NXP USA Inc. - MCIMX6G2AVM07AB Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM® Cortex®-A7
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	696MHz
Co-Processors/DSP	Multimedia; NEON™ SIMD
RAM Controllers	LPDDR2, DDR3, DDR3L
Graphics Acceleration	No
Display & Interface Controllers	LCD, LVDS
Ethernet	10/100Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 2.8V, 3.3V
Operating Temperature	-40°C ~ 125°C (TJ)
Security Features	ARM TZ, A-HAB, CAAM, CSU, SJC, SNVS
Package / Case	289-LFBGA
Supplier Device Package	289-MAPBGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx6g2avm07ab

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

i.MX 6UltraLite introduction

Peripheral Name	Instance	G0	G1	G2	G3
SDIO	uSDHC1	Y	Y	Y	Y
	uSDHC2	Y	Y	Y	Y
UART	UART1	Y	Y	Y	Y
	UART2	Y	Y	Y	Y
	UART3	Y	Y	Y	Y
	UART4	Y	Y	Y	Y
	UART5	NA	Y	Y	Y
	UART6	NA	Y	Y	Y
	UART7	NA	Y	Y	Y
	UART8	NA	Y	Y	Y
ISO7816-3	SIM1	NA	Y	Y	Y
	SIM2	NA	Y	Y	Y
12C	I2C1	Y	Y	Y	Y
	I2C2	Y	Y	Y	Y
	I2C3	NA	Y	Y	Y
	I2C4	NA	Y	Y	Y
SPI	ECSPI1	Y	Y	Y	Y
	ECSPI2	Y	Y	Y	Y
	ECSPI3	NA	Y	Y	Y
	ECSPI4	NA	Y	Y	Y
I2S/SAI	SAI1	Y	Y	Y	Y
	SAI2	NA	Y	Y	Y
	SAI3	NA	Y	Y	Y

Table 2. Detailed Peripherals I	Information (continu	ıed) ^{1,2,3}
---------------------------------	----------------------	-----------------------

i.MX 6UltraLite introduction

Peripheral Name	Instance	G0	G1	G2	G3
Timer/PWM	EPIT1	Y	Y	Y	Y
	EPIT2	NA	Y	Y	Y
	GPT1	Y	Y	Y	Y
	GPT2	NA	Y	Y	Y
	PWM1	Y	Y	Y	Y
	PWM2	Y	Y	Y	Y
	PWM3	Y	Y	Y	Y
	PWM4	Y	Y	Y	Y
	PWM5	NA	Y	Y	Y
	PWM6	NA	Y	Y	Y
	PWM7	NA	Y	Y	Y
	PWM8	NA	Y	Y	Y
ADC	ADC1	Y	Y	Y	Y
	ADC2	NA	NA	Y	Y

Table 2. Detailed Peripherals Information (continued)^{1,2,3}

¹For detailed pin mux information, please refer to "Chapter 4 External Signals and Pin Multiplexing" of *i.MX* 6UltraLite *Reference Manual* (IMX6ULRM).

² Y stands for yes, NA stands for not available.

³ G0 and G3 are offered in automotive grade.

1.2 Features

The i.MX 6UltraLite processors are based on ARM Cortex-A7 MPCore[™] Platform, which has the following features:

- Supports single ARM Cortex-A7 MPCore (with TrustZone) with:
 - 32 KBytes L1 Instruction Cache
 - 32 KBytes L1 Data Cache
 - Private Timer
 - Cortex-A7 NEON Media Processing Engine (MPE) Co-processor
 - General Interrupt Controller (GIC) with 128 interrupts support
- Global Timer

٠

- Snoop Control Unit (SCU)
- 128 KB unified I/D L2 cache
- Single Master AXI bus interface output of L2 cache
- Frequency of the core (including Neon and L1 cache), as per Table 10, "Operating Ranges," on page 23.

Modules list

Block Mnemonic	Block Name	Subsystem	Brief Description
uSDHC1 uSDHC2	SD/MMC and SDXC Enhanced Multi-Media Card / Secure Digital Host Controller	Connectivity Peripherals	 i.MX 6UltraLite specific SoC characteristics: All four MMC/SD/SDIO controller IPs are identical and are based on the uSDHC IP. They are: Fully compliant with MMC command/response sets and Physical Layer as defined in the Multimedia Card System Specification, v4.5/4.2/4.3/4.4/4.41/ including high-capacity (size > 2 GB) cards HC MMC. Fully compliant with SD command/response sets and Physical Layer as defined in the SD Memory Card Specifications, v3.0 including high-capacity SDXC cards up to 2 TB. Fully compliant with SDIO command/response sets and interrupt/read-wait mode as defined in the SDIO Card Specification, Part E1, v3.0 Two ports support: 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to 52 MHz in both SDR and DDR modes (104 MB/s max) 4-bit or 8-bit transfer mode specifications for eMMC chips up to 200 MHz in HS200 mode (200 MB/s max)
USB	Universal Serial Bus 2.0	Connectivity Peripherals	 USBO2 (USB OTG1 and USB OTG2) contains: Two high-speed OTG 2.0 modules with integrated HS USB PHYs Support eight Transmit (TX) and eight Receive (Rx) endpoints, including endpoint 0
WDOG1 WDOG3	Watch Dog	Timer Peripherals	The Watch Dog Timer supports two comparison points during each counting period. Each of the comparison points is configurable to evoke an interrupt to the ARM core, and a second point evokes an external event on the WDOG line.
WDOG2 (TZ)	Watch Dog (TrustZone)	Timer Peripherals	The TrustZone Watchdog (TZ WDOG) timer module protects against TrustZone starvation by providing a method of escaping normal mode and forcing a switch to the TZ mode. TZ starvation is a situation where the normal OS prevents switching to the TZ mode. Such situation is undesirable as it can compromise the system's security. Once the TZ WDOG module is activated, it must be serviced by TZ software on a periodic basis. If servicing does not take place, the timer times out. Upon a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces switching to the TZ mode. If it is still not served, the TZ WDOG asserts a security violation signal to the CSU. The TZ WDOG module cannot be programmed or deactivated by a normal mode SW.

Table 3. i.MX 6UltraLite Modules List (continued)

Modules list

3.1 Special signal considerations

Table 4 lists special signal considerations for the i.MX 6UltraLite processors. The signal names are listed in alphabetical order.

The package contact assignments can be found in Section 6, "Package information and contact assignments"." Signal descriptions are provided in the *i.MX 6UltraLite Reference Manual* (IMX6ULRM).

Signal Name	Remarks
CCM_CLK1_P/ CCM_CLK1_N	 One general purpose differential high speed clock Input/output is provided. It can be used: To feed external reference clock to the PLLs and further to the modules inside SoC. To output internal SoC clock to be used outside the SoC as either reference clock or as a functional clock for peripherals. See the <i>i.MX</i> 6UltraLite Reference Manual (IMX6ULRM) for details on the respective clock trees. Alternatively one may use single ended signal to drive CLK1_P input. In this case corresponding CLK1_N input should be tied to the constant voltage level equal 1/2 of the input signal swing. Termination should be provided in case of high frequency signals. After initialization, the CLK1 input/output can be disabled (if not used). If unused either or both of the CLK1_N/P pairs may remain unconnected.
RTC_XTALI/RTC_XTALO	If the user wishes to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz crystal, (\leq 100 k Ω ESR, 10 pF load) should be connected between RTC_XTALI and RTC_XTALO. Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO to either power or ground (>100 M Ω). This will debias the amplifier and cause a reduction of startup margin. Typically RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V. If it is desired to feed an external low frequency clock into RTC_XTALI, the RTC_XTALO pin must remain unconnected or driven with a complimentary signal. The logic level of this forcing clock should not exceed VDD_SNVS_CAP level and the frequency should be <100 kHz under typical conditions. In case when high accuracy real time clock are not required system may use internal low frequency ring oscillator. It is recommended to connect RTC_XTALI to GND and keep RTC_XTALO unconnected.
XTALI/XTALO	A 24.0 MHz crystal should be connected between XTALI and XTALO. The crystal must be rated for a maximum drive level of 250 μ W. An ESR (equivalent series resistance) of typical 80 Ω is recommended. NXP BSP (board support package) software requires 24 MHz on XTALI/XTALO. The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this case, XTALO must be directly driven by the external oscillator and XTALI is mounted with 18 pF capacitor. Please refer to the EVK board reference design for details. The logic level of this forcing clock cannot exceed NVCC_PLL level. If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter requirements. See OSC24M chapter and relevant interface specifications chapters for details.

Table 4. Special Signal Considerations

Rating	Test Conditions	Symbol	Value	Unit	Notes
Junction to Board	—	$R_{ hetaJB}$	21.8	°C/W	5
Junction to Case	_	$R_{ ext{ heta}JC}$	19.3	°C/W	6
Junction to Package Top	Natural Convection	Ψ_{JT}	2.3	°C/W	7
Junction to Package Bottom	Natural Convection	Ψ_{JB}	12.0	°C/W	8

Table 9. 14x14 MM (VM) Thermal Resistance Data¹

¹ As per JEDEC JESD51-2 the intent of (thermal resistance) measurement is solely for a thermal performance comparison of one package to another in a standardized environment. This methodology is not meant to and will not predict the performance of a package in an application-specific environment.

² Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

³ Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.

⁴ Per JEDEC JESD51-6 with the board horizontal.

⁵ Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

⁶ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

⁷ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

⁸ Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB

4.1.3 Operating ranges

Table 10 provides the operating ranges of the i.MX 6UltraLite processors. For details on the chip's power structure, see the "Power Management Unit (PMU)" chapter of the *i.MX* 6UltraLite Reference Manual (IMX6ULRM).

4.3.2.2 LDO_2P5

The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see Table 10 for minimum and maximum input requirements). Typical Programming Operating Range is 2.25 V to 2.75 V with the nominal default setting as 2.5 V. LDO_2P5 supplies the DDR IOs, USB Phy, E-fuse module, and PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased low-precision weak-regulator is included that can be enabled for applications needing to keep the output voltage alive during low-power modes where the main regulator driver and its associated global bandgap reference module are disabled. The output of the weak-regulator is not programmable and is a function of the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output is 2.525 V and its output impedance is approximately $40 \ \Omega$

For information on external capacitor requirements for this regulator, see the *Hardware Development Guide for i.MX 6UltraLite Applications Processors* (IMX6ULHDG).

For additional information, see the *i.MX* 6UltraLite Reference Manual (IMX6ULRM).

4.3.2.3 LDO_USB

The LDO_USB module implements a programmable linear-regulator function from the USB VUSB voltages (4.4 V–5.5 V) to produce a nominal 3.0 V output voltage. A programmable brown-out detector is included in the regulator that can be used by the system to determine when the load capability of the regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows the user to select to run the regulator from either USB VBUS supply, when both are present. If only one of the USB VBUS voltages is present, then, the regulator automatically selects this supply. Current limit is also included to help the system meet in-rush current targets.

For information on external capacitor requirements for this regulator, see the Hardware Development Guide for *i.MX 6UltraLite Applications Processors* (IMX6ULHDG).

For additional information, see the *i.MX* 6UltraLite Reference Manual (IMX6ULRM).

4.4 PLL's electrical characteristics

4.4.1 Audio/Video PLL's electrical parameters

Parameter	Value
Clock output range	650 MHz ~1.3 GHz
Reference clock	24 MHz
Lock time	<11250 reference cycles

Table 16. Audio/Video PLL's Electrical Parameters

4.5 On-Chip oscillators

4.5.1 OSC24M

This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implement an oscillator. The oscillator is powered from NVCC_PLL.

The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight forward biased-inverter implementation is used.

4.5.2 OSC32K

This block implements an amplifier that when combined with a suitable quartz crystal and external load capacitors implement a low power oscillator. It also implements a power mux such that it can be powered from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes power from VDD_HIGH_IN when that supply is available and transitions to the backup battery when VDD_HIGH_IN is lost.

In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 K will automatically switch to a crude internal ring oscillator. The frequency range of this block is approximately 10–45 kHz. It highly depends on the process, voltage, and temperature.

The OSC32k runs from VDD_SNVS_CAP supply, which comes from the

VDD_HIGH_IN/VDD_SNVS_IN. The target battery is a ~3 V coin cell. Proper choice of coin cell type is necessary for chosen VDD_HIGH_IN range. Appropriate series resistor (Rs) must be used when connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For example, for Panasonic ML621:

- Average Discharge Voltage is 2.5 V
- Maximum Charge Current is 0.6 mA

For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k.

	Min	Тур	Max	Comments
Fosc	—	32.768 KHz		This frequency is nominal and determined mainly by the crystal selected. 32.0 K would work as well.
Current consumption		4 μΑ		The 4 μ A is the consumption of the oscillator alone (OSC32k). Total supply consumption will depend on what the digital portion of the RTC consumes. The ring oscillator consumes 1 μ A when ring oscillator is inactive, 20 μ A when the ring oscillator is running. Another 1.5 μ A is drawn from vdd_rtc in the power_detect block. So, the total current is 6.5 μ A on vdd_rtc when the ring oscillator is not running.
Bias resistor		14 MΩ		This integrated bias resistor sets the amplifier into a high gain state. Any leakage through the ESD network, external board leakage, or even a scope probe that is significant relative to this value will debias the amp. The debiasing will result in low gain, and will impact the circuit's ability to start up and maintain oscillations.

Table 21. OSC32K Main Characteristics

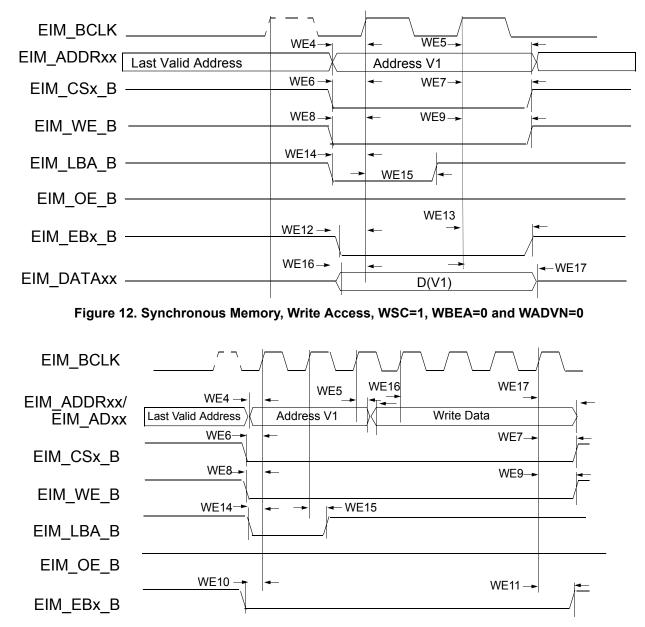


Figure 13. Muxed Address/Data (A/D) Mode, Synchronous Write Access, WSC=6, ADVA=0, ADVN=1, and ADH=1

NOTE

In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the data bus.

(VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock, CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted.

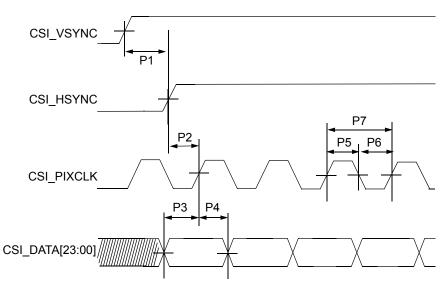


Figure 32. CSI Gated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge

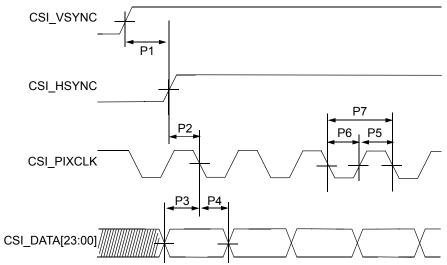


Figure 33. CSI Gated Clock Mode—Sensor Data at Rising Edge, Latch Data at Falling Edge

ID	Parameter	Symbol	Min.	Max.	Units
P1	CSI_VSYNC to CSI_HSYNC time	tV2H	33.5	_	ns
P2	CSI_HSYNC setup time	tHsu	1	—	ns
P3	CSI DATA setup time	tDsu	1	_	ns

The following subsections describe the CSI timing in gated and ungated clock modes.

4.12.2 ECSPI timing parameters

This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing parameters for master and slave modes.

4.12.2.1 ECSPI master mode timing

Figure 35 depicts the timing of ECSPI in master mode. Table 46 lists the ECSPI master mode timing characteristics.

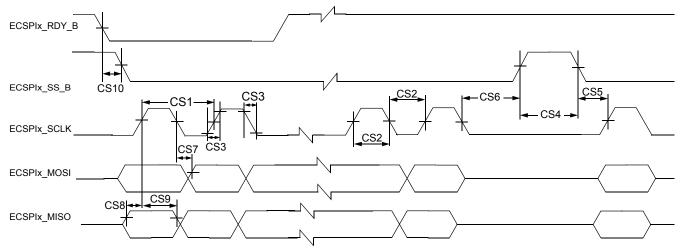


Figure 35. ECSPI Master Mode Timing Diagram

ID	Parameter	Symbol	Min	Мах	Unit
CS1	ECSPIx_SCLK Cycle Time-Read ECSPIx_SCLK Cycle Time-Write	t _{clk}	43 15	_	ns
CS2	ECSPIx_SCLK High or Low Time-Read ECSPIx_SCLK High or Low Time-Write	t _{SW}	21.5 7	—	ns
CS3	ECSPIx_SCLK Rise or Fall ¹	t _{RISE/FALL}	—	—	ns
CS4	ECSPIx_SS_B pulse width	t _{CSLH}	Half ECSPIx_SCLK period	—	ns
CS5	ECSPIx_SS_B Lead Time (CS setup time)	t _{SCS}	Half ECSPIx_SCLK period - 4	—	ns
CS6	ECSPIx_SS_B Lag Time (CS hold time)	t _{HCS}	Half ECSPIx_SCLK period - 2	—	ns
CS7	ECSPIx_MOSI Propagation Delay (C _{LOAD} = 20 pF)	t _{PDmosi}	-1	1	ns
CS8	ECSPIx_MISO Setup Time	t _{Smiso}	14	—	ns
CS9	ECSPIx_MISO Hold Time	t _{Hmiso}	0	—	ns
CS10	RDY to ECSPIx_SS_B Time ²	t _{SDRY}	5	—	ns

Table 46	ECSPI	Master	Mode	Timing	Parameters
----------	-------	--------	------	--------	------------

¹ See specific I/O AC parameters Section 4.7, "I/O AC parameters"."

4.12.3 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC timing

This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single Data Rate) timing, eMMC4.4/4.41/4.5 (Dual Date Rate) timing and SDR104/50(SD3.0) timing.

4.12.3.1 SD/eMMC4.3 (single data rate) AC timing

Figure 37 depicts the timing of SD/eMMC4.3, and Table 48 lists the SD/eMMC4.3 timing characteristics.

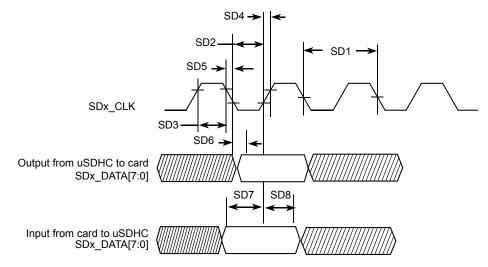


Figure 37. SD/eMMC4.3 Timing

Table 48.	SD/eMMC4.3	8 Interface	Timing	Specification
-----------	------------	-------------	--------	---------------

ID	Parameter	Symbols	Min	Мах	Unit		
	Card Input Clock	(
SD1	Clock Frequency (Low Speed)	f _{PP} ¹	0	400	kHz		
	Clock Frequency (SD/SDIO Full Speed/High Speed)	f _{PP} ²	0	25/50	MHz		
	Clock Frequency (MMC Full Speed/High Speed)	f _{PP} ³	0	20/52	MHz		
	Clock Frequency (Identification Mode)	f _{OD}	100	400	kHz		
SD2	Clock Low Time	t _{WL}	7	—	ns		
SD3	Clock High Time	t _{WH}	7	—	ns		
SD4	Clock Rise Time	t _{TLH}	—	3	ns		
SD5	Clock Fall Time	t _{THL}	—	3	ns		
	uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)						
SD6	uSDHC Output Delay	t _{OD}	-6.6	3.6	ns		

ID	Parameter	Symbol	Min	Max	Unit
L1	LCD pixel clock frequency	tCLK(LCD)		150	MHz
L2	LCD pixel clock high (falling edge capture)	tCLKH(LCD)	3	—	ns
L3	LCD pixel clock low (rising edge capture)	tCLKL(LCD)	3	—	ns
L4	LCD pixel clock high to data valid (falling edge capture)	td(CLKH-DV)	-1	1	ns
L5	LCD pixel clock low to data valid (rising edge capture)	td(CLKL-DV)	-1	1	ns
L6	LCD pixel clock high to control signal valid (falling edge capture)	td(CLKH-CTRLV)	-1	1	ns
L7	LCD pixel clock low to control signal valid (rising edge capture)	td(CLKL-CTRLV)	-1	1	ns

Table 59. LCD Timing Parameters

4.12.8.1 LCDIF signal mapping

Table 60 lists the details about the mapping signals.

Pin name	8-bit DOTCLK LCD IF	16-bit DOTCLK LCD IF	18-bit DOTCLK LCD IF	24-bit DOTCLK LCD IF	8-bit DVI LCD IF
LCD_RS	—		—	—	CCIR_CLK
LCD_VSYNC* (Two options)	LCD_VSYNC	LCD_VSYNC	LCD_VSYNC	LCD_VSYNC	—
LCD_HSYNC	LCD_HSYNC	LCD_HSYNC	LCD_HSYNC	LCD_HSYNC	—
LCD_DOTCLK	LCD_DOTCLK	LCD_DOTCLK	LCD_DOTCLK	LCD_DOTCLK	—
LCD_ENABLE	LCD_ENABLE	LCD_ENABLE	LCD_ENABLE	LCD_ENABLE	—
LCD_D23	—	_	_	R[7]	—
LCD_D22	—	_	—	R[6]	—
LCD_D21	—	_	—	R[5]	—
LCD_D20	—	_	—	R[4]	—
LCD_D19	_	_	—	R[3]	—
LCD_D18	_	_	—	R[2]	—
LCD_D17	—	_	R[5]	R[1]	—
LCD_D16	—	_	R[4]	R[0]	—
LCD_D15 / VSYNC*	_	R[4]	R[3]	G[7]	—
LCD_D14 / HSYNC**	—	R[3]	R[2]	G[6]	—
LCD_D13 / LCD_DOTCLK **	—	R21]	R[1]	G[5]	—

Table 60. LCD Signal Parameters

				r	1
LCD_D12 / ENABLE**	_	R[1]	R[0]	G[4]	—
LCD_D11	—	R[0]	G[5]	G[3]	—
LCD_D10	—	G[5]	G[4]	G[2]	—
LCD_D9	_	G[4]	G[3]	G[1]	—
LCD_D8	_	G[3]	G[2]	G[0]	—
LCD_D8	_	G[3]	G[2]	G[0]	—
LCD_D7	R[2]	G[2]	G[1]	B[7]	Y/C[7]
LCD_D6	R[1]	G[1]	G[0]	B[6]	Y/C[6]
LCD_D5	R[0]	G[0]	B[5]	B[5]	Y/C[5]
LCD_D4	G[2]	B[4]	B[4]	B[4]	Y/C[4]
LCD_D3	G[1]	B[3]	B[3]	B[3]	Y/C[3]
LCD_D2	G[0]	B[2]	B[2]	B[2]	Y/C[2]
LCD_D1	B[1]	B[1]	B[1]	B[1]	Y/C[1]
LCD_D0	B[0]	B[0]	B[0]	B[0]	Y/C[0]
LCD_RESET	LCD_RESET	LCD_RESET	LCD_RESET	LCD_RESET	—
LCD_BUSY / LCD_VSYNC	LCD_BUSY (or optional LCD_VSYNC)	LCD_BUSY (or optional LCD_VSYNC)	LCD_BUSY (or optional LCD_VSYNC)	LCD_BUSY (or optional LCD_VSYNC)	—

Table 60. LCD Signal Parameters (continued)

4.12.9 QUAD SPI (QSPI) timing parameters

Measurement conditions are with 35 pF load on SCK and SIO pins and input slew rate of 1 V/ns.

4.12.9.1 SDR mode

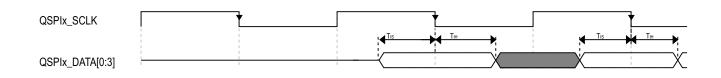
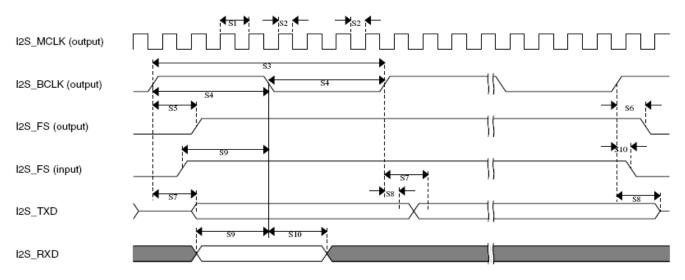


Figure 49. QuadSPI Input/Read Timing (SDR mode with internal sampling)

Symbol	Parameter	Val	ue	Unit
Cymbol	i arameter	Min	Мах	Onit
T _{CSS}	Chip select output setup time	3	_	SCK cycle(s)
T _{CSH}	Chip select output hold time	3	_	SCK cycle(s)

Table 66. QuadSPI Output/Write Timing (DDR mode)

NOTE


 T_{css} and T_{csh} are configured by the QuadSPIx_FLSHCR register, the default value of 3 are shown on the timing. Please refer to the *i.MX 6UltraLite Reference Manual (IMX6ULRM)* for more details.

4.12.10 SAI/I2S switching specifications

This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes. All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.

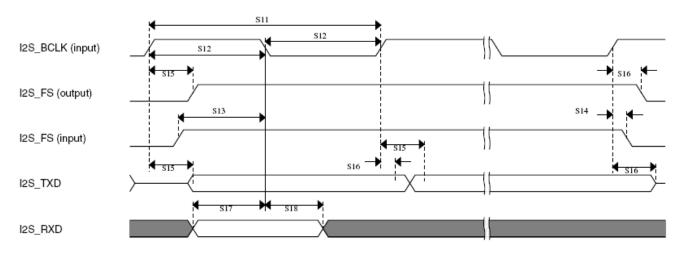

Num	Characteristic	Min	Мах	Unit
S1	SAI_MCLK cycle time	2 x t _{sys}	—	ns
S2	SAI_MCLK pulse width high/low	40%	60%	MCLK period
S3	SAI_BCLK cycle time	4 x t _{sys}	—	ns
S4	SAI_BCLK pulse width high/low	40%	60%	BCLK period
S5	SAI_BCLK to SAI_FS output valid	—	15	ns
S6	SAI_BCLK to SAI_FS output invalid	0	_	ns
S7	SAI_BCLK to SAI_TXD valid	—	15	ns
S8	SAI_BCLK to SAI_TXD invalid	0	_	ns
S9	SAI_RXD/SAI_FS input setup before SAI_BCLK	15	—	ns
S10	SAI_RXD/SAI_FS input hold after SAI_BCLK	0	—	ns

Table 67. Master	Mode SAI Timing
------------------	-----------------

Figure 55. SAI Timing — Master Modes

Num	Characteristic	Min	Max	Unit
S11	SAI_BCLK cycle time (input)	4 x t _{sys}	_	ns
S12	SAI_BCLK pulse width high/low (input)	40%	60%	BCLK period
S13	SAI_FS input setup before SAI_BCLK	10	_	ns
S14	SAI_FA input hold after SAI_BCLK	2	—	ns
S15	SAI_BCLK to SAI_TXD/SAI_FS output valid	—	20	ns
S16	SAI_BCLK to SAI_TXD/SAI_FS output invalid	0	_	ns
S17	SAI_RXD setup before SAI_BCLK	10	—	ns
S18	SAI_RXD hold after SAI_BCLK	2	—	ns

Figure 56. SAI Timing — Slave Modes

ID	Parameter ^{1,2}	All Freq	Unit		
	Falameter /	Min Max		onit	
SJ9	JTAG_TMS, JTAG_TDI data hold time	25	_	ns	
SJ10	JTAG_TCK low to JTAG_TDO data valid	—	44	ns	
SJ11	JTAG_TCK low to JTAG_TDO high impedance	—	44	ns	
SJ12	JTAG_TRST_B assert time	100	—	ns	
SJ13	JTAG_TRST_B set-up time to JTAG_TCK low	40	_	ns	

Table 69. JTAG Timing (continued)

¹ T_{DC} = target frequency of SJC

² V_{M} = mid-point voltage

4.12.12 SPDIF timing parameters

The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.

Table 70 and Figure 61 and Figure 62 show SPDIF timing parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.

Characteristics	Symbol	Timing Para	meter Range	Unit
Characteristics	Symbol -	Min	Max	
SPDIF_IN Skew: asynchronous inputs, no specs apply	—	—	0.7	ns
SPDIF_OUT output (Load = 50pf) Skew Transition rising Transition falling 		_ _ _	1.5 24.2 31.3	ns
SPDIF_OUT1 output (Load = 30pf)SkewTransition risingTransition falling	 		1.5 13.6 18.0	ns
Modulating Rx clock (SPDIF_SR_CLK) period	srckp	40.0	_	ns
SPDIF_SR_CLK high period	srckph	16.0	_	ns
SPDIF_SR_CLK low period	srckpl	16.0	_	ns
Modulating Tx clock (SPDIF_ST_CLK) period	stclkp	40.0		ns
SPDIF_ST_CLK high period	stclkph	16.0	—	ns
SPDIF_ST_CLK low period	stclkpl	16.0		ns

Table 70. SPDIF Timing Parameters

Characteristic	Conditions ¹	Symb	Min	Typ ²	Max	Unit	Comment
Sample Cycles	ADLSMP=0, ADSTS=00	Csamp	_	2	_	cycles	_
	ADLSMP=0, ADSTS=01	-		4	-		
	ADLSMP=0, ADSTS=10			6			
	ADLSMP=0, ADSTS=11			8			
	ADLSMP=1, ADSTS=00			12			
	ADLSMP=1, ADSTS=01			16			
	ADLSMP=1, ADSTS=10			20			
	ADLSMP=1, ADSTS=11			24			
Conversion Cycles	ADLSMP=0 ADSTS=00	Cconv	—	28	—	cycles	—
	ADLSMP=0 ADSTS=01			30			
	ADLSMP=0 ADSTS=10			32			
	ADLSMP=0 ADSTS=11			34			
	ADLSMP=1 ADSTS=00			38			
	ADLSMP=1 ADSTS=01			42			
	ADLSMP=1 ADSTS=10			46]		
	ADLSMP=1, ADSTS=11			50			

Table 76. 12-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$) (continued)

Boot mode configuration

Table 80. SPI Boot through ECSPI2 (continued)

LCD_VSYNC	ecspi2.SS2	Alt 8		Yes	
LCD_RESET	ecspi2.SS3	Alt 8			Yes

Table 81. SPI Boot through ECSPI3

Ball Name	Signal Name	Mux Mode	Common	BOOT_CFG4 [5:4]=00b	BOOT_CFG4[5:4]=01b	BOOT_CFG4[5:4]=10b	BOOT_CFG4 [5:4]=11b
UART2_RTS_B	ecspi3.MISO	Alt 8	Yes				
UART2_CTS_B	ecspi3.MOSI	Alt 8	Yes				
UART2_RX_DATA	ecspi3.SCLK	Alt 8	Yes				
UART2_TX_DATA	ecspi3.SS0	Alt 8		Yes			
NAND_ALE	ecspi3.SS1	Alt 8			Yes		
NAND_RE_B	ecspi3.SS2	Alt 8				Yes	
NAND_WE_B	ecspi3.SS3	Alt 8					Yes

Table 82. SPI Boot through ECSPI4

Ball Name	Signal Name	Mux Mode	Common	BOOT_CFG4 [5:4]=00b	BOOT_CFG4 [5:4]=01b	BOOT_CFG4[5:4]=10b	BOOT_CFG 4[5:4]=11b
ENET2_TX_CLK	ecspi4.MISO	Alt 3	Yes				
ENET2_TX_EN	ecspi4.MOSI	Alt 3	Yes				
ENET2_TX_DATA1	ecspi4.SCLK	Alt 3	Yes				
ENET2_RX_ER	ecspi4.SS0	Alt 3		Yes			
NAND_DATA01	ecspi4.SS1	Alt 8			Yes		
NAND_DATA02	ecspi4.SS2	Alt 8				Yes	
NAND_DATA03	ecspi4.SS3	Alt 8					Yes

Table 83. NAND Boot through GPMI

Ball Name	Signal Name	Mux Mode	Common	BOOT_CFG1[3:2]= 01b	BOOT_CFG1[3:2]= 10b
NAND_CLE	rawnand.CLE	Alt 0	Yes		
NAND_ALE	rawnand.ALE	Alt 0	Yes		
NAND_WP_B	rawnand.WP_B	Alt 0	Yes		
NAND_READY_B	rawnand.READY_B	Alt 0	Yes		
NAND_CE0_B	rawnand.CE0_B	Alt 0	Yes		
NAND_CE1_B	rawnand.CE1_B	Alt 0		Yes	Yes
NAND_RE_B	rawnand.RE_B	Alt 0	Yes		
NAND_WE_B	rawnand.WE_B	Alt 0	Yes		

Package information and contact assignments

				act Assig	giments (continued)		
DRAM_ADDR07	H4	NVCC_DRAM	DDR	ALT0	DRAM_ADDR07	Output	100 kΩ pull-up
DRAM_ADDR08	J4	NVCC_DRAM	DDR	ALT0	DRAM_ADDR08	Output	100 kΩ pull-up
DRAM_ADDR09	L2	NVCC_DRAM	DDR	ALT0	DRAM_ADDR09	Output	100 kΩ pull-up
DRAM_ADDR10	M4	NVCC_DRAM	DDR	ALT0	DRAM_ADDR10	Output	100 kΩ pull-up
DRAM_ADDR11	K3	NVCC_DRAM	DDR	ALT0	DRAM_ADDR11	Output	100 kΩ pull-up
DRAM_ADDR12	L4	NVCC_DRAM	DDR	ALT0	DRAM_ADDR12	Output	100 kΩ pull-up
DRAM_ADDR13	H3	NVCC_DRAM	DDR	ALT0	DRAM_ADDR13	Output	100 kΩ pull-up
DRAM_ADDR14	G1	NVCC_DRAM	DDR	ALT0	DRAM_ADDR14	Output	100 kΩ pull-up
DRAM_ADDR15	K5	NVCC_DRAM	DDR	ALT0	DRAM_ADDR15	Output	100 kΩ pull-up
DRAM_CAS_B	J2	NVCC_DRAM	DDR	ALT0	DRAM_CAS_B	Output	100 kΩ pull-up
DRAM_CS0_B	N2	NVCC_DRAM	DDR	ALT0	DRAM_CS0_B	Output	100 kΩ pull-up
DRAM_CS1_B	H5	NVCC_DRAM	DDR	ALT0	DRAM_CS1_B	Output	100 kΩ pull-up
DRAM_DATA00	T4	NVCC_DRAM	DDR	ALT0	DRAM_DATA00	Input	100 kΩ pull-up
DRAM_DATA01	U6	NVCC_DRAM	DDR	ALT0	DRAM_DATA01	Input	100 kΩ pull-up
DRAM_DATA02	Т6	NVCC_DRAM	DDR	ALT0	DRAM_DATA02	Input	100 kΩ pull-up
DRAM_DATA03	U7	NVCC_DRAM	DDR	ALT0	DRAM_DATA03	Input	100 kΩ pull-up
DRAM_DATA04	U8	NVCC_DRAM	DDR	ALT0	DRAM_DATA04	Input	100 kΩ pull-up
DRAM_DATA05	T8	NVCC_DRAM	DDR	ALT0	DRAM_DATA05	Input	100 kΩ pull-up
DRAM_DATA06	T5	NVCC_DRAM	DDR	ALT0	DRAM_DATA06	Input	100 kΩ pull-up
DRAM_DATA07	U4	NVCC_DRAM	DDR	ALT0	DRAM_DATA07	Input	100 kΩ pull-up
DRAM_DATA08	U2	NVCC_DRAM	DDR	ALT0	DRAM_DATA08	Input	100 kΩ pull-up

Table 90. 14x14 mm Functional Contact Assignments (continued)

z	Σ	_	¥	7	т	υ
DRAM_ODT0	DRAM_SDBA0	DRAM_ADDR05	DRAM_ADDR02	DRAM_SDWE_B	DRAM_SDBA1	DRAM_ADDR14
DRAM_CS0_B	DRAM_ADDR03	DRAM_ADDR09	DRAM_SDBA2	DRAM_CAS_B	DRAM_ADDR01	DRAM_ADDR06
VSS	DRAM_SDCKE0	VSS	DRAM_ADDR11	DRAM_SDCKE1	DRAM_ADDR13	VSS
DRAM_ZQPAD	DRAM_ADDR10	DRAM_ADDR12	DRAM_ADDR04	DRAM_ADDR08	DRAM_ADDR07	DRAM_RESET
VSS	DRAM_RAS_B	DRAM_ADDR00	DRAM_ADDR15	NSS	DRAM_CS1_B	VSS
NVCC_DRAM_2P5	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM	NVCC_DRAM
TEST_MODE	VSS	VSS	VSS	NSS	NSS	VSS
SNVS_TAMPER5	VSS	VDD_SOC_CAP	VDD_SOC_CAP	VDD_SOC_CAP	VDD_SOC_CAP	VDD_SOC_CAP
SNVS_TAMPER8	VSS	VDD_SOC_CAP	VDD_SOC_IN	VDD_SOC_IN	VDD_SOC_IN	VDD_ARM_CAP
SNVS_TAMPER7	VSS	VDD_SOC_CAP	VDD_SOC_IN	VDD_SOC_IN	VDD_SOC_IN	VDD_ARM_CAP
SNVS_TAMPER6	VSS	VDD_SOC_CAP	VDD_SOC_CAP	VDD_SOC_CAP	VDD_ARM_CAP	VDD_ARM_CAP
VDD_SNVS_CAP	NGND_KEL0	VSS	VSS	NSS	VSS	VSS
VDD_HIGH_IN	ADC_VREFH	VDDA_ADC_3P3	GPI01_1000	NVCC_GPIO	NVCC_UART	UART5_RX_DATA
JTAG_TRST_B	JTAG_TCK	GPI01_I002	UART1_TX_DATA	UART1_RTS_B	UART2_RTS_B	UART3_RTS_B
JTAG_TDO	GPI01_I009	GPI01_I001	UART1_CTS_B	UART2_CTS_B	UART3_CTS_B	VSS
JTAG_TDI	GPI01_I004	GPI01_I007	UART1_RX_DATA	UART1_RX_DATA UART2_RX_DATA UART3_RX_DATA UART4_RX_DATA	UART3_RX_DATA	UART4_RX_DATA
GPI01_1008	GPI01_1005	GPI01_1003	GPI01_1006	UART2_TX_DATA	UART2_TX_DATA UART3_TX_DATA	UART4_TX_DATA
z	Σ	_	¥	7	т	U

Package information and contact assignments