E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	224
Number of Logic Elements/Cells	-
Total RAM Bits	46064
Number of I/O	70
Number of Gates	4500
Voltage - Supply	4.75V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3064a-7pc84c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Improvements in the XC3000A and XC3000L Families

The XC3000A and XC3000L families offer the following enhancements over the popular XC3000 family:

The XC3000A and XC3000L families have additional interconnect resources to drive the I-inputs of TBUFs driving horizontal Longlines. The CLB Clock Enable input can be driven from a second vertical Longline. These two additions result in more efficient and faster designs when horizontal Longlines are used for data bussing.

During configuration, the XC3000A and XC3000L devices check the bit-stream format for stop bits in the appropriate positions. Any error terminates the configuration and pulls INIT Low.

When the configuration process is finished and the device starts up in user mode, the first activation of the outputs is automatically slew-rate limited. This feature, called Soft Startup, avoids the potential ground bounce when all out-puts are turned on simultaneously. After start-up, the slew rate of the individual outputs is, as in the XC3000 family, determined by the individual configuration option.

Improvements in the XC3100A and XC3100L Families

Based on a more advanced CMOS process, the XC3100A and XC3100L families are architecturally-identical, performance-optimized relatives of the XC3000A and XC3000L families. While all families are footprint compatible, the XC3100A family extends achievable system performance beyond 85 MHz.

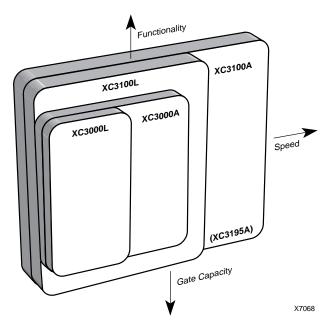


Figure 1: XC3000 FPGA Families

7

t : CLB LOGIC INPUTS CLB CONTROL INPUTS CLB Y OUTPUT CLB X OUTPUT

Figure 9: Design Editor Locations of interconnect access, CLB control inputs, logic inputs and outputs. The dot pattern represents the available programmable interconnection points (PIPs).

Some of the interconnect PIPs are directional.

ŧ

∑XILINX[®]

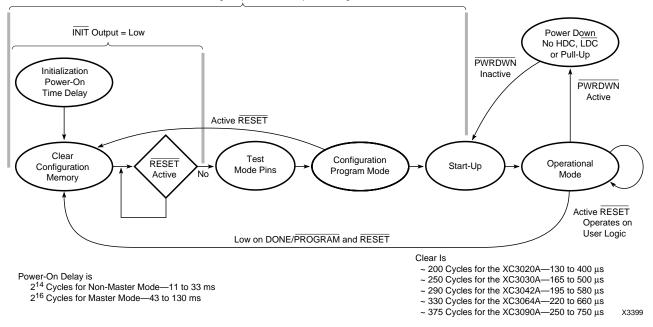
Configuration

Initialization Phase

An internal power-on-reset circuit is triggered when power is applied. When V_{CC} reaches the voltage at which portions of the FPGA device begin to operate (nominally 2.5 to 3 V), the programmable I/O output buffers are 3-stated and a high-impedance pull-up resistor is provided for the user I/O pins. A time-out delay is initiated to allow the power supply voltage to stabilize. During this time the power-down mode is inhibited. The Initialization state time-out (about 11 to 33 ms) is determined by a 14-bit counter driven by a self-generated internal timer. This nominal 1-MHz timer is subject to variations with process, temperature and power supply. As shown in Table 1, five configuration mode choices are available as determined by the input levels of three mode pins; M0, M1 and M2.

Table 1: Configuration Mode Choices

MO	M1	M2	CCLK	Mode	Data
0	0	0	output	Master	Bit Serial
0	0	1	output	Master	Byte Wide Addr. = 0000 up
0	1	0		reserved	—
0	1	1	output	Master	Byte Wide Addr. = FFFF down
1	0	0	—	reserved	—
1	0	1	output	Peripheral	Byte Wide
1	1	0	—	reserved	—
1	1	1	input	Slave	Bit Serial


XC3000 Series Field Programmable Gate Arrays

In Master configuration modes, the device becomes the source of the Configuration Clock (CCLK). The beginning of configuration of devices using Peripheral or Slave modes must be delayed long enough for their initialization to be completed. An FPGA with mode lines selecting a Master configuration mode extends its initialization state using four times the delay (43 to 130 ms) to assure that all daisy-chained slave devices, which it may be driving, will be ready even if the master is very fast, and the slave(s) very slow. Figure 20 shows the state sequences. At the end of Initialization, the device enters the Clear state where it clears the configuration memory. The active Low, open-drain initialization signal INIT indicates when the Initialization and Clear states are complete. The FPGA tests for the absence of an external active Low RESET before it makes a final sample of the mode lines and enters the Configuration state. An external wired-AND of one or more INIT pins can be used to control configuration by the assertion of the active-Low RESET of a master mode device or to signal a processor that the FPGAs are not yet initialized.

If a configuration has begun, a re-assertion of RESET for a minimum of three internal timer cycles will be recognized and the FPGA will initiate an abort, returning to the Clear state to clear the partially loaded configuration memory words. The FPGA will then resample RESET and the mode lines before re-entering the Configuration state.

During configuration, the XC3000A, XC3000L, XC3100A, and XC3100L devices check the bit-stream format for stop bits in the appropriate positions. Any error terminates the configuration and pulls INIT Low.

All User I/O Pins 3-Stated with High Impedance Pull-Up, HDC=High, LDC=Low

7-19

be used to drive the remaining unused routing, as that might affect timing of user nets. Tie can be omitted for quick breadboard iterations where a few additional milliamps of lcc are acceptable.

The configuration bitstream begins with eight High preamble bits, a 4-bit preamble code and a 24-bit length count. When configuration is initiated, a counter in the FPGA is set to zero and begins to count the total number of configuration clock cycles applied to the device. As each configuration data frame is supplied to the device, it is internally assembled into a data word, which is then loaded in parallel into one word of the internal configuration memory array. The configuration loading process is complete when the current length count equals the loaded length count and the required configuration program data frames have been written. Internal user flip-flops are held Reset during configuration.

Two user-programmable pins are defined in the unconfigured Field Programmable Gate Array. High During Configuration (HDC) and Low During Configuration (LDC) as well as DONE/PROG may be used as external control signals during configuration. In Master mode configurations it is convenient to use LDC as an active-Low EPROM Chip Enable. After the last configuration data bit is loaded and the length count compares, the user I/O pins become active. Options allow timing choices of one clock earlier or later for the timing of the end of the internal logic RESET and the assertion of the DONE signal. The open-drain DONE/PROG output can be AND-tied with multiple devices and used as an active-High READY, an active-Low PROM enable or a RESET to other portions of the system. The state diagram of Figure 20 illustrates the configuration process.

Configuration Modes

Master Mode

In Master mode, the FPGA automatically loads configuration data from an external memory device. There are three Master modes that use the internal timing source to supply the configuration clock (CCLK) to time the incoming data. Master Serial mode uses serial configuration data supplied to Data-in (DIN) from a synchronous serial source such as the Xilinx Serial Configuration PROM shown in Figure 23. Master Parallel Low and High modes automatically use parallel data supplied to the D0-D7 pins in response to the 16-bit address generated by the FPGA. Figure 25 shows an example of the parallel Master mode connections required. The HEX starting address is 0000 and increments for Master Low mode and it is FFFF and decrements for Master High mode. These two modes provide address compatibility with microprocessors which begin execution from opposite ends of memory.

Peripheral Mode

Peripheral mode provides a simplified interface through which the device may be loaded byte-wide, as a processor peripheral. Figure 27 shows the peripheral mode connections. Processor write cycles are decoded from the common assertion of the active low Write Strobe (WS), and two active low and one active high Chip Selects (CS0, CS1, CS2). The FPGA generates a configuration clock from the internal timing generator and serializes the parallel input data for internal framing or for succeeding slaves on Data Out (DOUT). A output High on READY/BUSY pin indicates the completion of loading for each byte when the input register is ready for a new byte. As with Master modes, Peripheral mode may also be used as a lead device for a daisy-chain of slave devices.

Slave Serial Mode

Slave Serial mode provides a simple interface for loading the Field Programmable Gate Array configuration as shown in Figure 29. Serial data is supplied in conjunction with a synchronizing input clock. Most Slave mode applications are in daisy-chain configurations in which the data input is driven from the previous FPGA's data out, while the clock is supplied by a lead device in Master or Peripheral mode. Data may also be supplied by a processor or other special circuits.

Daisy Chain

The development system is used to create a composite configuration for selected FPGAs including: a preamble, a length count for the total bitstream, multiple concatenated data programs and a postamble plus an additional fill bit per device in the serial chain. After loading and passing-on the preamble and length count to a possible daisy-chain, a lead device will load its configuration data frames while providing a High DOUT to possible down-stream devices as shown in Figure 25. Loading continues while the lead device has received its configuration program and the current length count has not reached the full value. The additional data is passed through the lead device and appears on the Data Out (DOUT) pin in serial form. The lead device also generates the Configuration Clock (CCLK) to synchronize the serial output data and data in of down-stream FPGAs. Data is read in on DIN of slave devices by the positive edge of CCLK and shifted out the DOUT on the negative edge of CCLK. A parallel Master mode device uses its internal timing generator to produce an internal CCLK of 8 times its EPROM address rate, while a Peripheral mode device produces a burst of 8 CCLKs for each chip select and write-strobe cycle. The internal timing generator continues to operate for general timing and synchronization of inputs in all modes.

Special Configuration Functions

The configuration data includes control over several special functions in addition to the normal user logic functions and interconnect.

- Input thresholds
- Readback disable
- DONE pull-up resistor
- DONE timing
- RESET timing
- Oscillator frequency divided by two

Each of these functions is controlled by configuration data bits which are selected as part of the normal development system bitstream generation process.

Input Thresholds

Prior to the completion of configuration all FPGA input thresholds are TTL compatible. Upon completion of configuration, the input thresholds become either TTL or CMOS compatible as programmed. The use of the TTL threshold option requires some additional supply current for threshold shifting. The exception is the threshold of the PWRDWN input and direct clocks which always have a CMOS input. Prior to the completion of configuration the user I/O pins each have a high impedance pull-up. The configuration program can be used to enable the IOB pull-up resistors in the Operational mode to act either as an input load or to avoid a floating input on an otherwise unused pin.

Readback

The contents of a Field Programmable Gate Array may be read back if it has been programmed with a bitstream in which the Readback option has been enabled. Readback may be used for verification of configuration and as a method of determining the state of internal logic nodes during debugging. There are three options in generating the configuration bitstream.

- "Never" inhibits the Readback capability.
- "One-time," inhibits Readback after one Readback has been executed to verify the configuration.
- "On-command" allows unrestricted use of Readback.

Readback is accomplished without the use of any of the user I/O pins; only M0, M1 and CCLK are used. The initiation of Readback is produced by a Low to High transition of the M0/RTRIG (Read Trigger) pin. The CCLK input must then be driven by external logic to read back the configuration data. The first three Low-to-High CCLK transitions clock out dummy data. The subsequent Low-to-High CCLK transitions shift the data frame information out on the M1/RDATA (Read Data) pin. Note that the logic polarity is always inverted, a zero in configuration becomes a one in Readback, and vice versa. Note also that each Readback frame has one Start bit (read back as a one) but, unlike in

XC3000 Series Field Programmable Gate Arrays

configuration, each Readback frame has only one Stop bit (read back as a zero). The third leading dummy bit mentioned above can be considered the Start bit of the first frame. All data frames must be read back to complete the process and return the Mode Select and CCLK pins to their normal functions.

Readback data includes the current state of each CLB flip-flop, each input flip-flop or latch, and each device pad. These data are imbedded into unused configuration bit positions during Readback. This state information is used by the development system In-Circuit Verifier to provide visibility into the internal operation of the logic while the system is operating. To readback a uniform time-sample of all storage elements, it may be necessary to inhibit the system clock.

Reprogram

To initiate a re-programming cycle, the dual-function pin DONE/PROG must be given a High-to-Low transition. To reduce sensitivity to noise, the input signal is filtered for two cycles of the FPGA internal timing generator. When reprogram begins, the user-programmable I/O output buffers are disabled and high-impedance pull-ups are provided for the package pins. The device returns to the Clear state and clears the configuration memory before it indicates 'initialized'. Since this Clear operation uses chip-individual internal timing, the master might complete the Clear operation and then start configuration before the slave has completed the Clear operation. To avoid this problem, the slave INIT pins must be AND-wired and used to force a RESET on the master (see Figure 25). Reprogram control is often implemented using an external open-collector driver which pulls DONE/PROG Low. Once a stable request is recognized, the DONE/PROG pin is held Low until the new configuration has been completed. Even if the re-program request is externally held Low beyond the configuration period, the FPGA will begin operation upon completion of configuration.

DONE Pull-up

DONE/PROG is an open-drain I/O pin that indicates the FPGA is in the operational state. An optional internal pull-up resistor can be enabled by the user of the development system. The DONE/PROG pins of multiple FPGAs in a daisy-chain may be connected together to indicate all are DONE or to direct them all to reprogram.

DONE Timing

The timing of the DONE status signal can be controlled by a selection to occur either a CCLK cycle before, or after, the outputs going active. See Figure 22. This facilitates control of external functions such as a PROM enable or holding a system in a wait state.

RESET Timing

As with DONE timing, the timing of the release of the internal reset can be controlled to occur either a CCLK cycle before, or after, the outputs going active. See Figure 22. This reset keeps all user programmable flip-flops and latches in a zero state during configuration.

Crystal Oscillator Division

A selection allows the user to incorporate a dedicated divide-by-two flip-flop between the crystal oscillator and the alternate clock line. This guarantees a symmetrical clock signal. Although the frequency stability of a crystal oscillator is very good, the symmetry of its waveform can be affected by bias or feedback drive.

Bitstream Error Checking

Bitstream error checking protects against erroneous configuration.

Each Xilinx FPGA bitstream consists of a 40-bit preamble, followed by a device-specific number of data frames. The number of bits per frame is also device-specific; however, each frame ends with three stop bits (111) followed by a start bit for the next frame (0).

All devices in all XC3000 families start reading in a new frame when they find the first 0 after the end of the previous frame. An original XC3000 device does not check for the correct stop bits, but XC3000A, XC3100A, XC3000L, and XC3100L devices check that the last three bits of any frame are actually 111.

Under normal circumstances, all these FPGAs behave the same way; however, if the bitstream is corrupted, an XC3000 device will always start a new frame as soon as it finds the first 0 after the end of the previous frame, even if the data is completely wrong or out-of-sync. Given sufficient zeros in the data stream, the device will also go Done, but with incorrect configuration and the possibility of internal contention.

An XC3000A/XC3100A/XC3000L/XC3100L device starts any new frame only if the three preceding bits are all ones. If this check fails, it pulls $\overline{\text{INIT}}$ Low and stops the internal configuration, although the Master CCLK keeps running. The user must then <u>start a</u> new configuration by applying a >6 µs Low level on RESET.

This simple check does not protect against random bit errors, but it offers almost 100 percent protection against erroneous configuration files, defective configuration data sources, synchronization errors between configuration source and FPGA, or PC-board level defects, such as broken lines or solder-bridges.

Reset Spike Protection

A separate modification slows down the RESET input before configuration by using a two-stage shift register driven from the internal clock. It tolerates submicrosecond High spikes on RESET before configuration. The XC3000 master can be connected like an XC4000 master, but with its RESET input used instead of INIT. (On XC3000, INIT is output only).

Soft Start-up

After configuration, the outputs of all FPGAs in a daisy-chain become active simultaneously, as a result of the same CCLK edge. In the original XC3000/3100 devices, each output becomes active in either fast or slew-rate limited mode, depending on the way it is configured. This can lead to large ground-bounce signals. In XC3000A, XC3000L, XC3100A, and XC3100L devices, all outputs become active first in slew-rate limited mode, reducing the ground bounce. After this soft start-up, each individual output slew rate is again controlled by the respective configuration bit.

Configuration Timing

This section describes the configuration modes in detail.

Master Serial Mode

In Master Serial mode, the CCLK output of the lead FPGA drives a Xilinx Serial PROM that feeds the DIN input. Each rising edge of the CCLK output increments the Serial PROM internal address counter. This puts the next data bit on the SPROM data output, connected to the DIN pin. The lead FPGA accepts this data on the subsequent rising CCLK edge.

The lead FPGA then presents the preamble data (and all data that overflows the lead device) on its DOUT pin. There is an internal delay of 1.5 CCLK periods, which means that

DOUT changes on the falling CCLK edge, and the next device in the daisy-chain accepts data on the subsequent rising CCLK edge.

The SPROM <u>CE</u> input can be driven from either <u>LDC</u> or DONE. Using <u>LDC</u> avoids potential contention on the DIN pin, if this pin is configured as user-I/O, but <u>LDC</u> is then restricted to be a permanently High user output. Using DONE also avoids contention on DIN, provided the early DONE option is invoked.

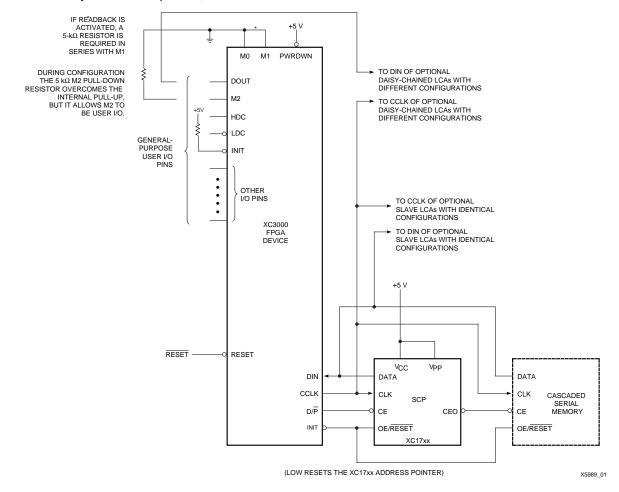


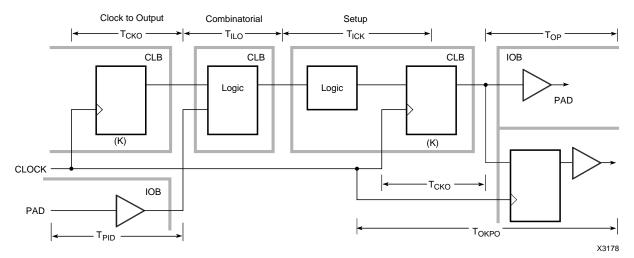
Figure 23: Master Serial Mode Circuit Diagram

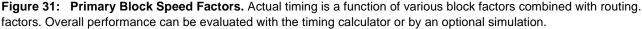
Device Performance

The XC3000 families of FPGAs can achieve very high performance. This is the result of

- A sub-micron manufacturing process, developed and continuously being enhanced for the production of state-of-the-art CMOS SRAMs.
- Careful optimization of transistor geometries, circuit design, and lay-out, based on years of experience with the XC3000 family.
- A look-up table based, coarse-grained architecture that can collapse multiple-layer combinatorial logic into a single function generator. One CLB can implement up to four layers of conventional logic in as little as 1.5 ns.

Actual system performance is determined by the timing of critical paths, including the delay through the combinatorial and sequential logic elements within CLBs and IOBs, plus the delay in the interconnect routing. The AC-timing specifications state the worst-case timing parameters for the various logic resources available in the XC3000-families architecture. Figure 31 shows a variety of elements involved in determining system performance.


Logic block performance is expressed as the propagation time from the interconnect point at the input to the block to the output of the block in the interconnect area. Since combinatorial logic is implemented with a memory lookup table within a CLB, the combinatorial delay through the CLB, called T_{ILO} , is always the same, regardless of the function being implemented. For the combinatorial logic function driving the data input of the storage element, the critical timing is data set-up relative to the clock edge provided to the flip-flop element. The delay from the clock source to the output of the logic block is critical in the timing signals pro-


duced by storage elements. Loading of a logic-block output is limited only by the resulting propagation delay of the larger interconnect network. Speed performance of the logic block is a function of supply voltage and temperature. See Figure 32.

Interconnect performance depends on the routing resources used to implement the signal path. Direct interconnects to the neighboring CLB provide an extremely fast path. Local interconnects go through switch matrices (magic boxes) and suffer an RC delay, equal to the resistance of the pass transistor multiplied by the capacitance of the driven metal line. Longlines carry the signal across the length or breadth of the chip with only one access delay. Generous on-chip signal buffering makes performance relatively insensitive to signal fan-out; increasing fan-out from 1 to 8 changes the CLB delay by only 10%. Clocks can be distributed with two low-skew clock distribution networks.

The tools in the Development System used to place and route a design in an XC3000 FPGA automatically calculate the actual maximum worst-case delays along each signal path. This timing information can be back-annotated to the design's netlist for use in timing simulation or examined with, a static timing analyzer.

Actual system performance is applications dependent. The maximum clock rate that can be used in a system is determined by the critical path delays within that system. These delays are combinations of incremental logic and routing delays, and vary from design to design. In a synchronous system, the maximum clock rate depends on the number of combinatorial logic layers between re-synchronizing flip-flops. Figure 33 shows the achievable clock rate as a function of the number of CLB layers.

Product Obsolete or Under Obsolescence

XC3000 Series Field Programmable Gate Arrays

AND of several slave mode devices, a hold-off signal for a master mode device. After configuration this pin becomes a user-programmable I/O pin.

BCLKIN

This is a direct CMOS level input to the alternate clock buffer (Auxiliary Buffer) in the lower right corner.

XTL1

This user I/O pin can be used to operate as the output of an amplifier driving an external crystal and bias circuitry.

XTL2

This user I/O pin can be used as the input of an amplifier connected to an external crystal and bias circuitry. The I/O Block is left unconfigured. The oscillator configuration is activated by routing a net from the oscillator buffer symbol output and by the MakeBits program.

CS0, CS1, CS2, WS

These four inputs represent a set of signals, three active Low and one active High, that are used to control configuration-data entry in the Peripheral mode. Simultaneous assertion of all four inputs generates a Write to the internal data buffer. The removal of any assertion clocks in the D0-D7 data. In Master-Parallel mode, WS and CS2 are the A0 and A1 outputs. After configuration, these pins are user-programmable I/O pins.

RDY/BUSY

During Peripheral Parallel mode configuration this pin indicates when the chip is ready for another byte of data to be written to it. After configuration is complete, this pin becomes a user-programmed I/O pin.

RCLK

During Master Parallel mode configuration, each change on the A0-15 outputs is preceded by a rising edge on RCLK, a redundant output signal. After configuration is complete, this pin becomes a user-programmed I/O pin. This set of eight pins represents the parallel configuration byte for the parallel Master and Peripheral modes. After configuration is complete, they are user-programmed I/O pins.

A0-A15

D0-D7

During Master Parallel mode, these 16 pins present an address output for a configuration EPROM. After configuration, they are user-programmable I/O pins.

DIN

During Slave or Master Serial configuration, this pin is used as a serial-data input. In the Master or Peripheral configuration, this is the Data 0 input. After configuration is complete, this pin becomes a user-programmed I/O pin.

DOUT

During configuration this pin is used to output serial-configuration data to the DIN pin of a daisy-chained slave. After configuration is complete, this pin becomes a user-programmed I/O pin.

TCLKIN

This is a direct CMOS-level input to the global clock buffer. This pin can also be configured as a user programmable I/O pin. However, since TCLKIN is the preferred input to the global clock net, and the global clock net should be used as the primary clock source, this pin is usually the clock input to the chip.

Unrestricted User I/O Pins

I/O

An I/O pin may be programmed by the user to be an Input or an Output pin following configuration. All unrestricted I/O pins, plus the special pins mentioned on the following page, have a weak pull-up resistor that becomes active as soon as the device powers up, and stays active until the end of configuration.

Note: Before and during configuration, all outputs that are not used for the configuration process are 3-stated with a weak pull-up resistor.

XC3000A Absolute Maximum Ratings

Symbol	Description		Units
V _{CC}	Supply voltage relative to GND	-0.5 to +7.0	V
V _{IN}	Input voltage with respect to GND	–0.5 to V _{CC} +0.5	V
V _{TS}	Voltage applied to 3-state output	–0.5 to V _{CC} +0.5	V
T _{STG}	Storage temperature (ambient)	-65 to +150	°C
T _{SOL}	Maximum soldering temperature (10 s @ 1/16 in.)	+260	°C
т	Junction temperature plastic	+125	°C
Τ _J	Junction temperature ceramic	+150	°C

Note: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time may affect device reliability.

XC3000A Global Buffer Switching Characteristics Guidelines

	Speed Grade	-7	-6	
Description	Symbol	Max	Max	Units
Global and Alternate Clock Distribution ¹				
Either: Normal IOB input pad through clock buffer				
to any CLB or IOB clock input	T _{PID}	7.5	7.0	ns
Or: Fast (CMOS only) input pad through clock				
buffer to any CLB or IOB clock input	T _{PIDC}	6.0	5.7	ns
TBUF driving a Horizontal Longline (L.L.) ¹				
I to L.L. while T is Low (buffer active)	Τ _{ΙΟ}	4.5	4.0	ns
$T \downarrow$ to L.L. active and valid with single pull-up resistor	T _{ON}	9.0	8.0	ns
$T \downarrow$ to L.L. active and valid with pair of pull-up resistors	T _{ON}	11.0	10.0	ns
T [↑] to L.L. High with single pull-up resistor	T _{PUS}	16.0	14.0	ns
T↑ to L.L. High with pair of pull-up resistors	T _{PUF}	10.0	8.0	ns
BIDI				
Bidirectional buffer delay	T _{BIDI}	1.7	1.5	ns

Note: 1. Timing is based on the XC3042A, for other devices see timing calculator.

XILINX[®]

XC3000L Switching Characteristics

Xilinx maintains test specifications for each product as controlled documents. To insure the use of the most recently released device performance parameters, please request a copy of the current test-specification revision.

XC3000L Operating Conditions

Symbol	Description	Min	Max	Units
V _{CC}	Supply voltage relative to GND Commercial 0°C to +85°C junction	3.0	3.6	V
V _{IH}	High-level input voltage — TTL configuration	2.0	V _{CC} +0.3	V
V _{IL}	Low-level input voltage — TTL configuration	-0.3	0.8	V
T _{IN}	Input signal transition time		250	ns

Notes: 1. At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.3% per °C. 2. Although the present (1996) devices operate over the full supply voltage range from 3.0 to 5.25 V, Xilinx reserves the right to restrict operation to the 3.0 to 3.6 V range later, when smaller device geometries might preclude operation at 5V. Operating conditions are guaranteed in the $3.0 - 3.6 \text{ V V}_{CC}$ range.

XC3000L DC Characteristics Over Operating Conditions

Symbol	Description	Min	Мах	Units
V _{OH}	High-level output voltage (@ I _{OH} = -4.0 mA, V _{CC} min)	2.40		V
V _{OL}	Low-level output voltage (@ I _{OL} = 4.0 mA, V _{CC} min)		0.40	V
V _{OH}	High-level output voltage (@ I _{OH} = -4.0 mA, V _{CC} min)	V _{CC} -0.2		V
V _{OL}	Low-level output voltage (@ I _{OL} = 4.0 mA, V _{CC} min)		0.2	V
V _{CCPD}	Power-down supply voltage (PWRDWN must be Low)	2.30		V
I _{CCPD}	Power-down supply current (V _{CC(MAX)} @ T _{MAX})		10	μA
I _{CCO}	Quiescent FPGA supply current in addition to I _{CCPD} ¹ Chip thresholds programmed as CMOS levels		20	μA
۱ _{IL}	Input Leakage Current	-10	+10	μΑ
6	Input capacitance, all packages except PGA175 (sample tested) All Pins except XTL1 and XTL2 XTL1 and XTL2		10 15	pF pF
C _{IN}	Input capacitance, PGA 175 (sample tested) All Pins except XTL1 and XTL2 XTL1 and XTL2		15 20	pF pF
I _{RIN}	Pad pull-up (when selected) @ $V_{IN} = 0 V^3$	0.01	0.17	mA
I _{RLL}	Horizontal Longline pull-up (when selected) @ logic Low		2.50	mA

Notes: 1. With no output current loads, no active input or Longline pull-up resistors, all package pins at V_{CC} or GND, and the FPGA

device configured with a tie option. I_{CCO} is in addition to I_{CCPD}.
2. Total continuous output sink current may not exceed 100 mA per ground pin. Total continuous output source may not exceed 100 mA per V_{CC} pin. The number of ground pins varies from the XC3020L to the XC3090L.

3. Not tested. Allows an undriven pin to float High. For any other purpose, use an external pull-up.

XC3100A Switching Characteristics

Xilinx maintains test specifications for each product as controlled documents. To insure the use of the most recently released device performance parameters, please request a copy of the current test-specification revision.

XC3100A Operating Conditions

Symbol	Description	Min	Max	Units
V	Supply voltage relative to GND Commercial 0°C to +85°C junction	4.25	5.25	V
V _{CC}	Supply voltage relative to GND Industrial -40°C to +100°C junction	4.5	5.5	V
VIHT	High-level input voltage — TTL configuration	2.0	V _{CC}	V
V _{ILT}	Low-level input voltage — TTL configuration	0	0.8	V
VIHC	High-level input voltage — CMOS configuration	70%	100%	V _{CC}
V _{ILC}	Low-level input voltage — CMOS configuration	0	20%	V _{CC}
T _{IN}	Input signal transition time		250	ns

Note: At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.3% per °C.

XC3100A DC Characteristics Over Operating Conditions

Symbol	Description		Min	Max	Units
V _{OH}	High-level output voltage (@ I _{OH} = -8.0 mA, V _{CC} min)	3.86		V	
V _{OL}	Low-level output voltage (@ I _{OL} = 8.0 mA, V _{CC} min)	Commercial		0.40	V
V _{OH}	High-level output voltage (@ I _{OH} = -8.0 mA, V _{CC} min)	Industrial	3.76		V
V _{OL}	Low-level output voltage (@ I _{OL} = 8.0 mA, V _{CC} min)	Industrial		0.40	V
V _{CCPD}	Power-down supply voltage (PWRDWN must be Low)		2.30		V
I _{CCO}	Quiescent LCA supply current in addition to I _{CCPD} ¹ Chip thresholds programmed as CMOS levels Chip thresholds programmed as TTL levels		8 14	mA mA	
١ _{IL}	Input Leakage Current	-10	+10	μΑ	
C	Input capacitance, all packages except PGA175 (sample tested) All Pins except XTL1 and XTL2 XTL1 and XTL2			10 15	pF pF
C _{IN}	Input capacitance, PGA 175 (sample tested) All Pins except XTL1 and XTL2 XTL1 and XTL2			15 20	pF pF
I _{RIN}	Pad pull-up (when selected) @ $V_{IN} = 0 V^3$		0.02	0.17	mA
I _{RLL}	Horizontal Longline pull-up (when selected) @ logic Low		0.20	2.80	mA

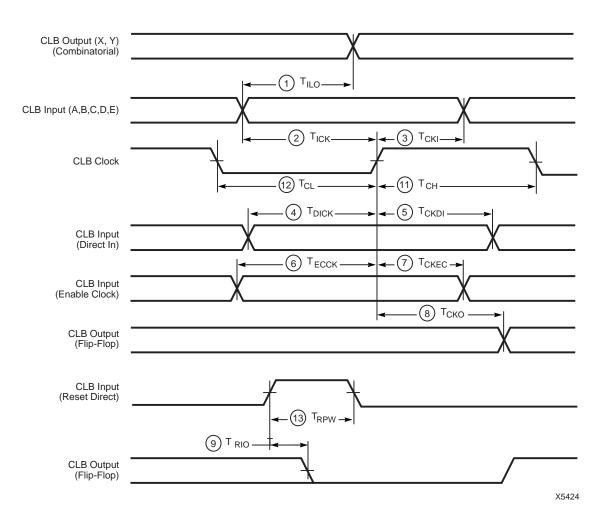
Notes: 1. With no output current loads, no active input or Longline pull-up resistors, all package pins at V_{CC} or GND, and the LCA device configured with a tie option.

2. Total continuous output sink current may not exceed 100 mA per ground pin. The number of ground pins varies from two for the XC3120A in the PC84 package, to eight for the XC3195A in the PQ208 package.

3. Not tested. Allows an undriven pin to float High. For any other purpose, use an external pull-up.

XC3100L CLB Switching Characteristics Guidelines

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Since many internal timing parameters cannot be measured directly, they are derived from benchmark timing patterns. The following guidelines reflect worst-case values over the recommended operating conditions. For more detailed, more precise, and more up-to-date timing information, use the values provided by the timing calculator and used in the simulator.


	Sp	eed Grade	-	3	-	2	
Description	S	symbol	Min	Max	Min	Max	Units
Combinatorial Delay							
Logic Variables A, B, C, D, E, to outputs X or Y	1	T _{ILO}		2.7		2.2	ns
Sequential delay							
Clock k to outputs X or Y	8	т _{ско}		2.1		1.7	ns
Clock k to outputs X or Y when Q is returned							
through function generators F or G to drive X or Y	/	T _{QLO}		4.3		3.5	ns
Set-up time before clock K							
Logic Variables A, B, C, D, E	2	T _{ICK}	2.1		1.8		ns
Data In DI	4	T _{DICK}	1.4		1.3		ns
Enable Clock EC	6	T _{ECCK}	2.7		2.5		ns
Reset Direct Inactive RD			1.0		1.0		ns
Hold Time after clock K							
Logic Variables A, B, C, D, E	3	тскі	0		0		ns
Data In DI	5	T _{CKDI}	0.9		0.9		ns
Enable Clock EC	7	T _{CKEC}	0.7		0.7		ns
Clock							
Clock High time	11	T _{CH}	1.6		1.3		ns
Clock Low time	12	T _{CL}	1.6		1.3		ns
Max. flip-flop toggle rate		F _{CLK}	270		325		MHz
Reset Direct (RD)							
RD width	13	T _{RPW}	2.7		2.3		ns
delay from RD to outputs X or Y	9	T _{RIO}		3.1		2.7	ns
Global Reset (RESET Pad)							
RESET width (Low)							ns
(XC3142L)		T _{MRW}	12.0		12.0		ns
delay from RESET pad to outputs X or Y		T _{MRQ}		12.0		12.0	
				Adv	ance		

Notes: 1. The CLB K to Q delay (T_{CKO}, #8) of any CLB, plus the shortest possible interconnect delay, is always longer than the Data

In hold time requirement (T_{CKDI}, #5) of any CLB on the same die. 2. T_{ILO}, T_{QLO} and T_{ICK} are specified for 4-input functions. For 5-input functions or base FGM functions, each of these specifications for the XC3100L family increase by 0.35 ns (-3) and 0.29 ns (-2).

∑XILINX[®]

XC3100L CLB Switching Characteristics Guidelines (continued)

XC3000 Series 100-Pin QFP Pinouts

XC3000A, XC3000L, XC3100A, and XC3100L families have identical pinouts

Pin No.		XC3020A	Pin	No.	XC3020A	Pin	No.	XC3020A
PQFP	TQFP VQFP	XC3030A XC3042A	PQFP	TQFP VQFP	XC3030A XC3042A	PQFP	TQFP VQFP	XC3030A XC3042A
16	13	GND	50	47	I/O*	84	81	I/O*
17	14	A13-I/O	51	48	I/O*	85	82	I/O*
18	15	A6-I/O	52	49	M1-RD	86	83	I/O
19	16	A12-I/O	53	50	GND*	87	84	D5-I/O
20	17	A7-I/O	54	51	MO-RT	88	85	CS0-I/O
21	18	I/O*	55	52	VCC*	89	86	D4-I/O
22	19	I/O*	56	53	M2-I/O	90	87	I/O
23	20	A11-I/O	57	54	HDC-I/O	91	88	VCC
24	21	A8-I/O	58	55	I/O	92	89	D3-I/O
25	22	A10-I/O	59	56	LDC-I/O	93	90	CS1-I/O
26	23	A9-I/O	60	57	I/O*	94	91	D2-I/O
27	24	VCC*	61	58	I/O*	95	92	I/O
28	25	GND*	62	59	I/O	96	93	I/O*
29	26	PWRDN	63	60	I/O	97	94	I/O*
30	27	TCLKIN-I/O	64	61	I/O	98	95	D1-I/O
31	28	I/O**	65	62	INIT-I/O	99	96	RDY/BUSY-RCLK-I/O
32	29	I/O*	66	63	GND	100	97	DO-DIN-I/O
33	30	I/O*	67	64	I/O	1	98	DOUT-I/O
34	31	I/O	68	65	I/O	2	99	CCLK
35	32	I/O	69	66	I/O	3	100	VCC*
36	33	I/O	70	67	I/O	4	1	GND*
37	34	I/O	71	68	I/O	5	2	AO-WS-I/O
38	35	I/O	72	69	I/O	6	3	A1-CS2-I/O
39	36	I/O	73	70	I/O	7	4	I/O**
40	37	I/O	74	71	I/O*	8	5	A2-I/O
41	38	VCC	75	72	I/O*	9	6	A3-I/O
42	39	I/O	76	73	XTL2-I/O	10	7	I/O*
43	40	I/O	77	74	GND*	11	8	I/O*
44	41	I/O	78	75	RESET	12	9	A15-I/O
45	42	I/O	79	76	VCC*	13	10	A4-I/O
46	43	I/O	80	77	DONE-PG	14	11	A14-I/O
47	44	I/O	81	78	D7-I/O	15	12	A5-I/O
48	45	I/O	82	79	BCLKIN-XTL1-I/O			
49	46	I/O	83	80	D6-I/O			

Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed outputs are default slew-rate limited.

* This table describes the pinouts of three different chips in three different packages. The pin-description column lists 100 of the 118 pads on the XC3042A that are connected to the 100 package pins. Two pads, indicated by double asterisks, do not exist on the XC3030A, which has 98 pads; therefore the corresponding pins have no connections. Twenty-six pads, indicated by single or double asterisks, do not exist on the XC3020A, which has 74 pads; therefore, the corresponding pins have no connections. (See table on page 65.)

XC3000 Series 132-Pin Ceramic and Plastic PGA Pinouts

XC3000A, XC3000L, XC3100A, and XC3100L families have identical pinouts

PGA Pin Number	XC3042A XC3064A	PGA Pin Number	XC3042A XC3064A	PGA Pin Number	XC3042A XC3064A	PGA Pin Number	XC3042A XC3064A
C4	GND	B13	M1-RD	P14	RESET	M3	DOUT-I/O
A1	PWRDN	C11	GND	M11	VCC	P1	CCLK
C3	I/O-TCLKIN	A14	M0-RT	N13	DONE-PG	M4	VCC
B2	I/O	D12	VCC	M12	D7-I/O	L3	GND
B3	I/O	C13	M2-I/O	P13	XTL1-I/O-BCLKIN	M2	A0-WS-I/O
A2	I/O*	B14	HDC-I/O	N12	I/O	N1	A1-CS2-I/O
B4	I/O	C14	I/O	P12	I/O	M1	I/O
C5	I/O	E12	I/O	N11	D6-I/O	K3	I/O
A3	I/O*	D13	I/O	M10	I/O	L2	A2-I/O
A4	I/O	D14	LDC-I/O	P11	I/O*	L1	A3-I/O
B5	I/O	E13	I/O*	N10	I/O	K2	I/O
C6	I/O	F12	I/O	P10	I/O	J3	I/O
A5	I/O	E14	I/O	M9	D5-I/O	K1	A15-I/O
B6	I/O	F13	I/O	N9	CS0-I/O	J2	A4-I/O
A6	I/O	F14	I/O	P9	I/O*	J1	I/O*
B7	I/O	G13	I/O	P8	I/O*	H1	A14-I/O
C7	GND	G14	INIT-I/O	N8	D4-I/O	H2	A5-I/O
C8	VCC	G12	VCC	P7	I/O	H3	GND
A7	I/O	H12	GND	M8	VCC	G3	VCC
B8	I/O	H14	I/O	M7	GND	G2	A13-I/O
A8	I/O	H13	I/O	N7	D3-I/O	G1	A6-I/O
A9	I/O	J14	I/O	P6	CS1-I/O	F1	I/O*
B9	I/O	J13	I/O	N6	I/O*	F2	A12-I/O
C9	I/O	K14	I/O	P5	I/O*	E1	A7-I/O
A10	I/O	J12	I/O	M6	D2-I/O	F3	I/O
B10	I/O	K13	I/O	N5	I/O	E2	I/O
A11	I/O*	L14	I/O*	P4	I/O	D1	A11-I/O
C10	I/O	L13	I/O	P3	I/O	D2	A8-I/O
B11	I/O	K12	I/O	M5	D1-I/O	E3	I/O
A12	I/O*	M14	I/O	N4	RDY/BUSY-RCLK-I/O	C1	I/O
B12	I/O	N14	I/O	P2	I/O	B1	A10-I/O
A13	I/O*	M13	XTL2(IN)-I/O	N3	I/O	C2	A9-I/O
C12	I/O	L12	GND	N2	D0-DIN-I/O	D3	VCC

Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed outputs are default slew-rate limited.

* Indicates unconnected package pins (14) for the XC3042A.

XC3000 Series 160-Pin PQFP Pinouts

XC3000A, XC3000L, XC3100A, and XC3100L families have identical pinouts

PQFP Pin Number	XC3064A, XC3090A, XC3195A						
1	I/O*	41	GND	81	D7-I/O	121	CCLK
2	I/O*	42	M0-RTRIG	82	XTL1-I/O-BCLKIN	122	VCC
3	I/O*	43	VCC	83	I/O*	123	GND
4	I/O	44	M2-I/O	84	I/O	124	A0-WS-I/O
5	I/O	45	HDC-I/O	85	I/O	125	A1-CS2-I/O
6	I/O	46	I/O	86	D6-I/O	126	I/O
7	I/O	47	I/O	87	I/O	127	I/O
8	I/O	48	I/O	88	I/O	128	A2-I/O
9	I/O	49	LDC-I/O	89	I/O	129	A3-I/O
10	I/O	50	I/O*	90	I/O	130	I/O
11	I/O	51	I/O*	91	I/O	131	I/O
12	I/O	52	I/O	92	D5-I/O	132	A15-I/O
13	I/O	53	I/O	93	CS0-I/O	133	A4-I/O
14	I/O	54	I/O	94	I/O*	134	I/O
15	I/O	55	I/O	95	I/O*	135	I/O
16	I/O	56	I/O	96	I/O	136	A14-I/O
17	I/O	57	I/O	97	I/O	137	A5-I/O
18	I/O	58	I/O	98	D4-I/O	138	I/O*
19	GND	59	INIT-I/O	99	I/O	139	GND
20	VCC	60	VCC	100	VCC	140	VCC
21	I/O*	61	GND	101	GND	141	A13-I/O
22	I/O	62	I/O	102	D3-I/O	142	A6-I/O
23	I/O	63	I/O	103	CS1-I/O	143	I/O*
24	I/O	64	I/O	104	I/O	144	I/O*
25	I/O	65	I/O	105	I/O	145	I/O
26	I/O	66	I/O	106	I/O*	146	I/O
27	I/O	67	I/O	107	I/O*	147	A12-I/O
28	I/O	68	I/O	108	D2-I/O	148	A7-I/O
29	I/O	69	I/O	109	I/O	149	I/O
30	I/O	70	I/O	110	I/O	150	I/O
31	I/O	71	I/O	111	I/O	151	A11-I/O
32	I/O	72	I/O	112	I/O	152	A8-I/O
33	I/O	73	I/O	113	I/O	153	I/O
34	I/O	74	I/O	114	D1-I/O	154	I/O
35	I/O	75	I/O*	115	RDY/BUSY-RCLK-I/O	155	A10-I/O
36	I/O	76	XTL2-I/O	116	I/O	156	A9-I/O
37	I/O	77	GND	117	I/O	157	VCC
38	I/O*	78	RESET	118	I/O*	158	GND
39	I/O*	79	VCC	119	D0-DIN-I/O	159	PWRDWN
40	M1-RDATA	80	DONE/PG	120	DOUT-I/O	160	TCLKIN-I/O

Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed IOBs are default slew-rate limited.

* Indicates unconnected package pins (18) for the XC3064A.

XC3000 Series 175-Pin Ceramic and Plastic PGA Pinouts

XC3000A, XC3000L, XC3100A, and XC3100L families have identical pinouts

PGA Pin Number			XC3090A, XC3195A	PGA Pin Number	XC3090A, XC3195A	PGA Pin Number	XC3090A, XC3195A	
B2	PWRDN	D13	I/O	R14	DONE-PG	N4	DOUT-I/O	
D4	TCLKIN-I/O	B14	M1-RDATA	N13	D7-I/O	R2	CCLK	
B3	I/O	C14	GND	T14	XTL1(OUT)-BCLKIN-I/O	P3	VCC	
C4	I/O	B15	M0-RTRIG	P13	I/O	N3	GND	
B4	I/O	D14	VCC	R13	I/O	P2	A0-WS-I/O	
A4	I/O	C15	M2-I/O	T13	I/O	M3	A1-CS2-I/O	
D5	I/O	E14	HDC-I/O	N12	I/O	R1	I/O	
C5	I/O	B16	I/O	P12	D6-I/O	N2	I/O	
B5	I/O	D15	I/O	R12	I/O	P1	A2-I/O	
A5	I/O	C16	I/O	T12	I/O	N1	A3-I/O	
C6	I/O	D16	LDC-I/O	P11	I/O	L3	I/O	
D6	I/O	F14	I/O	N11	I/O	M2	I/O	
B6	I/O	E15	I/O	R11	I/O	M1	A15-I/O	
A6	I/O	E16	I/O	T11	D5-I/O	L2	A4-I/O	
B7	I/O	F15	I/O	R10	CS0-I/O	L1	I/O	
C7	I/O	F16	I/O	P10	I/O	K3	I/O	
D7	I/O	G14	I/O	N10	I/O	K2	A14-I/O	
A7	I/O	G15	I/O	T10	I/O	K1	A5-I/O	
A8	I/O	G16	I/O	Т9	I/O	J1	I/O	
B8	I/O	H16	I/O	R9	D4-I/O	J2	I/O	
C8	I/O	H15	INIT-I/O	P9	I/O	J3	GND	
D8	GND	H14	VCC	N9	VCC	H3	VCC	
D9	VCC	J14	GND	N8	GND	H2	A13-I/O	
C9	I/O	J15	I/O	P8	D3-I/O	H1	A6-I/O	
B9	I/O	J16	I/O	R8	CS1-I/O	G1	I/O	
A9	I/O	K16	I/O	Т8	I/O	G2	I/O	
A10	I/O	K15	I/O	T7	I/O	G3	I/O	
D10	I/O	K14	I/O	N7	I/O	F1	I/O	
C10	I/O	L16	I/O	P7	I/O	F2	A12-I/O	
B10	I/O	L15	I/O	R7	D2-I/O	E1	A7-I/O	
A11	I/O	M16	I/O	Т6	I/O	E2	I/O	
B11	I/O	M15	I/O	R6	I/O	F3	I/O	
D11	I/O	L14	I/O	N6	I/O	D1	A11-I/O	
C11	I/O	N16	I/O	P6	I/O	C1	A8-I/O	
A12	I/O	P16	I/O	T5	I/O	D2	I/O	
B12	I/O	N15	I/O	R5	D1-I/O	B1	I/O	
C12	I/O	R16	I/O	P5	RDY/BUSY-RCLK-I/O	E3	A10-I/O	
D12	I/O	M14	I/O	N5	I/O	C2	A9-I/O	
A13	I/O	P15	XTL2(IN)-I/O	T4	I/O	D3	VCC	
B13	I/O	N14	GND	R4	I/O	C3	GND	
C13	I/O	R15	RESET	P4	I/O	·I		
A14	I/O	P14	VCC	R3	D0-DIN-I/O			

Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed outputs are default slew-rate limited.

Pins A2, A3, A15, A16, T1, T2, T3, T15 and T16 are not connected. Pin A1 does not exist.

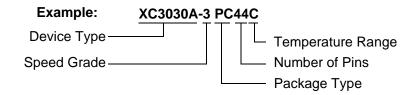
XC3000 Series 208-Pin PQFP Pinouts

XC3000A, and XC3000L families have identical pinouts

Pin Number XC3090A		Pin Number	XC3090A	Pin Number	XC3090A	Pin Number	XC3090A	
1	-	53	-	105	-	157	-	
2	GND	54	-	106	VCC	158	-	
3	PWRDWN	55	VCC	107	D/P	159	-	
4	TCLKIN-I/O	56	M2-I/O	108	-	160	GND	
5	I/O	57	HDC-I/O	109	D7-I/O	161	WS-A0-I/O	
6	I/O	58	I/O	110	XTL1-BCLKIN-I/O	162	CS2-A1-I/O	
7	I/O	59	I/O	111	I/O	163	I/O	
8	I/O	60	I/O	112	I/O	164	I/O	
9	I/O	61	LDC-I/O	113	I/O	165	A2-I/O	
10	I/O	62	I/O	114	I/O	166	A3-I/O	
11	I/O	63	I/O	115	D6-I/O	167	I/O	
12	I/O	64	_	116	I/O	168	I/O	
13	I/O	65	-	117	I/O	169	_	
14	I/O	66	_	118	I/O	170	_	
15	-	67	_	119	-	171	_	
16	I/O	68	I/O	120	I/O	172	A15-I/O	
17	I/O	69	I/O	120	I/O	172	A4-I/O	
18	I/O	70	1/O	121	D5-I/O	173	I/O	
19	I/O	70	I/O	122		174	I/O	
20	I/O	72	-	123	I/O	176		
20	I/O	72	_	124	I/O	170	_	
22	I/O	73		125	I/O	178	A14-I/O	
22	1/O	74	1/O	120	I/O	179	A14-1/O A5-1/O	
23	I/O	76	I/O	127	D4-I/O	180	I/O	
24	GND	76	 	128	I/O	181	1/O	
25	VCC	78	VCC	129	VCC	182	GND	
20	1/0	78	GND	130	GND	183	VCC	
27	I/O	80	I/O	131	D3-I/O	183	A13-I/O	
20	I/O	81	I/O	132	<u>CS1-I/O</u>	185		
							A6-I/O	
30	I/O I/O	82	I/O	134	I/O I/O	186	I/O I/O	
31		83	-	135		187		
32	I/O I/O	84	-	136	I/O I/O	188	-	
33		85	I/O	137		189		
34	I/O	86	I/O	138	D2-I/O	190	I/O	
35	I/O	87	I/O	139	I/O	191	I/O	
36	I/O	88	I/O	140	I/O	192	A12-I/O	
37	-	89	I/O	141	I/O	193	A7-I/O	
38	I/O	90	_	142	-	194	-	
39	I/O	91	-	143	I/O	195	-	
40	I/O	92	-	144	I/O	196	-	
41	I/O	93	I/O	145	D1-I/O	197	I/O	
42	I/O	94	I/O	146	RDY/BUSY-RCLK-I/O	198	I/O	
43	I/O	95	I/O	147	I/O	199	A11-I/O	
44	I/O	96	I/O	148	I/O	200	A8-I/O	
45	I/O	97	I/O	149	I/O	201	I/O	
46	I/O	98	I/O	150	I/O	202	I/O	
47	I/O	99	I/O	151	DIN-D0-I/O	203	A10-I/O	
48	M1-RDATA	100	XTL2-I/O	152	DOUT-I/O	204	A9-I/O	
49	GND	101	GND	153	CCLK	205	VCC	
50	M0-RTRIG	102	RESET	154	VCC	206	-	
51	-	103	-	155	-	207	-	
52	-	104	-	156	-	208	-	

Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed outputs are default slew-rate limited.

* In PQ208, XC3090A and XC3195A have different pinouts.


Pins	44	64	68	8	4	100		132		144	160	17	75	176	208	
Туре	Plast. PLCC	Plast. VQFP	Plast. PLCC	Plast. PLCC	Cer. PGA	Plast. PQFP	Plast. TQFP	Plast. VQFP	Plast. PGA	Cer. PGA	Plast. TQFP	Plast. PQFP	Plast. PGA	Cer. PGA	Plast. TQFP	Plast. PQFP
Code	PC44	VQ64	PC68	PC84	PG84	PQ100	TQ100	VQ100	PP132	PG132	TQ144	PQ160	PP175	PG175	TQ176	PQ208
XC3142L				С				С			С					
AG3142L				С				С			С					
XC24001				С							С				С	
XC3190L				С							С				С	

C = Commercial, $T_J = 0^\circ$ to +85°C Notes: I = Industrial, $T_J = -40^\circ$ to +100°C

Number of Available I/O Pins

		Number of Package Pins										
	Max I/O	44	64	68	84	100	132	144	160	175	176	208
XC3020A/XC3120A	64			58	64	64						
XC3030A/XC3130A	80	34	54	58	74	80						
XC3042A/3142A	96				74	82	96	96				
XC2064A/XC3164A	120				70		110	120	120			
XC3090A/XC3190A	144				70			122	138	144	144	144
XC3195A	176				70				138	144		176

Ordering Information

Revision History

Date	Revision
11/98	Revised version number to 3.1, removed XC3100A-5 obsolete packages.

XILINX[®]