCITT (*x*25 protocol):
 - $x^{16} + x^{12} + x^5 + 1$
- Support for CRC-32 (Ethernet protocol):
 - $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$
- Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the maximum frequency

1.5.31 IEEE 1149.1 JTAG controller

The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE standard.

Symbol	Description	Direction	Pad sp	beed ⁽¹⁾	Pin		
	Description	Direction	SRC = 0	SRC = 1	100-pin	144-pin	
TMS	JTAG state machine control	Bidirectional	Slow	Fast	59	87	
тск	JTAG clock	Input only	Slow	—	60	88	
TDI	Test Data In	Input only	Slow	Medium	58	86	
TDO	Test Data Out	Output only	Slow	Fast	61	89	
	Reset pin, available on	100-pin and 144-	pin packag	e.			
RESET	Bidirectional reset with Schmitt trigger characteristics and noise filter	Bidirectional	Medium	—	20	31	
Test pin, available on 100-pin and 144-pin package.							
VPP_TEST	Pin for testing purpose only. To be tied to ground in normal operating mode.	_	_	_	74	107	

Table 6. System pins (continued)

1. SCR values refer to the value assigned to the Slew Rate Control bits of the pad configuration register.

2.2.3 Pin muxing

Table 7 defines the pin list and muxing for the SPC560P44Lx, SPC560P50Lx devices.

Each row of *Table 7* shows all the possible ways of configuring each pin, via alternate functions. The default function assigned to each pin after reset is the ALTO function.

SPC560P44Lx, SPC560P50Lx devices provide four main I/O pad types, depending on the associated functions:

- *Slow pads* are the most common, providing a compromise between transition time and low electromagnetic emission.
- Medium pads provide fast enough transition for serial communication channels with controlled current to reduce electromagnetic emission.
- *Fast pads* provide maximum speed. They are used for improved NEXUS debugging capability.
- Symmetric pads are designed to meet FlexRay requirements.

Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance. For more information, see the datasheet's "Pad AC Specifications" section.

Port	Pad	Alternate			I/O	Pad speed ⁽⁵⁾		Pin No.	
pin	configuration register (PCR)	function ^{(1),} (2)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin
C[13]	PCR[45]	ALT0 ALT1 ALT2 ALT3 — —	GPIO[45] ETC[1] — EXT_IN EXT_IN	SIUL eTimer_1 — — CTU_0 FlexPWM_0	I/O I/O — I I	Slow	Medium	71	101
C[14]	PCR[46]	ALTO ALT1 ALT2 ALT3	GPIO[46] ETC[2] EXT_TGR —	SIUL eTimer_1 CTU_0 —	I/O I/O O	Slow	Medium	72	103
C[15]	PCR[47]	ALT0 ALT1 ALT2 ALT3 —	GPIO[47] CA_TR_EN ETC[0] A[1] EXT_IN EXT_SYNC	SIUL FlexRay_0 eTimer_1 FlexPWM_0 CTU_0 FlexPWM_0	I/O O I/O O I I	Slow	Symmetric	85	124
				Port D (16-bit)					
D[0]	PCR[48]	ALTO ALT1 ALT2 ALT3	GPIO[48] CA_TX ETC[1] B[1]	SIUL FlexRay_0 eTimer_1 FlexPWM_0	I/O O I/O O	Slow	Symmetric	86	125
D[1]	PCR[49]	ALT0 ALT1 ALT2 ALT3 —	GPIO[49] — ETC[2] EXT_TRG CA_RX	SIUL — eTimer_1 CTU_0 FlexRay_0	I/O — I/O O I	Slow	Medium	3	3
D[2]	PCR[50]	ALTO ALT1 ALT2 ALT3 —	GPIO[50] — ETC[3] X[3] CB_RX	SIUL eTimer_1 FlexPWM_0 FlexRay_0	I/O — I/O I/O I	Slow	Medium	97	140
D[3]	PCR[51]	ALTO ALT1 ALT2 ALT3	GPIO[51] CB_TX ETC[4] A[3]	SIUL FlexRay_0 eTimer_1 FlexPWM_0	I/O O I/O O	Slow	Symmetric	89	128
D[4]	PCR[52]	ALTO ALT1 ALT2 ALT3	GPIO[52] CB_TR_EN ETC[5] B[3]	SIUL FlexRay_0 eTimer_1 FlexPWM_0	I/O O I/O O	Slow	Symmetric	90	129

Table 7. Pin muxing (continued)

Port	Pad	Alternate			I/O	Pad speed ⁽⁵⁾		Pin No.	
pin	configuration register (PCR)	(0)	Functions	Peripheral ⁽³⁾	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin
E[5]	PCR[69]	ALT0 ALT1 ALT2 ALT3 —	GPIO[69] — — AN[8]	SIUL — — ADC_0	Input only	_	_	_	44
E[6]	PCR[70]	ALT0 ALT1 ALT2 ALT3 —	GPIO[70] — — — AN[9]	SIUL — — — ADC_0	Input only		_	_	46
E[7]	PCR[71]	ALTO ALT1 ALT2 ALT3 —	GPIO[71] — — — AN[10]	SIUL — — — ADC_0	Input only	_	_	_	48
E[8]	PCR[72]	ALTO ALT1 ALT2 ALT3 —	GPIO[72] — — — AN[6]	SIUL — — — ADC_1	Input only	_	_	_	59
E[9]	PCR[73]	ALTO ALT1 ALT2 ALT3 —	GPIO[73] — — — AN[7]	SIUL — — ADC_1	Input only	_	_	_	61
E[10]	PCR[74]	ALT0 ALT1 ALT2 ALT3 —	GPIO[74] — — — AN[8]	SIUL — — — ADC_1	Input only	-	_	_	63
E[11]	PCR[75]	ALT0 ALT1 ALT2 ALT3 —	GPIO[75] — — — AN[9]	SIUL — — — ADC_1	Input only	_	_	_	65
E[12]	PCR[76]	ALT0 ALT1 ALT2 ALT3 —	GPIO[76] — — — AN[10]	SIUL — — — ADC_1	Input only	_	_	_	67

Table 7. Pin muxing (continued)

Port	Pad	Alternate			I/O	Pad speed ⁽⁵⁾		Pin No.	
pin	configuration register (PCR)	(2)	direction (4)	SRC = 0	SRC = 1	100-pin	144-pin		
E[13]	PCR[77]	ALTO ALT1 ALT2 ALT3	GPIO[77] SCK — — EIRQ[25]	SIUL DSPI_3 — — SIUL	I/O I/O — —	Slow	Medium		117
E[14]	PCR[78]	ALT0 ALT1 ALT2 ALT3 —	GPIO[78] SOUT — EIRQ[26]	SIUL DSPI_3 — SIUL	I/O O — — I	Slow	Medium		119
E[15]	PCR[79]	ALT0 ALT1 ALT2 ALT3 —	GPIO[79] — — SIN EIRQ[27]	SIUL — — — DSPI_3 SIUL	I/O — — — — — —	Slow	Medium		121
				Port F (16-bit)					
F[0]	PCR[80]	ALTO ALT1 ALT2 ALT3 —	GPIO[80] DBG0 CS3 — EIRQ[28]	SIUL FlexRay_0 DSPI_3 — SIUL	I/O O — I	Slow	Medium		133
F[1]	PCR[81]	ALTO ALT1 ALT2 ALT3 —	GPIO[81] DBG1 CS2 — EIRQ[29]	SIUL FlexRay_0 DSPI_3 — SIUL	I/O O — I	Slow	Medium		135
F[2]	PCR[82]	ALTO ALT1 ALT2 ALT3	GPIO[82] DBG2 CS1 —	SIUL FlexRay_0 DSPI_3 —	I/O O O —	Slow	Medium	_	137
F[3]	PCR[83]	ALT0 ALT1 ALT2 ALT3	GPIO[83] DBG3 CS0 —	SIUL FlexRay_0 DSPI_3 —	I/O O I/O —	Slow	Medium	_	139
F[4]	PCR[84]	ALTO ALT1 ALT2 ALT3	GPIO[84] MDO[3] —	SIUL NEXUS_0 — —	I/O O —	Slow	Fast	_	4

Table 7. Pin muxing (continued)

3 Electrical characteristics

3.1 Introduction

This section contains device electrical characteristics as well as temperature and power considerations.

This microcontroller contains input protection against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This can be done by the internal pull-up or pull-down resistors, which are provided by the device for most general purpose pins.

The following tables provide the device characteristics and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

Caution: All of the following parameter values can vary depending on the application and must be confirmed during silicon characterization or silicon reliability trial.

3.2 Parameter classification

The electrical parameters are guaranteed by various methods. To give the customer a better understanding, the classifications listed in *Table 8* are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 8.Parameter classifications

Note: The classification is shown in the column labeled "C" in the parameter tables where appropriate.

- C.E. Triplett and B. Joiner, An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module, Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. G. Kromann, S. Shidore, and S. Addison, *Thermal Modeling of a PBGA for Air-Cooled Applications*, Electronic Packaging and Production, pp. 53–58, March 1998.
- 3. B. Joiner and V. Adams, *Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling*, Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

3.6 Electromagnetic interference (EMI) characteristics

Symbol	Parameter	Conditions	Clocks	Frequency	Level (Max)	Unit
		1) ovice contiguration test	f _{OSC} 8 MHz	150 kHz–150 MHz	16	dBµV
	Radiated emissions	conditions and EM testing per standard IEC61967-2 emissions Supply voltage = 5 V DC Ambient temperature = 25 °C Worst-case orientation	f _{CPU} 64 MHz No PLL frequency modulation	150–1000 MHz	15	uυμν
				IEC Level	М	—
V _{EME}			f _{OSC} 8 MHz f _{CPU} 64 MHz	150 kHz–150 MHz	15	dBµV
				150–1000 MHz	14	ubµv
			1% PLL frequency modulation	IEC Level	М	—

Table 14. EMI testing specifications

3.7 Electrostatic discharge (ESD) characteristics

Table 15.ESD ratings^{(1),(2)}

Symbol		Parameter	Conditions	Value	Unit
V _{ESD(HBM)}	S R	Electrostatic discharge (Human Body Model)	_	2000	V
V	s	Electrostatic discharge (Charged Device Model)		750 (corners)	V
VESD(CDM)	R	Electrostatic discharge (Charged Device Model)	_	500 (other)	v

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

3.8 Power management electrical characteristics

3.8.1 Voltage regulator electrical characteristics

The internal voltage regulator requires an external NPN ballast to be connected as shown in *Figure 9. Table 16* contains all approved NPN ballast components. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the V_{DD HV REG}, BCTRL and V_{DD LV CORx} pins to less than

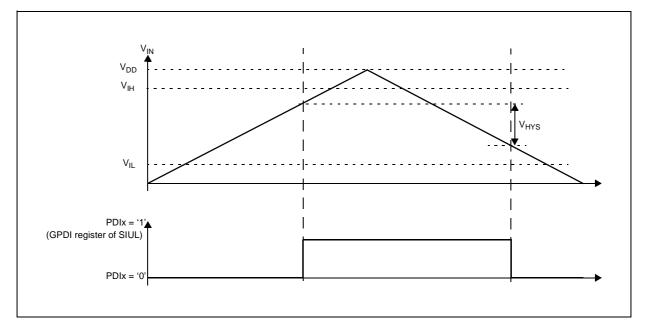


Figure 14. Input DC electrical characteristics definition

3.10.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in *Table 25*.

Table 25.	I/O supply segment
-----------	--------------------

Package		Supply segment						
Гаскауе	1	2	3	4	5	6	7	
LQFP144	pin8 – pin20	pin23 – pin38	pin39 – pin55	pin58 – pin68	pin73 – pin89	pin92 – pin125	pin128 – pin5	
LQFP100	pin15 – pin26	pin27 – pin38	pin41 – pin46	pin51 – pin61	pin64 – pin86	pin89 – pin10	—	

Table 26 provides the weight of concurrent switching I/Os.

In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain below 100%.

Table 26. I/O weight

Ded	LQ	FP144	LQFP100				
Pad	Weight 5V	Weight 3.3V	Weight 5V	Weight 3.3V			
NMI	1%	1%	1%	1%			
PAD[6]	6%	5%	14%	13%			
PAD[49]	5%	4%	14%	12%			
PAD[84]	14%	10%	—	_			
PAD[85]	9%	7%	—	_			

Table 26.	I/O weight (continued)
-----------	------------------------

Ded	LQI	FP144	LQI	FP100
Pad	Weight 5V	Weight 3.3V	Weight 5V	Weight 3.3V
PAD[13]	10%	9%	12%	11%
PAD[82]	10%	9%	—	_
PAD[22]	10%	9%	13%	12%
PAD[83]	10%	9%	—	_
PAD[50]	10%	9%	14%	12%
PAD[97]	10%	9%	—	_
PAD[38]	10%	9%	14%	13%
PAD[14]	9%	8%	14%	13%
PAD[15]	9%	8%	15%	13%

Table 27. I/O consumption

Symbol C		Parameter	Conditions ⁽¹⁾		Value			Unit	
Symbol		0	Farameter	Min		Тур	Max	Unit	
(2)	<u> </u>		Dynamic I/O current for SLOW	C ₁ = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	20	mA
I _{SWTSLW} ⁽²⁾			configuration	о <u>г</u> = 25 рг	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	16	IIIA
I _{SWTMED} ⁽²⁾	<u> </u>		Dynamic I/O current for MEDIUM	C ₁ = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	29	mA
'SWTMED`			configuration	о <u>г</u> = 25 рг	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		_	17	IIIA
1. (2)	<u> </u>		Dynamic I/O current for FAST	C ₁ = 25 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		_	110	mA
I _{SWTFST} ⁽²⁾			configuration	СL = 25 рг	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	50	IIIA
				C _L = 25 pF, 2 MHz		_	—	2.3	
				C _L = 25 pF, 4 MHz	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	_	3.2	
	сс		Root medium square	C _L = 100 pF, 2 MHz		_	—	6.6	mA
IRMSSLW	CC		configuration $C_L = 25 \text{ pF}, 2 \text{ MHz}$	C _L = 25 pF, 2 MHz		_	_	1.6	mA
			-	C _L = 25 pF, 4 MHz	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	2.3	1
				C _L = 100 pF, 2 MHz		_	_	4.7	

3.15 Flash memory electrical characteristics

			Value				
Symbol	С	Parameter	Min	Typical ⁽¹⁾	Initial max ⁽²⁾	Max ⁽³⁾	Unit
T _{dwprogram}	Ρ	Double Word (64 bits) Program Time ⁽⁴⁾	_	22	50	500	μs
т	Ρ	Bank Program (512 KB) ⁽⁴⁾⁽⁵⁾	_	1.45	1.65	33	S
T _{BKPRG}	Ρ	Bank Program (64 KB) ⁽⁴⁾⁽⁵⁾		0.18	0.21	4.10	S
T _{16kpperase}	Р	16 KB Block Pre-program and Erase Time		300	500	5000	ms
T _{32kpperase}	Ρ	32 KB Block Pre-program and Erase Time		400	600	5000	ms
T _{128kpperase}	Ρ	128 KB Block Pre-program and Erase Time	_	800	1300	7500	ms

Table 34. Program and erase specifications

1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.

3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.

- 4. Actual hardware programming times. This does not include software overhead.
- 5. Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column).

Symbol	с	Parameter	Conditions	Val	Unit	
Symbol			conditions	Min	Тур	onin
P/E	с	Number of program/erase cycles per block for 16 KB blocks over the operating temperature range (T_J)	_	100000	_	cycles
P/E	с	Number of program/erase cycles per block for 32 KB blocks over the operating temperature range (T_J)	_	10000	100000	cycles
P/E	с	Number of program/erase cycles per block for 128 KB blocks over the operating temperature range (T_J)	_	1000	100000	cycles
			Blocks with 0–1000 P/E cycles	20	_	years
Retention	с	Minimum data retention at 85 °C average ambient temperature ⁽¹⁾	Blocks with 10000 P/E cycles	10		years
			Blocks with 100000 P/E cycles	5		years

Table 35. Flash memory module life

1. Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.

4 Package characteristics

4.1 ECOPACK[®]

IIn order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.2 Package mechanical data

4.2.1 LQFP144 mechanical outline drawing

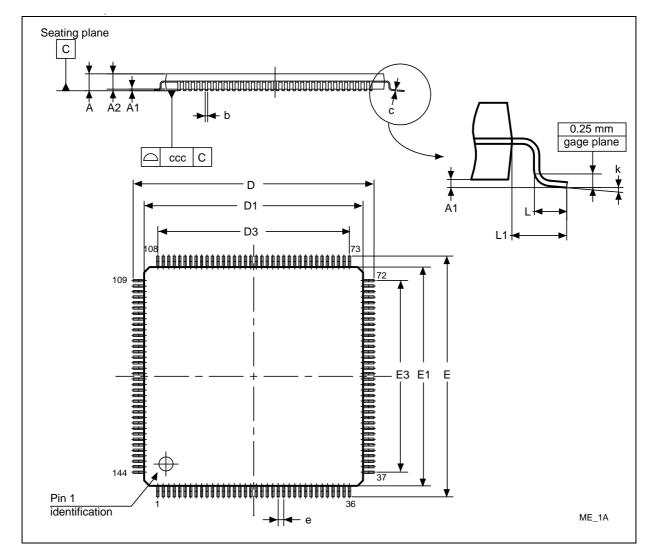
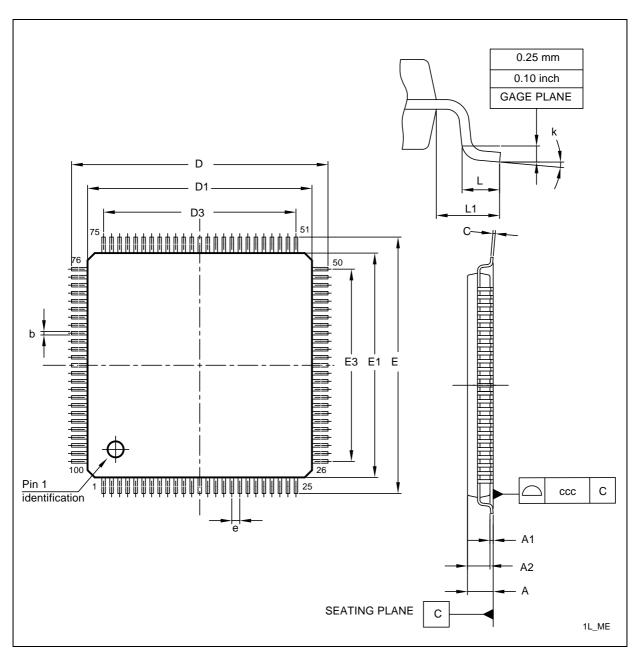



Figure 38. LQFP144 package mechanical drawing

Doc ID 14723 Rev 9

4.2.2 LQFP100 mechanical outline drawing

Appendix A Abbreviations

Table 45 lists abbreviations used in this document.

Abbreviation	Meaning
CMOS	Complementary metal-oxide-semiconductor
СРНА	Clock phase
CPOL	Clock polarity
CS	Peripheral chip select
DUT	Device under test
ECC	Error code correction
EVTO	Event out
GPIO	General purpose input/output
MC	Modulus counter
МСКО	Message clock out
MCU	Microcontroller unit
MDO	Message data out
MSEO	Message start/end out
MTFE	Modified timing format enable
NPN	Negative-positive-negative
NVUSRO	Non-volatile user options register
PTF	Post trimming frequency
PWM	Pulse width modulation
RBW	Resolution bandwidth
SCK	Serial communications clock
SOUT	Serial data out
ТСК	Test clock input
TDI	Test data input
TDO	Test data output
TMS	Test mode select

Table 45.Abbreviations

6 Revision history

Table 46 summarizes revisions to this document.

Date	Revision	Changes
28-Aug-2008	1	Initial release
25-Nov-2008	2	Table 7: TDO and TDI pins (Port pins B[4:5] are single function pins. Table 12, Table 13: Thermal characteristics added. Table 11, Table 12: EMI testing specifications split into separate tables for Normal mode and Airbag mode; data to be added in a later revision. Table 16, Table 17, Table 19, Table 20: Supply current specifications split into separate tables for Normal mode and Airbag mode; data to be added in a later revision. Table 16, Table 17, Table 19, Table 20: Supply current specifications split into separate tables for Normal mode and Airbag mode; data to be added in a later revision. Table 23: Values for I _{OL} and I _{OH} (in Conditions column) changed. Max values for V _{OH_S} , V _{OH_M} , V _{OH_F} and V _{OH_SYM} deleted. V _{ILR} max value changed. I _{PUR} min and max values changed. Table 27: Sensitivity value changed. Table 30: Most values in table changed.
05-Mar-2009	3	 Description of system requirements, controller characteristics and how controller characteristics are guaranteed updated. Electrical parameters updated. EMI characteristics are now in one table; values have been updated. ESD characteristics are now in one table. Electrical parameters are identified as either system requirements or controller characteristics. Method used to guarantee each controller characteristic is noted in table. AC Timings: 1149.1 (JTAG) Timing, Nexus Timing, External Interrupt Timing, and DSPI Timing sections deleted

Table 46. Revision history

