

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8SX
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	EBI/EMI, I ² C, SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	74
Program Memory Size	256КВ (256К × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b, 6x16b; D/A 2x8b
Oscillator Type	External
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	145-TFLGA
Supplier Device Package	145-TFLGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f61622n50lgv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. Description of Abbreviations

The abbreviations used in this manual are listed below.

• Abbreviations specific to this product

Abbreviation	Description
BSC	Bus controller
CPG	Clock pulse generator
DTC	Data transfer controller
INTC	Interrupt controller
PPG	Programmable pulse generator
SCI	Serial communication interface
TMR	8-bit timer
TPU	16-bit timer pulse unit
WDT	Watchdog timer
UBC	User break controller

• Abbreviations other than those listed above

Abbreviation	Description
ACIA	Asynchronous communication interface adapter
bps	Bits per second
DMA	Direct memory access
DMAC	Direct memory access controller
GSM	Global System for Mobile Communications
Hi-Z	High impedance
I/O	Input/output
LSB	Least significant bit
MSB	Most significant bit
NC	No connection
PLL	Phase-locked loop
PWM	Pulse width modulation
SIM	Subscriber Identity Module
UART	Universal asynchronous receiver/transmitter

All trademarks and registered trademarks are the property of their respective owners.

Rev. 2.00 Sep. 16, 2009 Page viii of xxviii

Bit	Bit Name	Initial Value	R/W	Description
2	Z	Undefined	R/W	Zero Flag
				Set to 1 to indicate zero data, and cleared to 0 to indicate non-zero data.
1	V	Undefined	R/W	Overflow Flag
				Set to 1 when an arithmetic overflow occurs, and cleared to 0 otherwise.
0	С	Undefined	R/W	Carry Flag
				Set to 1 when a carry occurs, and cleared to 0 otherwise. A carry has the following types:
				Carry from the result of addition
				Borrow from the result of subtraction
				Carry from the result of shift or rotation
				The carry flag is also used as a bit accumulator by bit manipulation instructions.

2.5.4 Extended Control Register (EXR)

EXR is an 8-bit register that contains the trace bit (T) and three interrupt mask bits (I2 to I0).

Operations can be performed on the EXR bits by the LDC, STC, ANDC, ORC, and XORC instructions.

For details, see section 5, Exception Handling.

Bit	Bit Name	Initial Value	R/W	Description
7	Т	0	R/W	Trace Bit
				When this bit is set to 1, a trace exception is generated each time an instruction is executed. When this bit is cleared to 0, instructions are executed in sequence.
6 to 3	_	All 1	R/W	Reserved
				These bits are always read as 1.
2	12	1	R/W	Interrupt Mask Bits
1	11	1	R/W	These bits designate the interrupt mask level (0 to 7).
0	10	1	R/W	

Classification	Interrupt Source	Vector Number	Vector Address Offset*	IPR	Priority	DTC Activation	DMAC Activation
_	Reserved for	140	H'0230	_	High	_	_
	system use	141	H'0234	_		_	_
		142	H'0238	_		_	_
		143	H'023C	_		_	_
SCI_0	ERI0	144	H'0240	IPRK6 to IPRK4	-	_	_
	RXI0	145	H'0244	_		0	0
	TXI0	146	H'0248	_		0	0
	TEI0	147	H'024C	_			_
SCI_1	ERI1	148	H'0250	IPRK2 to IPRK0	-		_
	RXI1	149	H'0254	_		0	0
	TXI1	150	H'0258	_		0	0
	TEI1	151	H'025C	_		_	_
SCI_2	ERI2	152	H'0260	IPRL14 to IPRL12	-	_	_
	RXI2	153	H'0264	_		0	0
	TXI2	154	H'0268	_		0	0
	TEI2	155	H'026C	_		_	_
SCI_3	ERI3	156	H'0270	IPRL10 to IPRL8	-	_	_
	RXI3	157	H'0274	_		0	0
	ТХІЗ	158	H'0278	_		0	0
	TEI3	159	H'027C	_		_	_
SCI_4	ERI4	160	H'0280	IPRL6 to IPRL4	-		_
	RXI4	161	H'0284	_		0	0
	TXI4	162	H'0288	_		0	0
	TEI4	163	H'028C	_		_	_
_	Reserved for system use	164 	H'0290 	_	-		
		199	H'031C		_		—
TMR_4	CMI4A	200	H'0320	IPRP10 to IPRP8		0	_
	CMI4B	201	H'0324	_		0	_
	OV4I	202	H'0328		Low		_

• WTCRA

		Initial		
Bit	Bit Name	Value	R/W	Description
15		0	R	Reserved
				This is a read-only bit and cannot be modified.
14	W72	1	R/W	Area 7 Wait Control 2 to 0
13	W71	1	R/W	These bits select the number of program wait cycles when accessing area 7 while bit AST7 in ASTCB is 1
12	W70	1	R/W	000: Program wait cycle not inserted
				001: 1 program wait cycle inserted
				010: 2 program wait cycles inserted
				011: 3 program wait cycles inserted
				100: 4 program wait cycles inserted
				101: 5 program wait cycles inserted
				110: 6 program wait cycles inserted
				111: 7 program wait cycles inserted
11	_	0	R	Reserved
				This is a read-only bit and cannot be modified.
10	W62	1	R/W	Area 6 Wait Control 2 to 0
9 8	W61	1	R/W	These bits select the number of program wait cycles when accessing area 6 while bit AST6 in ASTCR is 1.
0	****	1	10/00	000: Program wait cycle not inserted
				001: 1 program wait cycle inserted
				010: 2 program wait cycles inserted
				011: 3 program wait cycles inserted
				100: 4 program wait cycles inserted
				101: 5 program wait cycles inserted
				110: 6 program wait cycles inserted
				111: 7 program wait cycles inserted
7	_	0	R	Reserved
				This is a read-only bit and cannot be modified.

8.6.7 DACK Signal Output Timing

For DMAC single address transfers, the \overline{DACK} signal assert timing can be modified by using the DKC bit in BCR1.

Figure 8.23 shows the $\overline{\text{DACK}}$ signal output timing. Setting the DKC bit to 1 asserts the $\overline{\text{DACK}}$ signal a half cycle earlier.

Figure 8.23 DACK Signal Output Timing

Figure 9.13 shows an example of timing in cycle stealing mode. The transfer conditions are as follows:

- Address mode: Single address mode
- Sampling method of the DREQ signal: Low level detection

(2) Burst Access Mode

In burst mode, once it takes the bus, the DMAC continues a transfer without releasing the bus until the transfer end condition is satisfied. Even if a transfer is requested from another channel having priority, the transfer is not stopped once it is started. The DMAC releases the bus in the next cycle after the transfer for the channel in burst mode is completed. This is similarly to operation in cycle stealing mode. However, setting the IBCCS bit in IBCR of the bus controller makes the DMAC release the bus to pass the bus to another bus master.

In block transfer mode, the burst mode setting is ignored (operation is the same as that in burst mode during one block of transfers). The DMAC is always operated in cycle stealing mode.

Clearing the DTE bit in DMDR stops a DMA transfer. A transfer requested before the DTE bit is cleared to 0 by the DMAC is executed. When an interrupt by a transfer size error, a repeat size end, or an extended repeat area overflow occurs, the DTE bit is cleared to 0 and the transfer ends.

Figure 9.14 shows an example of timing in burst mode.

Figure 9.14 Example of Timing in Burst Mode

When a transfer starts, the transfer source address is added to the offset every time data is transferred. The transfer data is written to the destination continuous addresses. When data 4 is transferred meaning that the repeat size of transfers is completed, the transfer source address returns to the transfer start address (address of data 1 on the transfer source) and a repeat size end interrupt is requested. While this interrupt stops the transfer temporarily, the contents of DSAR are written to the address of data 5 by the CPU (when the data access size is longword, write the data 1 address + 4). When the DTE bit in DMDR is set to 1, the transfer is resumed from the state when the transfer is stopped. Accordingly, operations are repeated and the transfer source data is transposed to the destination area (XY conversion).

Figure 9.20 shows a flowchart of the XY conversion.

Figure 9.20 XY Conversion Flowchart Using Offset Addition in Repeat Transfer Mode

11.2 Output Buffer Control

This section describes the output priority of each pin.

The name of each peripheral module pin is followed by "_OE". This (for example: MIOCA4_OE) indicates whether the output of the corresponding function is valid (1) or if another setting is specified (0). Table 11.5 lists each port output signal's valid setting. For details on the corresponding output signals, see the register description of each peripheral module. If the name of each peripheral module pin is followed by A or B, the pin function can be modified by the port function control register (PFCR). For details, see section 11.3, Port Function Controller.

For a pin whose initial value changes according to the activation mode, "Initial value E" indicates the initial value when the LSI is started up in external extended mode and "Initial value S" indicates the initial value when the LSI is started in single-chip mode.

11.2.1 Port 1

(1) P17/ANDSTRG/IRQ7-A/TCLKD-B/SCL0

The pin function is switched as shown below according to the combination of the IIC2 register and P17DDR bit settings.

			Setting	
		IIC2	I/O Port	
Module Name	Pin Function	SCL0_OE	P17DDR	
IIC2	SCL0 I/O	1	—	
I/O port	P17 output	0	1	
	P17 input (initial value)	0	0	

Bit	Bit Name	Initial Value	R/W	Description
1	CS4SA*	0	R/W	CS4 Output Pin Select
0	CS4SB*	0	R/W	Selects the output pin for $\overline{CS4}$ when $\overline{CS4}$ output is enabled (CS4E = 1)
				00: Specifies pin PB0 as CS4-A output
				01: (Setting prohibited)
				10: (Setting prohibited)
				11: (Setting prohibited)
Matar	* If moulting		uto oro o	confied to a single pip according to the \overline{CCn} output pip

Note: * If multiple \overline{CS} outputs are specified to a single pin according to the \overline{CSn} output pin select bits (n = 4 to 7), multiple \overline{CS} signals are output from the pin. For details, see section 8.5.3, Chip Select Signals.

11.3.3 Port Function Control Register 2 (PFCR2)

PFCR1 selects the $\overline{\text{CS}}$ output pin, enables/disables bus control I/O, and selects the bus control I/O pins.

Bit	7	6	5	4	3	2	1	0
Bit Name	—	CS2S	BSS	BSE	—	RDWRE	ASOE	—
Initial Value	0	0	0	0	0	0	1	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit	Bit Name	Initial Value	R/W	Description
7	_	0	R/W	Reserved
				This bit is always read as 0. The write value should always be 0.
6	CS2S*1	0	R/W	CS2 Output Pin Select
				Selects the output pin for $\overline{CS2}$ when $\overline{CS2}$ output is enabled (CS2E = 1)
				0: Specifies pin PB2 as CS2-A output pin
				1: Specifies pin PB1 as CS2-B output pin

12.3.1 Timer Control Register (TCR)

TCR controls the TCNT operation for each channel. The TPU has a total of six TCR registers, one for each channel. TCR register settings should be made only while TCNT operation is stopped.

Bit	7	6	5	4	3	2	1	0
Bit Name	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

		Initial		
Bit	Bit Name	Value	R/W	Description
7	CCLR2	0	R/W	Counter Clear 2 to 0
6	CCLR1	0	R/W	These bits select the TCNT counter clearing source. See
5	CCLR0	0	R/W	tables 12.3 and 12.4 for details.
4	CKEG1	0	R/W	Clock Edge 1 and 0
3	CKEG0	0	R/W	These bits select the input clock edge. For details, see table 12.5. When the input clock is counted using both edges, the input clock period is halved (e.g. $P\phi/4$ both edges = $P\phi/2$ rising edge). If phase counting mode is used on channels 1, 2, 4, and 5, this setting is ignored and the phase counting mode setting has priority. Internal clock edge selection is valid when the input clock is $P\phi/4$ or slower. This setting is ignored if the input clock is $P\phi/1$, or when overflow/underflow of another channel is selected.
2	TPSC2	0	R/W	Timer Prescaler 2 to 0
1	TPSC1	0	R/W	These bits select the TCNT counter clock. The clock
0	TPSC0	CO O R.	R/W	source can be selected independently for each channel. See tables 12.6 to 12.11 for details. To select the external clock as the clock source, the DDR bit and ICR bit for the corresponding pin should be set to 0 and 1, respectively. For details, see section 11, I/O Ports.

12.4.3 Buffer Operation

Buffer operation, provided for channels 0 and 3, enables TGRC and TGRD to be used as buffer registers.

Buffer operation differs depending on whether TGR has been designated as an input capture register or a compare match register.

Table 12.29 shows the register combinations used in buffer operation.

Channel	Timer General Register	Buffer Register
0	TGRA_0	TGRC_0
	TGRB_0	TGRD_0
3	TGRA_3	TGRC_3
	TGRB_3	TGRD_3

 Table 12.29 Register Combinations in Buffer Operation

• When TGR is an output compare register

When a compare match occurs, the value in the buffer register for the corresponding channel is transferred to the timer general register.

This operation is illustrated in figure 12.12.

Figure 12.12 Compare Match Buffer Operation

12.10.7 Conflict between Buffer Register Write and Compare Match

If a compare match occurs in the T2 state of a TGR write cycle, the data transferred to TGR by the buffer operation will be the write data.

Figure 12.49 shows the timing in this case.

Figure 12.49 Conflict between Buffer Register Write and Compare Match

13.3.2 Output Data Registers H, L (PODRH, PODRL)

PODRH and PODRL store output data for use in pulse output. A bit that has been set for pulse output by NDER is read-only and cannot be modified.

• PODRH

Bit	7	6	5	4	3	2	1	0
Bit Name	POD15	POD14	POD13	POD12	POD11	POD10	POD9	POD8
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

• PODRL

Bit	7	6	5	4	3	2	1	0
Bit Name	POD7	POD6	POD5	POD4	POD3	POD2	POD2	POD0
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

• PODRH

Bit	Bit Name	Initial Value	R/W	Description
7	POD15	0	R/W	Output Data Register 15 to 8
6	POD14	0	R/W	For bits which have been set to pulse output by NDERH,
5	POD13	0	R/W	the output trigger transfers NDRH values to this register
4	POD12	0	R/W	cannot write to this register. While NDERH is cleared, the
3	POD11	0	R/W	initial output value of the pulse can be set.
2	POD10	0	R/W	
1	POD9	0	R/W	
0	POD8	0	R/W	

17.4 Operation

17.4.1 I²C Bus Format

Figure 17.3 shows the I^2C bus formats. Figure 17.4 shows the I^2C bus timing. The first frame following a start condition always consists of 8 bits.

Figure 17.3 I²C Bus Formats

Figure 17.4 I²C Bus Timing

[Legend]

- S: Start condition. The master device drives SDA from high to low while SCL is high.
- SLA: Slave address
- R/\overline{W} : Indicates the direction of data transfer; from the slave device to the master device when R/\overline{W} is 1, or from the master device to the slave device when R/\overline{W} is 0.
- A: Acknowledge. The receive device drives SDA low.

DATA: Transferred data

P: Stop condition. The master device drives SDA from low to high while SCL is high.

(4) Flash Multipurpose Address Area Parameter (FMPAR: General Register ER1 of CPU)

FMPAR stores the start address of the programming destination on the user MAT.

When an address in an area other than the flash memory is set, or the start address of the programming destination is not aligned with the 128-byte boundary, an error occurs. The error occurrence is indicated by the WA bit in FPFR.

Bit	31	30	29	28	27	26	25	24
Bit Name	MOA31	MOA30	MOA29	MOA28	MOA27	MOA26	MOA25	MOA24
Bit	23	22	21	20	19	18	17	16
Bit Name	MOA23	MOA22	MOA21	MOA20	MOA19	MOA18	MOA17	MOA16
Bit	15	14	13	12	11	10	9	8
Bit Name	MOA15	MOA14	MOA13	MOA12	MOA11	MOA10	MOA9	MOA8
Bit	7	6	5	4	3	2	1	0
Bit Name	MOA7	MOA6	MOA5	MOA4	MOA3	MOA2	MOA1	MOA0

Bit	Bit Name	nitial /alue R/W	1	Description
31 to 0	MOA31 to – MOA0	— R/W	1	These bits store the start address of the programming destination on the user MAT. Consecutive 128-byte programming is executed starting from the specified start address of the user MAT. Therefore, the specified start address of the programming destination becomes a 128-byte boundary, and MOA6 to MOA0 are always cleared to 0.

Table 22.6 System Clock Frequency for Automatic-Bit-Rate Adjustment

Bit Rate of Host	System Clock Frequency of This LSI
9,600 bps	8 to 18 MHz
19,200 bps	8 to 18 MHz

(2) State Transition Diagram

The state transition after boot mode is initiated is shown in figure 22.8.

Figure 22.8 Boot Mode State Transition Diagram

(k) Boot Program State Inquiry

The boot program will return indications of its present state and error condition. This inquiry can be made in the inquiry/selection state or the programming/erasing state.

Command H'4F

• Command, H'4F, (one byte): Inquiry regarding boot program's state

Response	H'5F	Size	Status	ERROR	SUM	

- Response, H'5F, (one byte): Response to boot program state inquiry
- Size (one byte): The number of bytes. This is fixed to 2.
- Status (one byte): State of the boot program
- ERROR (one byte): Error status

ERROR = 0 indicates normal operation. ERROR = 1 indicates error has occurred.

• SUM (one byte): Sum check

Table 22.17 Status Code

Code	Description
H'11	Device selection wait
H'12	Clock mode selection wait
H'13	Bit rate selection wait
H'1F	Programming/erasing state transition wait (bit rate selection is completed)
H'31	Programming state for erasure
H'3F	Programming/erasing selection wait (erasure is completed)
H'4F	Program data receive wait
H'5F	Erase block specification wait (erasure is completed)

23.2 Oscillator

Clock pulses can be supplied by connecting a crystal resonator, or by input of an external clock.

23.2.1 Connecting Crystal Resonator

A crystal resonator can be connected as shown in the example in figure 23.2. Select the damping resistance R_d according to table 23.1. An AT-cut parallel-resonance type should be used.

When the clock is provided by connecting a crystal resonator, a crystal resonator having a frequency of 8 to 18 MHz should be connected.

Figure 23.2 Connection of Crystal Resonator (Example)

Table 23.1 Damping Resistance Value

Frequency (MHz)	8	12	16	18
R _d (Ω)	200	0	0	0

Figure 23.3 shows an equivalent circuit of the crystal resonator. Use a crystal resonator that has the characteristics shown in table 23.2.

Figure 23.3 Crystal Resonator Equivalent Circuit

26.1.6 ΔΣΑ/D Conversion Characteristics

Table 26.11 $\Delta\Sigma$ A/D Conversion Characteristics (Reference Value) (1)

Conditions: Vcc = PLLVcc = 3.0 to 3.6 V, AVccP = AVccA = AVccD = 3.0 to 3.6 V, AVrefT = AVccA, Vss = PLLVss = AVssP = AVssA = AVssD = AVrefB = 0 V, P ϕ = 8 to 35 MHz, Ta = -20 to +75 °C (regular specifications), Ta = -40 to +85 °C (wide-range specifications), REXT = 51K Ω^*

Item	Condition		min	typ	max	Unit
Output word length				16	_	bit
Number of states for conversion (in fos)			_	286	_	сус
Oversampling frequency (fos)			2.5	_	3.3	MHz
Conversion time			86.67	—	114.40	μs
Input frequency			_	_	1.0	KHz
Input voltage range (with respect to input offset	Single- ended	×8 gain mode	_	_	\pm 1/12 × AVrefT	V
voltage)		×4 gain mode	_	_	$\pm 1/6 \times AV refT$	V
		×2 gain mode	_	_	$\pm 1/3 \times AV refT$	V
		×1 gain mode			$\pm 1/2 \times AV refT$	V
	Differential	×8 gain mode	_	_	\pm 1/24 × AVrefT	V
		×4 gain mode	_	_	\pm 1/12 × AVrefT	V
		×2 gain mode	_	_	$\pm 1/6 \times AVrefT$	V
		×1 gain mode		_	$\pm 1/3 \times AVrefT$	V
Input offset voltage	×8 gain mo	de	1/4 × AVrefT	_	$3/4 \times AVrefT$	V
	×4 gain mo	de	1/4 × AVrefT	_	$3/4 \times AVrefT$	V
	×2 gain mode			1/2 × AVrefT		V
	×1 gain mode			1/2 × AVrefT		V

Note: * It is recommended to use a 1%-error resistor as the external biasing resistor connected on the REXT pin.

Renesas 32-Bit CISC Microcomputer Hardware Manual H8SX/1622 Group

Publication Date:	Rev.1.00, Nov. 01, 2007
	Rev.2.00, Sep. 16, 2009
Published by:	Sales Strategic Planning Div.
	Renesas Technology Corp.
Edited by:	Customer Support Department
	Global Strategic Communication Div.
	Renesas Solutions Corp.

© 2009. Renesas Technology Corp., All rights reserved. Printed in Japan.