

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	H8SX
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	EBI/EMI, I ² C, SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	74
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b, 6x16b; D/A 2x8b
Oscillator Type	External
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f61622n50fpv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Sectio	on 23 C	Clock Pulse Generator	869
23.1	Register	Description	871
	23.1.1	System Clock Control Register (SCKCR)	871
	23.1.2	$\Delta\Sigma$ A/D Mode Register (DSADMR)	874
23.2	Oscillato	r	875
	23.2.1	Connecting Crystal Resonator	875
	23.2.2	External Clock Input	876
23.3	PLL Circ	zuit	877
23.4	Frequenc	y Divider	877
	23.4.1	1φ, Bφ, Pφ Frequency Dividers	877
	23.4.2	A	877
23.5	Usage No	otes	878
	23.5.1	Notes on Clock Pulse Generator	878
	23.5.2	Notes on Resonator	879
	23.5.3	Notes on Board Design	879
Sectio	on 24 P	ower-Down Modes	881
24.1	Features		881
24.2	Register	Descriptions	884
	24.2.1	Standby Control Register (SBYCR)	884
	24.2.2	Module Stop Control Registers A and B (MSTPCRA and MSTPCRB)	887
	24.2.3	Module Stop Control Register C (MSTPCRC)	890
	24.2.4	Deep Standby Control Register (DPSBYCR)	891
	24.2.5	Deep Standby Wait Control Register (DPSWCR)	894
	24.2.6	Deep Standby Interrupt Enable Register (DPSIER)	896
	24.2.7	Deep Standby Interrupt Flag Register (DPSIFR)	897
	24.2.8	Deep Standby Interrupt Edge Register (DPSIEGR)	899
	24.2.9	Reset Status Register (RSTSR)	900
	24.2.10	Deep Standby Backup Register (DPSBKRn)	901
24.3	Multi-Cl	ock Function	901
24.4	Module S	Stop State	901
24.5	Sleep Mo	ode	902
	24.5.1	Entry to Sleep Mode	902
	24.5.2	Exit from Sleep Mode	902
24.6	All-Mod	ule-Clock-Stop Mode	903
24.7	Software	Standby Mode	904
	24.7.1	Entry to Software Standby Mode	904
	24.7.2	Exit from Software Standby Mode	904
	24.7.3	Setting Oscillation Settling Time after Exit from Software Standby Mode	905
	24.7.4	Software Standby Mode Application Example	907

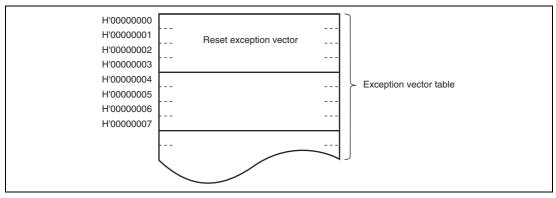


Figure 2.6 Exception Vector Table (Maximum Modes)

The memory indirect (@@aa:8) and extended memory indirect (@@vec:7) addressing modes are used in the JMP and JSR instructions. An 8-bit absolute address included in the instruction code specifies a memory location. Execution branches to the contents of the memory location. In maximum mode, an operand is a 32-bit (longword) operand, providing a 32-bit branch address.

Stack Structure

The stack structure of PC at a subroutine branch and that of PC and CCR at an exception handling are shown in figure 2.7. The PC contents are saved or restored in 32-bit units. The EXR contents are saved or restored regardless of whether or not EXR is in use.

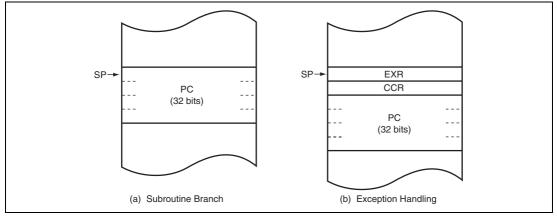


Figure 2.7 Stack Structure (Maximum Mode)

Section 6 Interrupt Controller

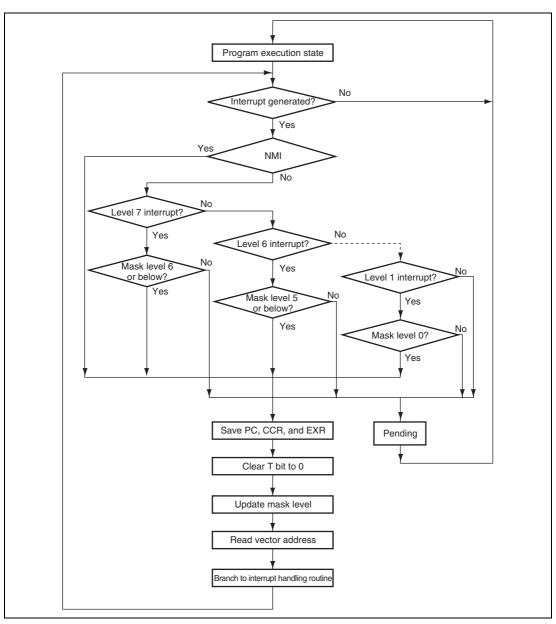


Figure 6.4 Flowchart of Procedure Up to Interrupt Acceptance in Interrupt Control Mode 2

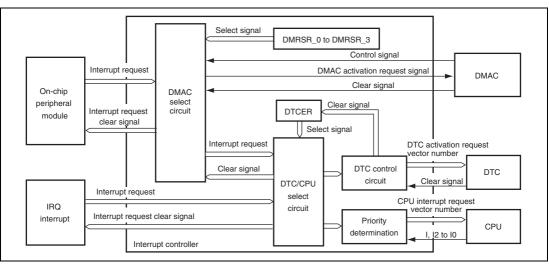


Figure 6.6 Block Diagram of DTC, DMAC, and Interrupt Controller

(1) Selection of Interrupt Sources

The activation source for each DMAC channel is selected by DMRSR. The selected activation source is input to the DMAC through the select circuit. When transfer by an on-chip module interrupt is enabled (DTF1 = 1, DTF0 = 0, and DTE = 1 in DMDR) and the DTA bit in DMDR is set to 1, the interrupt source selected for the DMAC activation source is controlled by the DMAC and cannot be used as a DTC activation source or CPU interrupt source.

Interrupt sources that are not controlled by the DMAC are set for DTC activation sources or CPU interrupt sources by the DTCE bit in DTCERA to DTCERG of the DTC.

Specifying the DISEL bit in MRB of the DTC generates an interrupt request to the CPU by clearing the DTCE bit to 0 after the individual DTC data transfer.

Note that when the DTC performs a predetermined number of data transfers and the transfer counter indicates 0, an interrupt request is made to the CPU by clearing the DTCE bit to 0 after the DTC data transfer.

When the same interrupt source is set as both the DTC and DMAC activation source and CPU interrupt source, the DTC and DMAC must be given priority over the CPU. If the IPSETE bit in CPUPCR is set to 1, the priority is determined according to the IPR setting. Therefore, the CPUP setting or the IPR setting corresponding to the interrupt source must be set to lower than or equal to the DTCP and DMAP setting. If the CPU is given priority over the DTC or DMAC, the DTC or DMAC may not be activated, and the data transfer may not be performed.

(3) P63/TMRI3/ **IRQ11**

The pin function is switched as shown below according to the P63DDR bit setting.

		Setting
		I/O Port
Module Name	Pin Function	P63DDR
I/O port	P63 output	1
	P63 input (initial value)	0

(4) P62/TMO2/SCK4/IRQ10

The pin function is switched as shown below according to the combination of the TMR and SCI register settings and P62DDR bit setting.

		Setting				
		TMR	SCI	I/O Port		
Module Name	Pin Function	TMO2_OE	SCK4_OE	P62DDR		
TMR	TMO2 output	1				
SCI	SCK4 output	0	1	_		
I/O port	P62 output	0	0	1		
	P62 input (initial value)	0	0	0		

Table 12.22 TIORL_0

					Description
Bit 3 IOC3	Bit 2 IOC2	Bit 1 IOC1	Bit 0 IOC0	TGRC_0 Function	TIOCC0 Pin Function
0	0	0	0	Output	Output disabled
0	0	0	1	compare register* ²	Initial output is 0 output
				register	0 output at compare match
0	0	1	0	_	Initial output is 0 output
					1 output at compare match
0	0	1	1	_	Initial output is 0 output
					Toggle output at compare match
0	1	0	0	_	Output disabled
0	1	0	1	_	Initial output is 1 output
					0 output at compare match
0	1	1	0	_	Initial output is 1 output
					1 output at compare match
0	1	1	1		Initial output is 1 output
					Toggle output at compare match
1	0	0	0	Input	Capture input source is TIOCC0 pin
				capture – register* ²	Input capture at rising edge
1	0	0	1	- register	Capture input source is TIOCC0 pin
					Input capture at falling edge
1	0	1	Х	_	Capture input source is TIOCC0 pin
					Input capture at both edges
1	1	Х	Х	_	Capture input source is channel 1/count clock
					Input capture at TCNT_1 count-up/count-down*1

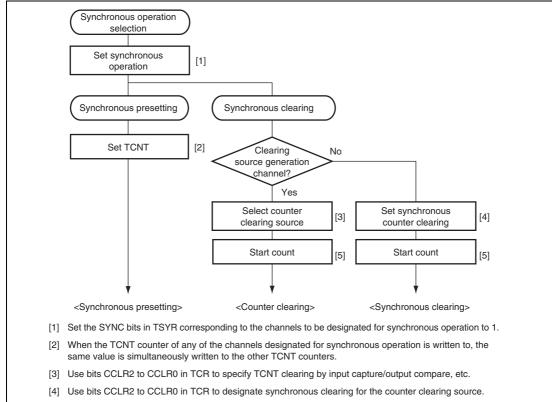
[Legend]

X: Don't care

Notes: 1. When bits TPSC2 to TPSC0 in TCR_1 are set to B'000 and $P\phi/1$ is used as the TCNT_1 count clock, this setting is invalid and input capture is not generated.

2. When the BFA bit in TMDR_0 is set to 1 and TGRC_0 is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

12.4.2 Synchronous Operation


In synchronous operation, the values in multiple TCNT counters can be rewritten simultaneously (synchronous presetting). Also, multiple TCNT counters can be cleared simultaneously (synchronous clearing) by making the appropriate setting in TCR.

Synchronous operation enables TGR to be incremented with respect to a single time base.

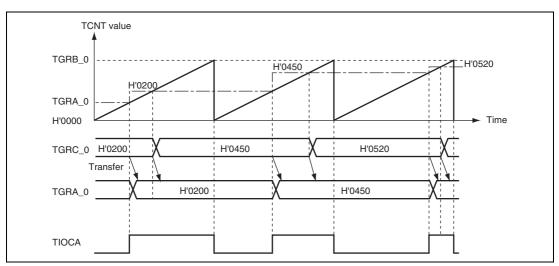
Channels 0 to 5 can all be designated for synchronous operation.

(1) Example of Synchronous Operation Setting Procedure

Figure 12.10 shows an example of the synchronous operation setting procedure.

[5] Set the CST bits in TSTR for the relevant channels to 1, to start the count operation.

Figure 12.10 Example of Synchronous Operation Setting Procedure



(2) Examples of Buffer Operation

(a) When TGR is an output compare register

Figure 12.15 shows an operation example in which PWM mode 1 has been designated for channel 0, and buffer operation has been designated for TGRA and TGRC. The settings used in this example are TCNT clearing by compare match B, 1 output at compare match A, and 0 output at compare match B.

As buffer operation has been set, when compare match A occurs, the output changes and the value in buffer register TGRC is simultaneously transferred to timer general register TGRA. This operation is repeated each time compare match A occurs.

For details on PWM modes, see section 12.4.5, PWM Modes.

Figure 12.15 Example of Buffer Operation (1)

Bit	Bit Name	Initial Value	R/W	Description
3	G3NOV	0	R/W	Group 3 Non-Overlap
				Selects normal or non-overlapping operation for pulse output group 3.
				0: Normal operation (output values updated at compare match A in the selected TPU channel)
				1: Non-overlapping operation (output values updated at compare match A or B in the selected TPU channel)
2	G2NOV	0	R/W	Group 2 Non-Overlap
				Selects normal or non-overlapping operation for pulse output group 2.
				0: Normal operation (output values updated at compare match A in the selected TPU channel)
				1: Non-overlapping operation (output values updated at compare match A or B in the selected TPU channel)
1	G1NOV	0	R/W	Group 1 Non-Overlap
				Selects normal or non-overlapping operation for pulse output group 1.
				0: Normal operation (output values updated at compare match A in the selected TPU channel)
				1: Non-overlapping operation (output values updated at compare match A or B in the selected TPU channel)
0	G0NOV	0	R/W	Group 0 Non-Overlap
				Selects normal or non-overlapping operation for pulse output group 0.
				0: Normal operation (output values updated at compare match A in the selected TPU channel)
				1: Non-overlapping operation (output values updated at compare match A or B in the selected TPU channel)

Bit	Bit Name	Initial Value	R/W	Description
7	TIE	0	R/W	Transmit Interrupt Enable
				When this bit is set to 1, a TXI interrupt request is enabled.
				A TXI interrupt request can be cancelled by reading 1 from the TDRE flag and then clearing the flag to 0, or by clearing the TIE bit to 0.
6	RIE	0	R/W	Receive Interrupt Enable
				When this bit is set to 1, RXI and ERI interrupt requests are enabled.
				RXI and ERI interrupt requests can be cancelled by reading 1 from the RDRF, FER, PER, or ORER flag and then clearing the flag to 0, or by clearing the RIE bit to 0.
5	TE	0	R/W	Transmit Enable
				When this bit is set to 1, transmission is enabled. Under this condition, serial transmission is started by writing transmit data to TDR, and clearing the TDRE flag in SSR to 0. Note that SMR should be set prior to setting the TE bit to 1 in order to designate the transmission format.
				If transmission is halted by clearing this bit to 0, the TDRE flag in SSR is fixed 1.
4	RE	0	R/W	Receive Enable
				When this bit is set to 1, reception is enabled. Under this condition, serial reception is started by detecting the start bit in asynchronous mode or the synchronous clock input in clocked synchronous mode. Note that SMR should be set prior to setting the RE bit to 1 in order to designate the reception format.
				Even if reception is halted by clearing this bit to 0, the RDRF, FER, PER, and ORER flags are not affected and the previous value is retained.

Bit Functions in Normal Serial Communication Interface Mode (When SMIF in SCMR = 0):

Bit	Bit Name	Initial Value	R/W	Description
7	TDRE	1	R/(W)*	Transmit Data Register Empty
				Indicates whether TDR contains transmit data.
				[Setting conditions]
				• When the TE bit in SCR is 0
				When data is transferred from TDR to TSR
				[Clearing conditions]
				• When 0 is written to TDRE after reading TDRE = 1
				(When the CPU is used to clear this flag by writing 0 while the corresponding interrupt is enabled, be sure to read the flag after writing 0 to it.)
				When a TXI interrupt request is issued allowing
				DMAC or DTC to write data to TDR
6	RDRF	0	R/(W)*	Receive Data Register Full
				Indicates whether receive data is stored in RDR.
				[Setting condition]
				 When serial reception ends normally and receive data is transferred from RSR to RDR
				[Clearing conditions]
				• When 0 is written to RDRF after reading RDRF = 1
				(When the CPU is used to clear this flag by writing 0 while the corresponding interrupt is enabled, be sure to read the flag after writing 0 to it.)
				 When an RXI interrupt request is issued allowing DMAC or DTC to read data from RDR
				The RDRF flag is not affected and retains its previous value when the RE bit in SCR is cleared to 0.
				Note that when the next serial reception is completed while the RDRF flag is being set to 1, an overrun error occurs and the received data is lost.

Bit Functions in Normal Serial Communication Interface Mode (When SMIF in SCMR = 0):

Bit	Bit Name	Initial Value	R/W	Description
4	NAKIE	0	R/W	NACK Receive Interrupt Enable
				This bit enables or disables the NACK receive interrupt (NAKI) request when the NACKF and AL bits in ICSR are set to 1. The NAKI request can be canceled by clearing the NACKF or AL bit, or the NAKIE bit to 0.
				0: NACK receive interrupt (NAKI) request is disabled
				1: NACK receive interrupt (NAKI) request is enabled
3	STIE	0	R/W	Stop Condition Detection Interrupt Enable
				0: Stop condition detection interrupt (STPI) request is disabled
				1: Stop condition detection interrupt (STPI) request is enabled
2	ACKE	0	R/W	Acknowledge Bit Decision Select
				0: The value of the acknowledge bit is ignored and continuous transfer is performed
				1: If the acknowledge bit is 1, continuous transfer is suspended
1	ACKBR	0	R	Receive Acknowledge
				In transmit mode, this bit stores the acknowledge data that are returned by the receive device. This bit cannot be modified.
				0: Receive acknowledge = 0
				1: Receive acknowledge = 1
0	ACKBT	0	R/W	Transmit Acknowledge
				In receive mode, this bit specifies the bit to be sent at the acknowledge timing.
				0: 0 is sent at the acknowledge timing
				1: 1 is sent at the acknowledge timing

If any of the above points apply, make the corresponding settings listed below.

• If point 1 is applicable

Do not perform writing to change the value of the ADST bit in ADCSR from 0 to 1 when the setting for activation by an external trigger is in use.

• If point 2 or 3 is applicable

When the setting for activation by an external trigger is in use, only execute switching from activation by an external trigger to prohibition of activation by an external trigger or changing of the scan mode (ADSTLCR and SCANE bits) after external trigger input has been disabled. External trigger input can be disabled by writing specific values to the TRGS1, TRGS0, and EXTRGS bits in ADCR.

For details on the procedure in cases where point 2 or 3 is applicable, see figure 18.9.

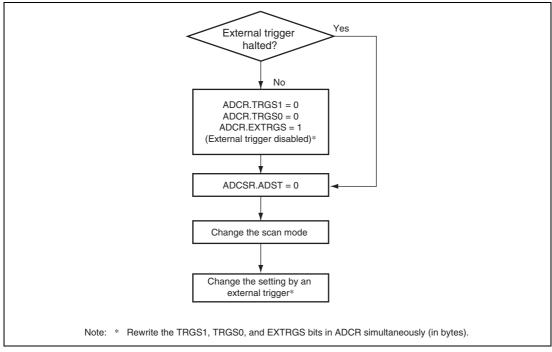


Figure 18.9 Procedure for Changing the Mode When Setting for Activation by an External Trigger is in Use

19.3.1 $\Delta\Sigma$ A/D Mode Register (DSADMR)

DSADMR controls the biasing circuit and selects a clock for the $\Delta\Sigma$ A/D converter. DSADMR can be read by the CPU at any time, but must be written to while the $\Delta\Sigma$ A/D converter is in the module stop state.

Bit	7	6	5	4	3	2	1	0
Bit Name	BIASE	—	—	—	—	ACK2	ACK1	ACK0
Initial Value:	0	0	0	0	0	0	0	0
R/W:	R/W	R	R	R	R	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
7	BIASE	0	R/W	Biasing Circuit Control
				Controls whether the biasing circuit is stopped or runs.
				0: Biasing circuit is stopped.
				1: Biasing circuit runs.
6 to 3	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
2	ACK2	0	R/W	$\Delta\Sigma$ A/D Converter Clock Select
1	ACK1	0	R/W	These bits select the frequency of the $\Delta\Sigma$ A/D converter
0	ACK0	0	R/W	clock (A ϕ). The values shown below for each setting are frequency multipliers for the input clock. Set these bits so that A ϕ is approximately 25 MHz. See section 23, Clock Pulse Generator, for details.
				000: × 1/6
				001: × 1/5
				010: × 1/4
				011: × 1/3
				1xx: Setting prohibited

[Legend] x: Don't care.

19.6.3 State of the $\Delta\Sigma$ A/D Converter in Software Standby Mode

If the LSI enters software standby mode with A/D conversion enabled, the $\Delta\Sigma$ A/D converter is initialized and placed in an idle state. The $\Delta\Sigma$ A/D data registers (DSADDRn), which hold the results of conversion, are also initialized. The analog power supply current is the current that flows through the biasing circuit. If the analog power supply current in software standby mode must be reduced, clear the BIASE bit in DSDMR to 0 to stop the biasing circuit before initiating software standby mode.

19.6.4 Changing the Settings of $\Delta\Sigma$ A/D Converter Registers

To avoid malfunctions during A/D conversion, do not change the settings of the $\Delta\Sigma$ A/D converter registers while the ADST bit in DSADCSR is set to 1. Always write to the registers with the ADST bit cleared to 0. The exceptions are clearing of the ADST bit and clearing of the ADF bit after reading a 1 from it.

When the TRGS1 and TRGS0 bits in DSADCSR are set to a value other than B'00, the ADST bit may be set automatically by the trigger signal. Accordingly, before setting registers of the $\Delta\Sigma$ A/D converter, set the TRGS1 and TRGS0 bits to B'00 or take measures to ensure that no trigger signal will be input.

19.6.5 DSE Bit

Use the $\Delta\Sigma$ A/D converter with the DSE bit in DSADCR set to 1.

22.3 Memory MAT Configuration

The memory MATs of flash memory in this LSI consists of the 256-Kbyte user MAT and 16-Kbyte user boot MAT. The start addresses of the user MAT and user boot MAT are allocated to the same address. Therefore, when the program execution or data access is performed between the two memory MATs, the memory MATs must be switched by the flash MAT select register (FMATS).

The user MAT or user boot MAT can be read in all modes. However, the user boot MAT can be programmed or erased only in boot mode and programmer mode.

The size of the user MAT is different from that of the user boot MAT. Addresses which exceed the size of the 16-Kbyte user boot MAT should not be accessed. If an attempt is made, data is read as an undefined value.

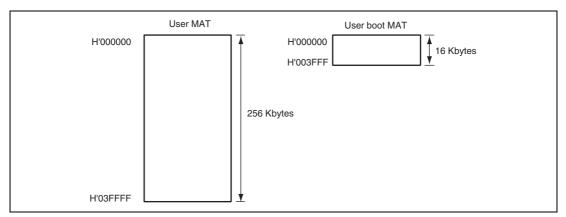


Figure 22.3 Memory MAT Configuration

(g) User Boot MAT Information Inquiry

The boot program will return the number of user boot MATs and their addresses.

Command

H'24

• Command, H'24, (one byte): Inquiry regarding user boot MAT information

Response

H'34 Size Number of areas

1101	0120		
Area-sta	rt addres	SS	Area-last address
SUM			

- Response, H'34, (one byte): Response to user boot MAT information inquiry
- Size (one byte): The number of bytes that represents the number of areas, area-start addresses, and area-last address
- Number of Areas (one byte): The number of consecutive user boot MAT areas When user boot MAT areas are consecutive, the number of areas returned is H'01.
- Area-start address (four byte): Start address of the area
- Area-last address (four byte): Last address of the area There are as many groups of data representing the start and last addresses as there are areas.
- SUM (one byte): Checksum

(h) User MAT Information Inquiry

The boot program will return the number of user MATs and their addresses.

Command

H'25

• Command, H'25, (one byte): Inquiry regarding user MAT information

Response

H'35	Size	Number of areas	
Start ac	dress are	ea	Last address area

SUM

- Response, H'35, (one byte): Response to the user MAT information inquiry
- Size (one byte): The number of bytes that represents the number of areas, area-start address and area-last address

- Number of areas (one byte): The number of consecutive user MAT areas When the user MAT areas are consecutive, the number of areas is H'01.
- Area-start address (four bytes): Start address of the area

Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	Module
TCR_6	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMR_6
TCR_7	CMIEB	CMIEA	OVIE	CCLR1	CCLR0	CKS2	CKS1	CKS0	TMR_7
TCSR_6	CMFB	CMFA	OVF	ADTE	OS3	OS2	OS1	OS0	TMR_6
TCSR_7	CMFB	CMFA	OVF	_	OS3	OS2	OS1	OS0	TMR_7
TCORA_6									TMR_6
TCORA_7									TMR_7
TCORB_6									TMR_6
TCORB_7									TMR_7
TCNT_6									TMR_6
TCNT_7									TMR_7
TCCR_6	_	_	_		TMRIS	—	ICKS1	ICKS0	TMR_6
TCCR_7	_				TMRIS		ICKS1	ICKS0	TMR_7
P1DDR	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR	I/O port
P2DDR	P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR	_
P3DDR	P37DDR	P36DDR	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR	-
P6DDR	_		P65DDR	P64DDR	P63DDR	P62DDR	P61DDR	P60DDR	_
PADDR	PA7DDR	PA6DDR	PA5DDR	PA4DDR	PA3DDR	PA2DDR	PA1DDR	PA0DDR	_
PDDDR	PD7DDR	PD6DDR	PD5DDR	PD4DDR	PD3DDR	PD2DDR	PD1DDR	PD0DDR	_
PEDDR	PE7DDR	PE6DDR	PE5DDR	PE4DDR	PE3DDR	PE2DDR	PE1DDR	PE0DDR	-
PFDDR			_	PF4DDR	PF3DDR	PF2DDR	PF1DDR	PF0DDR	-
P1ICR	P17ICR	P16ICR	P15ICR	P14ICR	P13ICR	P12ICR	P11ICR	P10ICR	_
P2ICR	P27ICR	P26ICR	P25ICR	P24ICR	P23ICR	P22ICR	P21ICR	P20ICR	-
P3ICR	P37ICR	P36ICR	P35ICR	P34ICR	P33ICR	P32ICR	P31ICR	P30ICR	-
P4ICR	P47ICR	P46ICR	P45ICR	P44ICR	P43ICR	P42ICR	P41ICR	P40ICR	-
P5ICR	P57ICR	P56ICR	P55ICR	P54ICR	P53ICR	P52ICR	P51ICR	P50ICR	_
P6ICR	_	_	P65ICR	P64ICR	P63ICR	P62ICR	P61ICR	P60ICR	_
PAICR	PA7ICR	PA6ICR	PA5ICR	PA4ICR	PA3ICR	PA2ICR	PA1ICR	PA0ICR	-
PDICR	PD7ICR	PD6ICR	PD5ICR	PD4ICR	PD3ICR	PD2ICR	PD1ICR	PD0ICR	-
PEICR	PE7ICR	PE6ICR	PE5ICR	PE4ICR	PE3ICR	PE2ICR	PE1ICR	PE0ICR	-
PFICR				PF4ICR	PF3ICR	PF2ICR	PF1ICR	PF0ICR	_

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input leakage current	RES	I _{in}	—	—	10.0	μA	$V_{in} = 0.5 \text{ to}$ $V_{cc} - 0.5 \text{ V}$
	MD, <u>STBY,</u> EMLE, NMI		_	_	1.0		
	Port 4		_	—	1.0		$Vin = 0.5 to$ $AV_{cc}P - 0.5 V$
	Port 5			_	1.0		$V_{in} = 0.5 \text{ to}$ AV _{cc} - 0.5 V

