

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

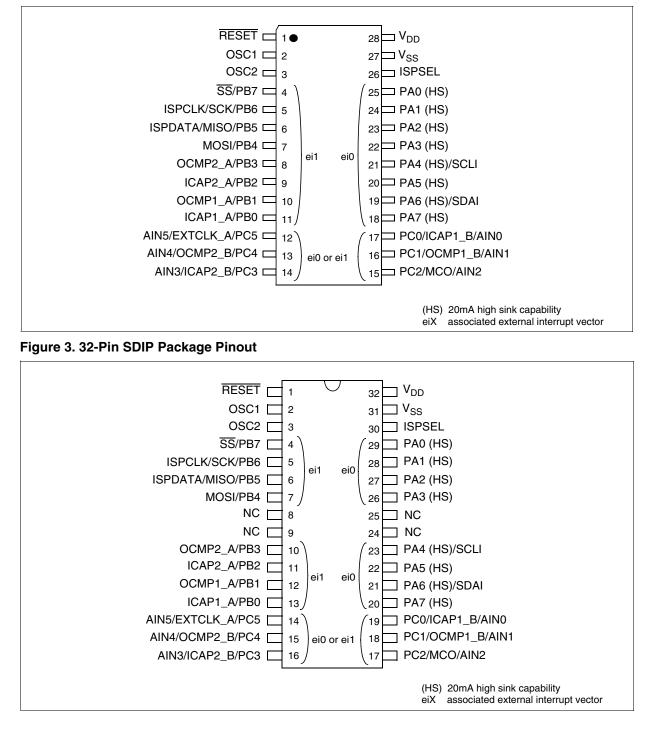
Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3.2V ~ 5.5V
Data Converters	A/D 6x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	32-SDIP (0.400", 10.16mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72c254g1b6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

_


57

13.9.1 Asynchronous RESET Pin	121
13.9.2 ISPSEL Pin	
13.10 TIMER PERIPHERAL CHARACTERISTICS	124
13.10.1 Watchdog Timer	124
13.10.2 16-Bit Timer	
13.11 COMMUNICATION INTERFACE CHARACTERISTICS	125
13.11.1 SPI - Serial Peripheral Interface	125
13.11.2 I2C - Inter IC Control Interface	127
13.12 8-BIT ADC CHARACTERISTICS	128
14 PACKAGE CHARACTERISTICS	130
14.1 PACKAGE MECHANICAL DATA	130
14.2 THERMAL CHARACTERISTICS	131
14.3 SOLDERING INFORMATION	132
15 DEVICE CONFIGURATION AND ORDERING INFORMATION	133
15.1 OPTION BYTES	133
15.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE	134
15.3 DEVELOPMENT TOOLS	136
15.3.1 PACKAGE/SOCKET FOOTPRINT PROPOSAL	137
15.4 ST7 APPLICATION NOTES	138
16 SUMMARY OF CHANGES	140

2 PIN DESCRIPTION

5/

Figure 2. 28-Pin SO Package Pinout

Pin	n°			Le	evel		Ро	rt / C	Cont	rol		Main			
32	8	Pin Name	Type	μ	ut		Inp	out		Out	tput	Main Function	Alternate Function		
SDIP32	S028		ŕ	Input	Output	float	ndm	int	ana	OD	РР	(after reset)			
18	16	PC1/OCMP1_B/AIN1	I/O	C	С _т	x	ei0	/ei1	Х	х	х	Port C1	Timer B Output Compare 1 or ADC Analog Input 1		
19	17	PC0/ICAP1_B/AIN0	I/O	C	С _т	x	ei0	/ei1	Х	х	х	Port C0	Timer B Input Capture 1 or ADC Analog Input 0		
20	18	PA7	I/O	C_T	HS	Х	е	i0		Х	Х	Port A7			
21	19	PA6 /SDAI	I/O	C_T	HS	Х		ei0		Т		Port A6	I ² C Data		
22	20	PA5	I/O	C_T	HS	Х	е	i0		Х	Х	Port A5			
23	21	PA4 /SCLI	I/O	C_T	HS	Х		ei0		Т		Port A4	I ² C Clock		
24		NC									Not	Connected			
25		NC									INO	Connecteu			
26	22	PA3	I/O	C_T	HS	Х	е	i0		Х	Х	Port A3			
27	23	PA2	I/O	C_T	HS	Х	е	i0		Х	Х	Port A2			
28	24	PA1	I/O	C_T	HS	Х	е	i0		Х	х	Port A1			
29	25	PA0	I/O	C_T	HS	Х	е	i0		Х	х	Port A0			
30	26	ISPSEL	I	С		х						In situ programming selection (Should be tied low in standard user mode).			
31	27	V _{SS}	S									Ground			
32	28	V _{DD}	S									Main power su	ipply		

Notes:

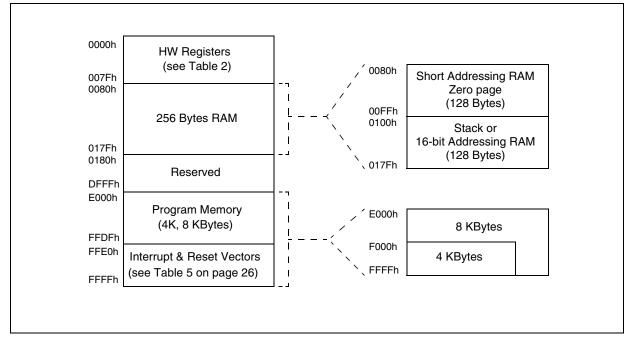
<u>ل</u>حک

1. In the interrupt input column, "eiX" defines the associated external interrupt vector. If the weak pull-up column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input.

2. In the open drain output column, "T" defines a true open drain I/O (P-Buffer and protection diode to V_{DD} are not implemented). See Section 9 "I/O PORTS" on page 30 and Section 13.8 "I/O PORT PIN CHARACTERISTICS" on page 118 for more details.

3. OSC1 and OSC2 pins connect a crystal or ceramic resonator, an external RC, or an external source to the on-chip oscillator see Section 2 "PIN DESCRIPTION" on page 7 and Section 13.5 "CLOCK AND TIM-ING CHARACTERISTICS" on page 105 for more details.

3 REGISTER & MEMORY MAP


As shown in the Figure 4, the MCU is capable of addressing 64K bytes of memories and I/O registers.

The available memory locations consist of 128 bytes of register location, 256 bytes of RAM and up to 8Kbytes of user program memory. The RAM space includes up to 128 bytes for the stack from 0100h to 017Fh.

The highest address bytes contain the user reset and interrupt vectors.

IMPORTANT: Memory locations marked as "Reserved" must never be accessed. Accessing a reserved area can have unpredictable effects on the device.

Figure 4. Memory Map

Address	Block	Register Label	Register Name	Reset Status	Remarks
0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 0039h 003Ah 003Bh 003Ch 003Ch 003Ch 003Ch 003Ch	TIMER A	TACR2 TACR1 TASR TAIC1HR TAIC1LR TAOC1HR TAOC1LR TACHR TACLR TACLR TAACLR TAACLR TAIC2HR TAIC2LR TAOC2HR TAOC2LR	Timer A Control Register 2 Timer A Control Register 1 Timer A Status Register Timer A Input Capture 1 High Register Timer A Input Capture 1 Low Register Timer A Output Compare 1 High Register Timer A Output Compare 1 Low Register Timer A Counter High Register Timer A Counter High Register Timer A Counter Low Register Timer A Alternate Counter High Register Timer A Alternate Counter High Register Timer A Alternate Counter Low Register Timer A Input Capture 2 High Register Timer A Input Capture 2 Low Register Timer A Output Compare 2 High Register Timer A Output Compare 2 Low Register	00h 00h xxh xxh 80h 00h FFh FCh FCh xxh xxh 80h 00h	R/W R/W Read Only Read Only R/W R/W R/W Read Only Read Only
0040h		MISCR2	Miscellaneous Register 2	00h	R/W
0041h 0042h 0043h 0044h 0045h 0046h 0047h 0048h 0049h 004Ah 004Bh 004Ch 004Ch 004Ch 004Ch	TIMER B	TBCR2 TBCR1 TBSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBCHR TBCLR TBACHR TBACLR TBIC2HR TBIC2LR TBIC2LR TBOC2LR	Timer B Control Register 2 Timer B Control Register 1 Timer B Status Register Timer B Input Capture 1 High Register Timer B Input Capture 1 Low Register Timer B Output Compare 1 High Register Timer B Output Compare 1 Low Register Timer B Counter High Register Timer B Counter High Register Timer B Alternate Counter High Register Timer B Alternate Counter Low Register Timer B Input Capture 2 High Register Timer B Input Capture 2 Low Register Timer B Output Compare 2 High Register Timer B Output Compare 2 Low Register	00h 00h xxh xxh 80h 00h FFh FCh FCh xxh xxh 80h 00h	R/W R/W Read Only Read Only Read Only R/W Read Only Read Only
0050h to 006Fh			Reserved (32 Bytes)		
0070h 0071h	ADC	ADCDR ADCCSR	Data Register Control/Status Register	00h 00h	Read Only R/W
0072h to 007Fh		·	Reserved (14 Bytes)		

Legend: x=undefined, R/W=read/write

Notes:

1. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents.

2. The bits associated with unavailable pins must always keep their reset value.

5 CENTRAL PROCESSING UNIT

5.1 INTRODUCTION

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.

5.2 MAIN FEATURES

- 63 basic instructions
- Fast 8-bit by 8-bit multiply
- 17 main addressing modes
- Two 8-bit index registers
- 16-bit stack pointer
- Low power modes
- Maskable hardware interrupts
- Non-maskable software interrupt

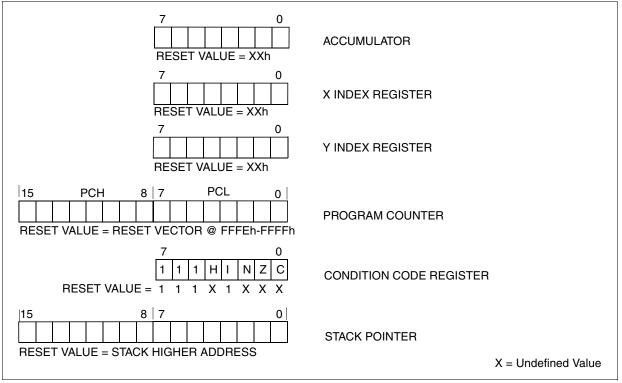
5.3 CPU REGISTERS

The six CPU registers shown in Figure 1 are not present in the memory mapping and are accessed by specific instructions.

Figure 6. CPU Registers

Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.


Index Registers (X and Y)

In indexed addressing modes, these 8-bit registers are used to create either effective addresses or temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)

The Y register is not affected by the interrupt automatic procedures (not pushed to and popped from the stack).

Program Counter (PC)

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).

6.1 LOW VOLTAGE DETECTOR (LVD)

To allow the integration of power management features in the application, the Low Voltage Detector function (LVD) generates a static reset when the V_{DD} supply voltage is below a V_{IT} reference value. This means that it secures the power-up as well as the power-down keeping the ST7 in reset.

The V_{IT} reference value for a voltage drop is lower than the V_{IT} reference value for power-on in order to avoid a parasitic reset when the MCU starts running and sinks current on the supply (hysteresis).

The LVD Reset circuitry generates a reset when V_{DD} is below:

 $-V_{IT+}$ when V_{DD} is rising

 $-V_{IT-}$ when V_{DD} is falling

The LVD function is illustrated in the Figure 9.

Provided the minimum V_{DD} value (guaranteed for the oscillator frequency) is above $V_{\text{IT-}}$, the MCU can only be in two modes:

- under full software control

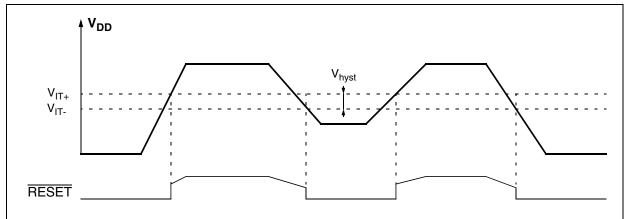
in static safe reset

Figure 9. Low Voltage Detector vs Reset

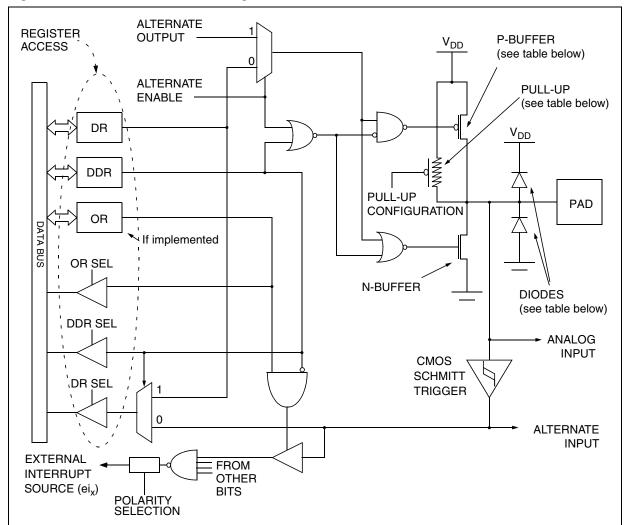
In these conditions, secure operation is always ensured for the application without the need for external reset hardware.

During a Low Voltage Detector Reset, the RESET pin is held low, thus permitting the MCU to reset other devices.

Notes:


1. The LVD allows the device to be used without any external RESET circuitry.

2. Three different reference levels are selectable through the option byte according to the application requirement.


LVD application note

Application software can detect a reset caused by the LVD by reading the LVDRF bit in the CRSR register.

This bit is set by hardware when a LVD reset is generated and cleared by software (writing zero).

I/O PORTS (Cont'd)

Figure 21. I/O Port General Block Diagram

Table 6. I/O Port Mode Options

Configuration Mode Floating with/without Interrupt		Bull Up	D Ruffor	Diodes		
	Configuration Mode	Pull-Op	F-Bullel	to V _{DD}	to V _{SS}	
Input	Floating with/without Interrupt	Off	0#	0.5		
Input	Pull-up with/without Interrupt	On				
	Push-pull	0#	On		On	
Output	Open Drain (logic level)	Pull-Up P-Buffer to V _{DD} Off Off On Off				
	True Open Drain	NI	NI	NI (see note)		

Legend: NI - not implemented

Off - implemented not activated

On - implemented and activated

Note: The diode to V_{DD} is not implemented in the true open drain pads. A local protection between the pad and V_{SS} is implemented to protect the device against positive stress.

MISCELLANEOUS REGISTERS (Cont'd)

10.3 MISCELLANEOUS REGISTER DESCRIPTION

MISCELLANEOUS REGISTER 1 (MISCR1)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
IS11	IS10	мсо	IS01	IS00	CP1	CP0	SMS

Bit 7:6 = IS1[1:0] ei1 sensitivity

The interrupt sensitivity, defined using the IS1[1:0] bits, is applied to the ei1 external interrupts. These two bits can be written only when the I bit of the CC register is set to 1 (interrupt masked).

ei1: Port B (C optional)

External Interrupt Sensitivity	IS11	IS10
Falling edge & low level	0	0
Rising edge only	0	1
Falling edge only	1	0
Rising and falling edge	1	1

Bit 5 = MCO Main clock out selection

This bit enables the MCO alternate function on the PC2 I/O port. It is set and cleared by software. 0: MCO alternate function disabled (I/O pin free for

- general-purpose I/O)
- 1: MCO alternate function enabled (f_{CPU} on I/O port)

Bit 4:3 = **ISO[1:0]** *ei0 sensitivity*

The interrupt sensitivity, defined using the IS0[1:0] bits, is applied to the ei0 external interrupts. These two bits can be written only when the I bit of the CC register is set to 1 (interrupt masked).

ei0: Port A (C optional)

5/

External Interrupt Sensitivity	IS01	IS00
Falling edge & low level	0	0
Rising edge only	0	1
Falling edge only	1	0
Rising and falling edge	1	1

Bit 2:1 = CP[1:0] CPU clock prescaler

These bits select the CPU clock prescaler which is applied in the different slow modes. Their action is conditioned by the setting of the SMS bit. These two bits are set and cleared by software

f _{CPU} in SLOW mode	CP1	CP0
f _{OSC} / 4	0	0
f _{OSC} / 8	1	0
f _{OSC} / 16	0	1
f _{OSC} / 32	1	1

Bit 0 = **SMS** *Slow mode select*

This bit is set and cleared by software. 0: Normal mode. $f_{CPU} = f_{OSC} / 2$

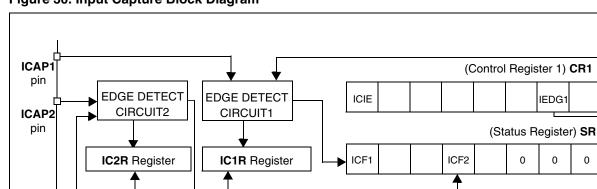
1: Slow mode. f_{CPU} is given by CP1, CP0 See low power consumption mode and MCC

chapters for more details.

IEDG1

0

0


0

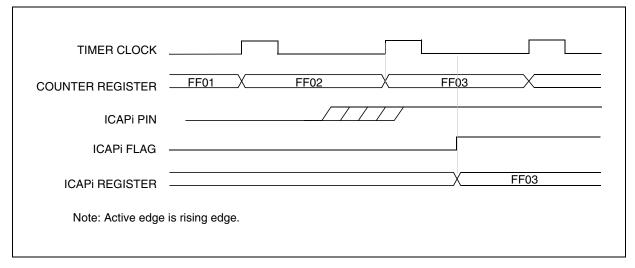
(Control Register 2) CR2

CC1

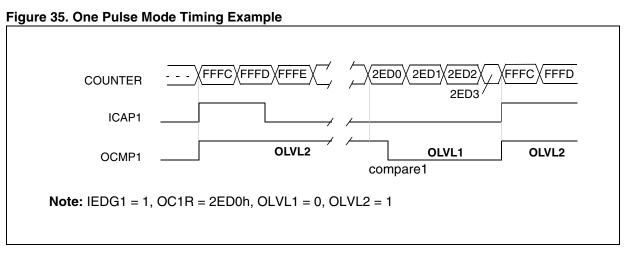
CC0 IEDG2

16-BIT TIMER (Cont'd)

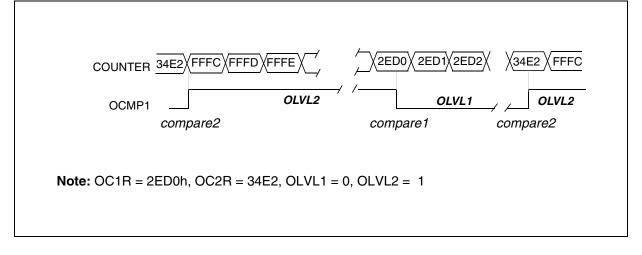
Figure 30. Input Capture Block Diagram


Figure 31. Input Capture Timing Diagram

5/


16-BIT FREE RUNNING

COUNTER


16-BIT

16-BIT TIMER (Cont'd)

Figure 36. Pulse Width Modulation Mode Timing Example

11.3 SERIAL PERIPHERAL INTERFACE (SPI)

11.3.1 Introduction

The Serial Peripheral Interface (SPI) allows fullduplex, synchronous, serial communication with external devices. An SPI system may consist of a master and one or more slaves or a system in which devices may be either masters or slaves.

The SPI is normally used for communication between the microcontroller and external peripherals or another microcontroller.

Refer to the Pin Description chapter for the devicespecific pin-out.

11.3.2 Main Features

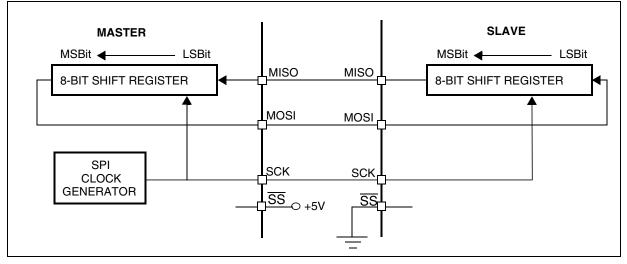
- Full duplex, three-wire synchronous transfers
- Master or slave operation
- Four master mode frequencies
- Maximum slave mode frequency = f_{CPU}/4
- Four programmable master bit rates
- Programmable clock polarity and phase
- End of transfer interrupt flag
- Write collision flag protection
- Master mode fault protection capability

11.3.3 General description

The SPI is connected to external devices through 4 alternate pins:

- MISO: Master In Slave Out pin
- MOSI: Master Out Slave In pin
- SCK: Serial Clock pin
- SS: Slave select pin

A basic example of interconnections between a single master and a single slave is illustrated on Figure 1.


The MOSI pins are connected together as are MISO pins. In this way data is transferred serially between master and slave (most significant bit first).

When the master device transmits data to a slave device via MOSI pin, the slave device responds by sending data to the master device via the MISO pin. This implies full duplex transmission with both data out and data in synchronized with the same clock signal (which is provided by the master device via the SCK pin).

Thus, the byte transmitted is replaced by the byte received and eliminates the need for separate transmit-empty and receiver-full bits. A status flag is used to indicate that the I/O operation is complete.

Four possible data/clock timing relationships may be chosen (see Figure 4) but master and slave must be programmed with the same timing mode.

Figure 37. Serial Peripheral Interface Master/Slave

SERIAL PERIPHERAL INTERFACE (Cont'd) STATUS REGISTER (SR)

Read Only

Reset Value: 0000 0000 (00h)

7							0	
SPIF	WCOL	-	MODF	-	-	-	-	

Bit 7 = **SPIF** Serial Peripheral data transfer flag. This bit is set by hardware when a transfer has been completed. An interrupt is generated if SPIE=1 in the CR register. It is cleared by a software sequence (an access to the SR register followed by a read or write to the DR register).

- Data transfer is in progress or has been approved by a clearing sequence.
- 1: Data transfer between the device and an external device has been completed.

Note: While the SPIF bit is set, all writes to the DR register are inhibited.

Bit 6 = WCOL Write Collision status.

This bit is set by hardware when a write to the DR register is done during a transmit sequence. It is cleared by a software sequence (see Figure 5). 0: No write collision occurred 1: A write collision has been detected

Bit 5 = Unused.

Bit 4 = **MODF** Mode Fault flag.

This bit is set by hardware when the \overline{SS} pin is pulled low in master mode (see Section 0.1.4.5 Master Mode Fault). An SPI interrupt can be generated if SPIE=1 in the CR register. This bit is cleared by a software sequence (An access to the SR register while MODF=1 followed by a write to the CR register).

0: No master mode fault detected

1: A fault in master mode has been detected

Bits 3-0 = Unused.

DATA I/O REGISTER (DR)

Read/Write

Reset Value: Undefined

7							0
D7	D6	D5	D4	D3	D2	D1	D0

The DR register is used to transmit and receive data on the serial bus. In the master device only a write to this register will initiate transmission/reception of another byte.

Notes: During the last clock cycle the SPIF bit is set, a copy of the received data byte in the shift register is moved to a buffer. When the user reads the serial peripheral data I/O register, the buffer is actually being read.

Warning:

A write to the DR register places data directly into the shift register for transmission.

A read to the DR register returns the value located in the buffer and not the contents of the shift register (See Figure 2).

12.2 INSTRUCTION GROUPS

The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions may

be subdivided into 13 main groups as illustrated in the following table:

Load and Transfer	LD	CLR						
Stack operation	PUSH	POP	RSP					
Increment/Decrement	INC	DEC						
Compare and Tests	CP	TNZ	BCP					
Logical operations	AND	OR	XOR	CPL	NEG			
Bit Operation	BSET	BRES						
Conditional Bit Test and Branch	BTJT	BTJF						
Arithmetic operations	ADC	ADD	SUB	SBC	MUL			
Shift and Rotates	SLL	SRL	SRA	RLC	RRC	SWAP	SLA	
Unconditional Jump or Call	JRA	JRT	JRF	JP	CALL	CALLR	NOP	RET
Conditional Branch	JRxx							
Interruption management	TRAP	WFI	HALT	IRET				
Condition Code Flag modification	SIM	RIM	SCF	RCF				

Using a pre-byte

The instructions are described with one to four bytes.

In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three different prebyte opcodes are defined. These prebytes modify the meaning of the instruction they precede.

The whole instruction becomes:

- PC-2 End of previous instruction
- PC-1 Prebyte
- PC Opcode

5/

PC+1 Additional word (0 to 2) according to the number of bytes required to compute the effective address

These prebytes enable instruction in Y as well as indirect addressing modes to be implemented. They precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes are:

- PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent addressing mode by a Y one.
- PIX 92 Replace an instruction using direct, direct bit, or direct relative addressing mode to an instruction using the corresponding indirect addressing mode. It also changes an instruction using X indexed addressing mode to an instruction using indirect X indexed addressing mode.
- PIY 91 Replace an instruction using X indirect indexed addressing mode by a Y one.

13.6 MEMORY CHARACTERISTICS

Subject to general operating conditions for V_{DD} , f_{OSC} , and T_A unless otherwise specified.

13.6.1 RAM and Hardware Registers

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{RM}	Data retention mode ¹⁾	HALT mode (or RESET)	1.6			V

13.6.2 FLASH Program Memory

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{A(prog)}	Programming temperature range ²⁾		0	25	70	°C
t _{prog}	Programming time for 1~16 bytes 3)	T _A =+25°C		8	25	ms
	Programming time for 4 or 8kBytes	T _A =+25°C		2.1	6.4	sec
t _{ret}	Data retention ⁵⁾	T _A =+55°C ⁴⁾	20			years
N _{RW}	Write erase cycles ⁵⁾	T _A =+25°C	100			cycles

Notes:

1. Minimum V_{DD} supply voltage without losing data stored in RAM (in HALT mode or under RESET) or in hardware registers (only in HALT mode). Guaranteed by construction, not tested in production.

2. Data based on characterization results, tested in production at T_A=25°C.

3. Up to 16 bytes can be programmed at a time for a 4kBytes FLASH block (then up to 32 bytes at a time for an 8k device)

4. The data retention time increases when the T_A decreases.

5. Data based on reliability test results and monitored in production.

EMC CHARACTERISTICS (Cont'd)

13.7.2 Absolute Electrical Sensitivity

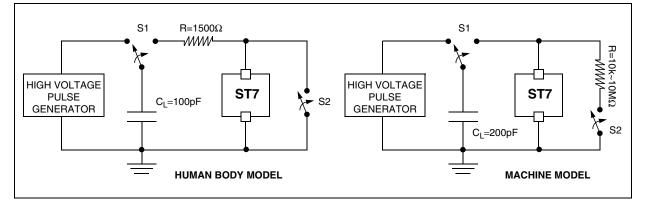
Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the AN1181 ST7 application note.

13.7.2.1 Electro-Static Discharge (ESD)

Electro-Static Discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends of the number of supply pins of the device (3 parts*(n+1) supply pin). Two models are usually simulated: Human Body Model and Machine Model. This test conforms to the JESD22-A114A/A115A standard. See Figure 71 and the following test sequences.

Human Body Model Test Sequence

- C_L is loaded through S1 by the HV pulse generator.
- S1 switches position from generator to R.
- A discharge from C_L through R (body resistance) to the ST7 occurs.
- S2 must be closed 10 to 100ms after the pulse delivery period to ensure the ST7 is not left in charge state. S2 must be opened at least 10ms prior to the delivery of the next pulse.

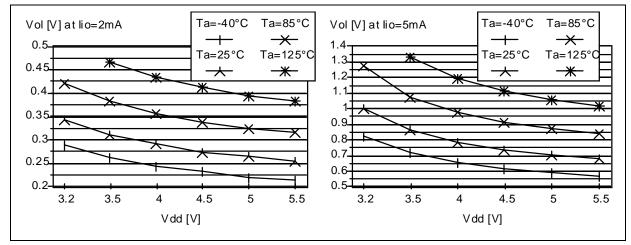

Absolute Maximum Ratings

Machine Model Test Sequence

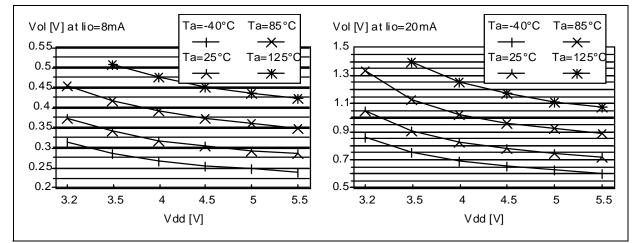
- C_L is loaded through S1 by the HV pulse generator.
- S1 switches position from generator to ST7.
- A discharge from C_L to the ST7 occurs.
- S2 must be closed 10 to 100ms after the pulse delivery period to ensure the ST7 is not left in charge state. S2 must be opened at least 10ms prior to the delivery of the next pulse.
- R (machine resistance), in series with S2, ensures a slow discharge of the ST7.

Symbol	Ratings	Conditions	Maximum value 1)	Unit
V _{ESD(HBM)}	Electro-static discharge voltage (Human Body Model)	T _A =+25°C	2000	V
V _{ESD(MM)}	Electro-static discharge voltage (Machine Model)	T _A =+25°C	200	V

Figure 71. Typical Equivalent ESD Circuits



Notes:


1. Data based on characterization results, not tested in production.

I/O PORT PIN CHARACTERISTICS (Cont'd)

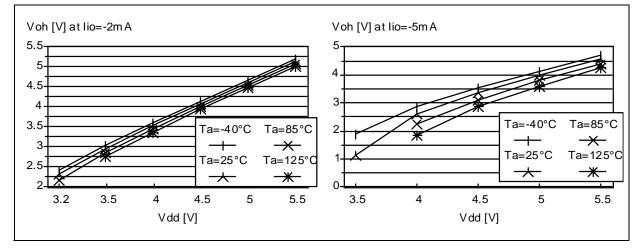
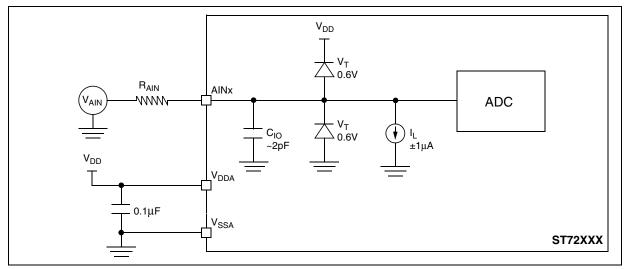

Figure 83. Typical V_{OL} vs. V_{DD} (standard I/Os)

Figure 84. Typical V_{OL} vs. V_{DD} (high-sink I/Os)


5

13.12 8-BIT ADC CHARACTERISTICS

Subject to general operating conditions for V_{DD}, f_{OSC}, and T_A unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
f _{ADC}	ADC clock frequency				4	MHz
V _{AIN}	Conversion range voltage ²⁾		V _{SSA}		V_{DDA}	V
R _{AIN}	External input resistor				10 ³⁾	kΩ
C _{ADC}	Internal sample and hold capacitor			6		pF
t _{STAB}	Stabilization time after ADC enable		0 ⁴⁾			
	Conversion time (Sample+Hold)	f _{CPU} =8MHz, f _{ADC} =4MHz	3			μs
t _{ADC}	 Sample capacitor loading time Hold conversion time 		4 8			1/f _{ADC}

Figure 95. Typical Application with ADC

Notes:

1. Unless otherwise specified, typical data are based on $T_A=25^{\circ}C$ and $V_{DD}-V_{SS}=5V$. They are given only as design guide-lines and are not tested.

2. When V_{DDA} and V_{SSA} pins are not available on the pinout, the ADC refer to V_{DD} and V_{SS} .

3. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than $10k\Omega$). Data based on characterization results, not tested in production.

4. The stabilization time of the AD converter is masked by the first t_{LOAD} . The first conversion after the enable is then always valid.

IDENTIFICATION	DESCRIPTION
AN 982	USING ST7 WITH CERAMIC RESONATOR
AN1014	HOW TO MINIMIZE THE ST7 POWER CONSUMPTION
AN1015	SOFTWARE TECHNIQUES FOR IMPROVING MICROCONTROLLER EMC PERFORMANCE
AN1040	MONITORING THE VBUS SIGNAL FOR USB SELF-POWERED DEVICES
AN1070	ST7 CHECKSUM SELF-CHECKING CAPABILITY
AN1324	CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS
AN1477	EMULATED DATA EEPROM WITH XFLASH MEMORY
AN1502	EMULATED DATA EEPROM WITH ST7 HDFLASH MEMORY
AN1529	EXTENDING THE CURRENT & VOLTAGE CAPABILITY ON THE ST7265 VDDF SUPPLY
AN1530	ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC OSCIL- LATOR
PROGRAMMING A	ND TOOLS
AN 978	KEY FEATURES OF THE STVD7 ST7 VISUAL DEBUG PACKAGE
AN 983	KEY FEATURES OF THE COSMIC ST7 C-COMPILER PACKAGE
AN 985	EXECUTING CODE IN ST7 RAM
AN 986	USING THE INDIRECT ADDRESSING MODE WITH ST7
AN 987	ST7 SERIAL TEST CONTROLLER PROGRAMMING
AN 988	STARTING WITH ST7 ASSEMBLY TOOL CHAIN
AN 989	GETTING STARTED WITH THE ST7 HIWARE C TOOLCHAIN
AN1039	ST7 MATH UTILITY ROUTINES
AN1064	WRITING OPTIMIZED HIWARE C LANGUAGE FOR ST7
AN1071	HALF DUPLEX USB-TO-SERIAL BRIDGE USING THE ST72611 USB MICROCONTROLLER
AN1106	TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7
AN1179	PROGRAMMING ST7 FLASH MICROCONTROLLERS IN REMOTE ISP MODE (IN-SITU PRO- GRAMMING)
AN1446	USING THE ST72521 EMULATOR TO DEBUG A ST72324 TARGET APPLICATION
AN1478	PORTING AN ST7 PANTA PROJECT TO CODEWARRIOR IDE
AN1527	DEVELOPING A USB SMARTCARD READER WITH ST7SCR
AN1575	ON-BOARD PROGRAMMING METHODS FOR XFLASH AND HDFLASH ST7 MCUS

57

16 SUMMARY OF CHANGES

Description of the changes between the current release of the specification and the previous one.

Rev.	Main changes	Date
2.7	Changed Status from Preliminary Data to Datasheet Changed V _{IN} on page 97 (in the voltage characteristics table). Changed titles of Figure 82 on page 119 and Figure 85 on page 120. Updated Section 15.4 on page 138. Changed description of FMP option bit in Section 15.1 on page 133	Sept-01
2.8	Modified description of external and internal RC in "MULTI-OSCILLATOR (MO)" on page 21	June 03
3	Removed preliminary status. Updated Section 14.3 on page 132 for Ecopack Removed resonators for automotive applications in Section 13.5.3.2 on page 107	March 08

