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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Product Obsolete or Under Obsolescence
Flexible routing allows use of common or individual CLB
clocking.

The combinatorial-logic portion of the CLB uses a 32 by 1
look-up table to implement Boolean functions. Variables
selected from the five logic inputs and two internal block
flip-flops are used as table address inputs. The combinato-
rial propagation delay through the network is independent
of the logic function generated and is spike free for single
input variable changes. This technique can generate two
independent logic functions of up to four variables each as
shown in Figure 6a, or a single function of five variables as
shown in Figure 6b, or some functions of seven variables
as shown in Figure 6c. Figure 7 shows a modulo-8 binary
counter with parallel enable. It uses one CLB of each type.
The partial functions of six or seven variables are imple-
mented using the input variable (E) to dynamically select
between two functions of four different variables. For the
two functions of four variables each, the independent
results (F and G) may be used as data inputs to either
flip-flop or either logic block output. For the single function
of five variables and merged functions of six or seven vari-
ables, the F and G outputs are identical. Symmetry of the F
and G functions and the flip-flops allows the interchange of
CLB outputs to optimize routing efficiencies of the networks
interconnecting the CLBs and IOBs.

Programmable Interconnect
Programmable-interconnection resources in the Field Pro-
grammable Gate Array provide routing paths to connect
inputs and outputs of the IOBs and CLBs into logic net-
works. Interconnections between blocks are composed of a
two-layer grid of metal segments. Specially designed pass
transistors, each controlled by a configuration bit, form pro-
grammable interconnect points (PIPs) and switching matri-
ces used to implement the necessary connections between
selected metal segments and block pins. Figure 8 is an
example of a routed net. The development system provides
automatic routing of these interconnections. Interactive
routing is also available for design optimization. The inputs
of the CLBs or IOBs are multiplexers which can be pro-
grammed to select an input network from the adjacent
interconnect segments. Since the switch connections to
block inputs are unidirectional, as are block outputs,
they are usable only for block input connection and not
for routing. Figure 9 illustrates routing access to logic
block input variables, control inputs and block outputs.
Three types of metal resources are provided to accommo-
date various network interconnect requirements.

• General Purpose Interconnect 
• Direct Connection
• Longlines (multiplexed busses and wide AND gates)

QY
Any Function

of Up to 4
Variables

QY
Any Function

of Up to 4
Variables

QY
Any Function
of 5 Variables

QY
Any Function

of Up to 4
Variables

QY
Any Function

of Up to 4
Variables

5c

5b

5a

QX

QX

QX

QX

QX

A
B

C
D

A
B

C
D

E

E

A
B

C

D
E

D

A
B

C

D

C

A
B

M
U
X

F

G

F

G

F

G

E

X5442

FGM
Mode

Figure 6:   Combinational Logic Options
6a. Combinatorial Logic Option FG generates two func-
tions of four variables each. One variable, A, must be
common to both functions. The second and third variable
can be any choice of B, C, QX and QY. The fourth vari-
able can be any choice of D or E.
6b. Combinatorial Logic Option F generates any function
of five variables: A, D, E and two choices out of B, C, QX,
QY.
6c. Combinatorial Logic Option FGM allows variable E to
select between two functions of four variables: Both have
common inputs A and D and any choice out of B, C, QX
and QY for the remaining two variables. Option 3 can
then implement some functions of six or seven variables.
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Figure 13:    XC3020A Die-Edge IOBs. The XC3020A die-edge IOBs are provided with direct access to adjacent CLBs.

Global Buffer Direct Input Global Buffer Inerconnect

Alternate Buffer Direct Input* Unbonded IOBs (6 Places)
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Figure 15:   Programmable Interconnection of Longlines. This is provided at the edges of the routing area. 
Three-state buffers allow the use of horizontal Longlines to form on-chip wired AND and multiplexed buses. The left two 
non-clock vertical Longlines per column (except XC3020A) and the outer perimeter Longlines may be programmed as 
connectable half-length lines.
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Figure 16:   3-State Buffers Implement a Wired-AND Function. When all the buffer 3-state lines are High, (high 
impedance), the pull-up resistor(s) provide the High output. The buffer inputs are driven by the control signals or a Low.
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Figure 17:   3-State Buffers Implement a Multiplexer. The selection is accomplished by the buffer 3-state signal.
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A re-program is initiated.when a configured XC3000 series
device senses a High-to-Low transition and subsequent >6
µs Low level on the DONE/PROG package pin, or, if this
pin is externally held permanently Low, a High-to-Low tran-
sition and subsequent >6 µs Low time on the RESET pack-
age pin.

The device returns to the Clear state where the configura-
tion memory is cleared and mode lines re-sampled, as for
an aborted configuration. The complete configuration pro-
gram is cleared and loaded during each configuration pro-
gram cycle.

Length count control allows a system of multiple Field Pro-
grammable Gate Arrays, of assorted sizes, to begin opera-
tion in a synchronized fashion. The configuration program

generated by the development system begins with a pre-
amble of 111111110010 followed by a 24-bit length count
representing the total number of configuration clocks
needed to complete loading of the configuration pro-
gram(s). The data framing is shown in Figure 21. All
FPGAs connected in series read and shift preamble and
length count in on positive and out on negative configura-
tion clock edges. A device which has received the pream-
ble and length count then presents a High Data Out until it
has intercepted the appropriate number of data frames.
When the configuration program memory of an FPGA is full
and the length count does not yet compare, the device
shifts any additional data through, as it did for preamble
and length count. When the FPGA configuration memory is
full and the length count compares, the device will execute

11111111
0010
< 24-Bit Length Count >
1111

0 <Data Frame # 001 > 111
0 <Data Frame # 002 > 111
0 <Data Frame # 003 > 111
      .              .              .
      .              .              .
      .              .              .
0 <Data Frame # 196 > 111
0 <Data Frame # 197 > 111

1111

—Dummy Bits*
—Preamble Code
—Configuration Program Length
—Dummy Bits (4 Bits Minimum)

           For XC3120

           197 Configuration Data Frames
                     
           (Each Frame Consists of:
                A Start Bit (0)
                A 71-Bit Data Field
                Three Stop Bits
     
Postamble Code (4 Bits Minimum)

Header

Program Data

Repeated for Each Logic
Cell Array in a Daisy Chain

*The LCA Device Require Four Dummy Bits Min; Software Generates Eight Dummy Bits
X5300_01

Figure 21:   Internal Configuration Data Structure for an FPGA. This shows the preamble, length count and data 
frames generated by the Development System.

The Length Count produced by the program = [(40-bit preamble + sum of program data + 1 per daisy chain device)
rounded up to multiple of 8] – (2 ≤ K ≤ 4) where K is a function of DONE and RESET timing selected. An additional 8 is
added if roundup increment is less than K. K additional clocks are needed to complete start-up after length count is
reached.

Device

XC3020A
XC3020L
XC3120A

XC3030A
XC3030L
XC3130A

XC3042A
XC3042L
XC3142A
XC3142L

XC3064A
XC3064L
XC3164A

XC3090A
XC3090L
XC3190A
XC3190L XC3195A 

Gates 1,000 to 1,500 1,500 to 2,000 2,000 to 3,000 3,500 to 4,500 5,000 to 6,000 6,500 to 7,500

CLBs 64 100 144 224 320 484

Row x Col (8 x 8) (10 x 10) (12 x 12) (16 x 14) (20 x 16) (22 x 22)

IOBs 64 80 96 120 144 176   

Flip-flops 256 360 480 688 928 1,320

Horizontal Longlines 16 20 24 32 40 44

TBUFs/Horizontal LL 9 11 13 15 17 23 

Bits per Frame 
(including1 start and 3 stop bits) 

75 92 108 140 172 188

Frames 197 241 285 329 373 505 

Program Data = 
Bits x Frames + 4 bits 
(excludes header)

14,779 22,176 30,784 46,064 64,160 94,944

PROM size (bits) = 
Program Data 
+ 40-bit Header

14,819 22,216 30,824 46,104 64,200 94,984   
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Special Configuration Functions
The configuration data includes control over several spe-
cial functions in addition to the normal user logic functions
and interconnect.

• Input thresholds
• Readback disable
• DONE pull-up resistor
• DONE timing
• RESET timing 
• Oscillator frequency divided by two

Each of these functions is controlled by configuration data
bits which are selected as part of the normal development
system bitstream generation process.

Input Thresholds

Prior to the completion of configuration all FPGA input
thresholds are TTL compatible. Upon completion of config-
uration, the input thresholds become either TTL or CMOS
compatible as programmed. The use of the TTL threshold
option requires some additional supply current for thresh-
old shifting. The exception is the threshold of the
PWRDWN input and direct clocks which always have a
CMOS input. Prior to the completion of configuration the
user I/O pins each have a high impedance pull-up. The
configuration program can be used to enable the IOB
pull-up resistors in the Operational mode to act either as an
input load or to avoid a floating input on an otherwise
unused pin. 

Readback

The contents of a Field Programmable Gate Array may be
read back if it has been programmed with a bitstream in
which the Readback option has been enabled. Readback
may be used for verification of configuration and as a
method of determining the state of internal logic nodes dur-
ing debugging. There are three options in generating the
configuration bitstream.

• “Never” inhibits the Readback capability. 
• “One-time,” inhibits Readback after one Readback has 

been executed to verify the configuration.
• “On-command” allows unrestricted use of Readback.

Readback is accomplished without the use of any of the
user I/O pins; only M0, M1 and CCLK are used. The initia-
tion of Readback is produced by a Low to High transition of
the M0/RTRIG (Read Trigger) pin. The CCLK input must
then be driven by external logic to read back the configura-
tion data. The first three Low-to-High CCLK transitions
clock out dummy data. The subsequent Low-to-High CCLK
transitions shift the data frame information out on the
M1/RDATA (Read Data) pin. Note that the logic polarity is
always inverted, a zero in configuration becomes a one in
Readback, and vice versa. Note also that each Readback
frame has one Start bit (read back as a one) but, unlike in

configuration, each Readback frame has only one Stop bit
(read back as a zero). The third leading dummy bit men-
tioned above can be considered the Start bit of the first
frame. All data frames must be read back to complete the
process and return the Mode Select and CCLK pins to their
normal functions.

Readback data includes the current state of each CLB
flip-flop, each input flip-flop or latch, and each device pad.
These data are imbedded into unused configuration bit
positions during Readback. This state information is used
by the development system In-Circuit Verifier to provide
visibility into the internal operation of the logic while the
system is operating. To readback a uniform time-sample of
all storage elements, it may be necessary to inhibit the sys-
tem clock.

Reprogram

To initiate a re-programming cycle, the dual-function pin
DONE/PROG must be given a High-to-Low transition. To
reduce sensitivity to noise, the input signal is filtered for two
cycles of the FPGA internal timing generator. When repro-
gram begins, the user-programmable I/O output buffers are
disabled and high-impedance pull-ups are provided for the
package pins. The device returns to the Clear state and
clears the configuration memory before it indicates ‘initial-
ized’. Since this Clear operation uses chip-individual inter-
nal timing, the master might complete the Clear operation
and then start configuration before the slave has completed
the Clear operation. To avoid this problem, the slave INIT
pins must be AND-wired and used to force a RESET on the
master (see Figure 25). Reprogram control is often imple-
mented using an external open-collector driver which pulls
DONE/PROG Low. Once a stable request is recognized,
the DONE/PROG pin is held Low until the new configura-
tion has been completed. Even if the re-program request is
externally held Low beyond the configuration period, the
FPGA will begin operation upon completion of configura-
tion.

DONE Pull-up

DONE/PROG is an open-drain I/O pin that indicates the
FPGA is in the operational state. An optional internal
pull-up resistor can be enabled by the user of the develop-
ment system. The DONE/PROG pins of multiple FPGAs in
a daisy-chain may be connected together to indicate all are
DONE or to direct them all to reprogram.

DONE Timing

The timing of the DONE status signal can be controlled by
a selection to occur either a CCLK cycle before, or after, the
outputs going active. See Figure 22. This facilitates control
of external functions such as a PROM enable or holding a
system in a wait state. 
November 9, 1998 (Version 3.1) 7-23
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RESET Timing

As with DONE timing, the timing of the release of the inter-
nal reset can be controlled to occur either a CCLK cycle
before, or after, the outputs going active. See Figure 22.
This reset keeps all user programmable flip-flops and
latches in a zero state during configuration.

Crystal Oscillator Division

A selection allows the user to incorporate a dedicated
divide-by-two flip-flop between the crystal oscillator and the
alternate clock line. This guarantees a symmetrical clock
signal. Although the frequency stability of a crystal oscilla-
tor is very good, the symmetry of its waveform can be
affected by bias or feedback drive.

Bitstream Error Checking

Bitstream error checking protects against erroneous con-
figuration.

Each Xilinx FPGA bitstream consists of a 40-bit preamble,
followed by a device-specific number of data frames. The
number of bits per frame is also device-specific; however,
each frame ends with three stop bits (111) followed by a
start bit for the next frame (0).

All devices in all XC3000 families start reading in a new
frame when they find the first 0 after the end of the previous
frame. An original XC3000 device does not check for the
correct stop bits, but XC3000A, XC3100A, XC3000L, and
XC3100L devices check that the last three bits of any frame
are actually 111.

Under normal circumstances, all these FPGAs behave the
same way; however, if the bitstream is corrupted, an
XC3000 device will always start a new frame as soon as it
finds the first 0 after the end of the previous frame, even if
the data is completely wrong or out-of-sync. Given suffi-
cient zeros in the data stream, the device will also go Done,

but with incorrect configuration and the possibility of inter-
nal contention.

An XC3000A/XC3100A/XC3000L/XC3100L device starts
any new frame only if the three preceding bits are all ones.
If this check fails, it pulls INIT Low and stops the internal
configuration, although the Master CCLK keeps running.
The user must then start a new configuration by applying a
>6 µs Low level on RESET.

This simple check does not protect against random bit
errors, but it offers almost 100 percent protection against
erroneous configuration files, defective configuration data
sources, synchronization errors between configuration
source and FPGA, or PC-board level defects, such as bro-
ken lines or solder-bridges. 

Reset Spike Protection

A separate modification slows down the RESET input
before configuration by using a two-stage shift register
driven from the internal clock. It tolerates submicrosecond
High spikes on RESET before configuration. The XC3000
master can be connected like an XC4000 master, but with
its RESET input used instead of INIT. (On XC3000, INIT is
output only).

Soft Start-up 

After configuration, the outputs of all FPGAs in a
daisy-chain become active simultaneously, as a result of
the same CCLK edge. In the original XC3000/3100
devices, each output becomes active in either fast or
slew-rate limited mode, depending on the way it is config-
ured. This can lead to large ground-bounce signals. In
XC3000A, XC3000L, XC3100A, and XC3100L devices, all
outputs become active first in slew-rate limited mode,
reducing the ground bounce. After this soft start-up, each
individual output slew rate is again controlled by the
respective configuration bit.
7-24 November 9, 1998 (Version 3.1)
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Notes: 1. At power-up, VCC must rise from 2.0 V to VCC min in less than 25 ms. If this is not possible, configuration can be delayed by 
holding RESET Low until VCC has reached 4.0 V (2.5 V for the XC3000L). A very long VCC rise time of >100 ms, or a 
non-monotonically rising VCC may require >6-µs High level on RESET, followed by a >6-µs Low level on RESET and D/P 
after VCC has reached 4.0 V (2.5 V for the XC3000L).

2. Configuration can be controlled by holding RESET Low with or until after the INIT of all daisy-chain slave-mode devices is 
High.

3. Master-serial-mode timing is based on slave-mode testing.

Figure 24:   Master Serial Mode Programming Switching Characteristics

Serial Data In

CCLK
(Output)

Serial DOUT
(Output)

1 TDSCK

2 TCKDS

n n + 1 n + 2

n – 3 n – 2 n – 1 n 

X3223

Description Symbol Min Max Units

CCLK
Data In setup 1 TDSCK 60 ns

Data In hold 2 CKDS 0 ns
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Notes: 1. At power-up, VCC must rise from 2.0 V to VCC min in less than 25 ms. If this is not possible, configuration can be delayed by 
holding RESET Low until VCC has reached 4.0 V (2.5 V for the XC3000L). A very long VCC rise time of >100 ms, or a 
non-monotonically rising VCC may require a >6-µs High level on RESET, followed by a >6-µs Low level on RESET and D/P 
after VCC has reached 4.0 V (2.5 V for the XC3000L).

2. Configuration must be delayed until the INIT of all FPGAs is High.
3. Time from end of WS to CCLK cycle for the new byte of data depends on completion of previous byte processing and the 

phase of the internal timing generator for CCLK.
4. CCLK and DOUT timing is tested in slave mode.
5. TBUSY indicates that the double-buffered parallel-to-serial converter is not yet ready to receive new data. The shortest TBUSY 

occurs when a byte is loaded into an empty parallel-to-serial converter. The longest TBUSY occurs when a new word is 
loaded into the input register before the second-level buffer has started shifting out data. 

Note: This timing diagram shows very relaxed requirements: Data need not be held beyond the rising edge of WS. BUSY
will go active within 60 ns after the end of WS. BUSY will stay active for several microseconds. WS may be asserted
immediately after the end of BUSY.

Figure 28:   Peripheral Mode Programming Switching Characteristics

6
BUSYT

D6DOUT

RDY/BUSY

D7 D0 D1 D2

4 WTRBT

Valid

2
DCT

1
CAT

CCLK

D0-D7

CS2

WS, CS0, CS1

3
CDT

WRITE TO FPGA

X5992

Previous Byte New Byte

Description Symbol Min Max Units

WRITE

Effective Write time required 
(Assertion of CS0, CS1, CS2, WS)

1 TCA 100 ns

DIN Setup time required
DIN Hold time required

2
3

TDC
TCD

60
0

ns
ns

RDY/BUSY delay after end of WS 4 TWTRB 60 ns

RDY

Earliest next WS after end of BUSY 5 TRBWT 0 ns

BUSY Low time generated 6 TBUSY 2.5 9 CCLK
periods
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Notes: 1. The max limit of CCLK Low time is caused by dynamic circuitry inside the FPGA.
2. Configuration must be delayed until the INIT of all FPGAs is High.
3. At power-up, VCC must rise from 2.0 V to VCC min in less than 25 ms. If this is not possible, configuration can be delayed by 

holding RESET Low until VCC has reached 4.0 V (2.5 V for the XC3000L). A very long VCC rise time of >100 ms, or a 
non-monotonically rising VCC may require a >6-µs High level on RESET, followed by a >6-µs Low level on RESET and D/P 
after VCC has reached 4.0 V (2.5 V for the XC3000L).

Figure 30:   Slave Serial Mode Programming Switching Characteristics

4 TCCH

Bit n Bit n + 1

Bit nBit n - 1

3 TCCO

5 TCCL2 TCCD1 TDCC

DIN

CCLK

DOUT
(Output)

X5379

Description Symbol Min Max Units

CCLK

To DOUT

DIN setup
DIN hold
High time
Low time (Note 1)
Frequency

3

1
2
4
5

TCCO

TDCC
TCCD
TCCH
TCCL
 FCC

60
0

0.05
0.05

100

5.0
10

ns

ns
ns
µs
µs

MHz
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Device Performance
The XC3000 families of FPGAs can achieve very high per-
formance. This is the result of

• A sub-micron manufacturing process, developed and 
continuously being enhanced for the production of 
state-of-the-art CMOS SRAMs.

• Careful optimization of transistor geometries, circuit 
design, and lay-out, based on years of experience with 
the XC3000 family.

• A look-up table based, coarse-grained architecture that 
can collapse multiple-layer combinatorial logic into a 
single function generator. One CLB can implement up 
to four layers of conventional logic in as little as 1.5 ns.

Actual system performance is determined by the timing of
critical paths, including the delay through the combinatorial
and sequential logic elements within CLBs and IOBs, plus
the delay in the interconnect routing. The AC-timing speci-
fications state the worst-case timing parameters for the var-
ious logic resources available in the XC3000-families
architecture. Figure 31 shows a variety of elements
involved in determining system performance.

Logic block performance is expressed as the propagation
time from the interconnect point at the input to the block to
the output of the block in the interconnect area. Since com-
binatorial logic is implemented with a memory lookup table
within a CLB, the combinatorial delay through the CLB,
called TILO, is always the same, regardless of the function
being implemented. For the combinatorial logic function
driving the data input of the storage element, the critical
timing is data set-up relative to the clock edge provided to
the flip-flop element. The delay from the clock source to the
output of the logic block is critical in the timing signals pro-

duced by storage elements. Loading of a logic-block output
is limited only by the resulting propagation delay of the
larger interconnect network. Speed performance of the
logic block is a function of supply voltage and temperature.
See Figure 32.

Interconnect performance depends on the routing
resources used to implement the signal path. Direct inter-
connects to the neighboring CLB provide an extremely fast
path. Local interconnects go through switch matrices
(magic boxes) and suffer an RC delay, equal to the resis-
tance of the pass transistor multiplied by the capacitance of
the driven metal line. Longlines carry the signal across the
length or breadth of the chip with only one access delay.
Generous on-chip signal buffering makes performance rel-
atively insensitive to signal fan-out; increasing fan-out from
1 to 8 changes the CLB delay by only 10%. Clocks can be
distributed with two low-skew clock distribution networks.

The tools in the Development System used to place and
route a design in an XC3000 FPGA automatically calculate
the actual maximum worst-case delays along each signal
path. This timing information can be back-annotated to the
design’s netlist for use in timing simulation or examined
with, a static timing analyzer.

Actual system performance is applications dependent. The
maximum clock rate that can be used in a system is deter-
mined by the critical path delays within that system. These
delays are combinations of incremental logic and routing
delays, and vary from design to design. In a synchronous
system, the maximum clock rate depends on the number of
combinatorial logic layers between re-synchronizing
flip-flops. Figure 33 shows the achievable clock rate as a
function of the number of CLB layers. 

CLBCLB IOBCLB

PAD

(K)

LogicLogic

CKOT

CLOCK

Clock to Output Combinatorial Setup

TCKO TILO TICK

(K)

PAD

IOB

TPID
TOKPO

OPT

X3178

Figure 31:   Primary Block Speed Factors. Actual timing is a function of various block factors combined with routing. 
factors. Overall performance can be evaluated with the timing calculator or by an optional simulation.
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 Power

Power Distribution
Power for the FPGA is distributed through a grid to achieve
high noise immunity and isolation between logic and I/O.
Inside the FPGA, a dedicated VCC and ground ring sur-
rounding the logic array provides power to the I/O drivers.
An independent matrix of VCC and groundlines supplies the
interior logic of the device. This power distribution grid pro-
vides a stable supply and ground for all internal logic, pro-
viding the external package power pins are all connected
and appropriately decoupled. Typically a 0.1-µF capacitor
connected near the VCC and ground pins will provide ade-
quate decoupling.

Output buffers capable of driving the specified 4- or 8-mA
loads under worst-case conditions may be capable of driv-
ing as much as 25 to 30 times that current in a best case.
Noise can be reduced by minimizing external load capaci-
tance and reducing simultaneous output transitions in the
same direction. It may also be beneficial to locate heavily
loaded output buffers near the ground pads. The I/O Block
output buffers have a slew-limited mode which should be
used where output rise and fall times are not speed critical.
Slew-limited outputs maintain their dc drive capability, but
generate less external reflections and internal noise.
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Figure 32:   Relative Delay as a Function of Temperature, Supply Voltage and Processing Variations
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Dynamic Power Consumption

Power Consumption
The Field Programmable Gate Array exhibits the low power
consumption characteristic of CMOS ICs. For any design,
the configuration option of TTL chip input threshold
requires power for the threshold reference. The power
required by the static memory cells that hold the configura-
tion data is very low and may be maintained in a
power-down mode.

Typically, most of power dissipation is produced by external
capacitive loads on the output buffers. This load and fre-
quency dependent power is 25 µW/pF/MHz per output.
Another component of I/O power is the external dc loading
on all output pins. 

Internal power dissipation is a function of the number and
size of the nodes, and the frequency at which they change.
In an FPGA, the fraction of nodes changing on a given
clock is typically low (10-20%). For example, in a long
binary counter, the total activity of all counter flip-flops is
equivalent to that of only two CLB outputs toggling at the
clock frequency. Typical global clock-buffer power is
between 2.0 mW/MHz for the XC3020A and 3.5 mW/MHz
for the XC3090A. The internal capacitive load is more a
function of interconnect than fan-out. With a typical load of
three general interconnect segments, each CLB output
requires about 0.25 mW per MHz of its output frequency.

Because the control storage of the FPGA is CMOS static
memory, its cells require a very low standby current for data
retention. In some systems, this low data retention current
characteristic can be used as a method of preserving con-
figurations in the event of a primary power loss. The FPGA

has built in powerdown logic which, when activated, will
disable normal operation of the device and retain only the
configuration data. All internal operation is suspended and
output buffers are placed in their high-impedance state with
no pull-ups. Different from the XC3000 family which can be
powered down to a current consumption of a few micro-
amps, the XC3100A draws 5 mA, even in power-down.
This makes power-down operation less meaningful. In con-
trast, ICCPD for the XC3000L is only 10 µA.

To force the FPGA into the Powerdown state, the user must
pull the PWRDWN pin Low and continue to supply a reten-
tion voltage to the VCC pins. When normal power is
restored, VCC is elevated to its normal operating voltage
and PWRDWN is returned to a High. The FPGA resumes
operation with the same internal sequence that occurs at
the conclusion of configuration. Internal-I/O and logic-block
storage elements will be reset, the outputs will become
enabled and the DONE/PROG pin will be released. 

When VCC is shut down or disconnected, some power
might unintentionally be supplied from an incoming signal
driving an I/O pin. The conventional electrostatic input pro-
tection is implemented with diodes to the supply and
ground. A positive voltage applied to an input (or output)
will cause the positive protection diode to conduct and drive
the VCC connection. This condition can produce invalid
power conditions and should be avoided. A large series
resistor might be used to limit the current or a bipolar buffer
may be used to isolate the input signal.

XC3042A XC3042L XC3142A
One CLB driving three local interconnects 0.25 0.17 0.25 mW per MHz

One global clock buffer and clock line 2.25 1.40 1.70 mW per MHz

One device output with a 50 pF load 1.25 1.25 1.25 mW per MHz
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XC3000A IOB Switching Characteristics Guidelines (continued)
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XC3000L Absolute Maximum Ratings

Note:  Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are 
stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under 
Recommended Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended 
periods of time may affect device reliability.

XC3000L Global Buffer Switching Characteristics Guidelines

Notes: 1. Timing is based on the XC3042A, for other devices see timing calculator.
2. The use of two pull-up resistors per Longline, available on other XC3000 devices, is not a valid option for XC3000L devices.

Symbol Description Units
VCC Supply voltage relative to GND –0.5 to +7.0 V

VIN Input voltage with respect to GND –0.5 to VCC +0.5 V

VTS Voltage applied to 3-state output –0.5 to VCC +0.5 V

TSTG Storage temperature (ambient) –65 to +150 °C
TSOL Maximum soldering temperature (10 s @ 1/16 in.) +260 °C

TJ
Junction temperature plastic +125 °C
Junction temperature ceramic +150 °C

Speed Grade -8
Description Symbol Max Units

Global and Alternate Clock Distribution1

Either: Normal IOB input pad through clock buffer
to any CLB or IOB clock input

Or: Fast (CMOS only) input pad through clock
 buffer to any CLB or IOB clock input

TPID

TPIDC

9.0

7.0

ns

ns

TBUF driving a Horizontal Longline (L.L.)1

I to L.L. while T is Low (buffer active)
T↓ to L.L. active and valid with single pull-up resistor
T↑ to L.L. High with single pull-up resistor

TIO
TON
TPUS

5.0
12.0
24.0

ns
ns
ns

BIDI
Bidirectional buffer delay TBIDI 2.0 ns
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XC3000L IOB Switching Characteristics Guidelines
Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100%
functionally tested. Since many internal timing parameters cannot be measured directly, they are derived from benchmark
timing patterns. The following guidelines reflect worst-case values over the recommended operating conditions. For more
detailed, more precise, and more up-to-date timing information, use the values provided by the timing calculator and used
in the simulator.

Notes: 1. Timing is measured at pin threshold, with 50 pF external capacitive loads (incl. test fixture). Typical slew rate limited output 
rise/fall times are approximately four times longer. 

2. Voltage levels of unused (bonded and unbonded) pads must be valid logic levels. Each can be configured with the internal 
pull-up resistor or alternatively configured as a driven output or driven from an external source.

3. Input pad set-up time is specified with respect to the internal clock (ik). In order to calculate system set-up time, subtract 
clock delay (pad to ik) from the input pad set-up time value. Input pad holdtime with respect to the internal clock (ik) is 
negative. This means that pad level changes immediately before the internal clock edge (ik) will not be recognized. 

4.  TPID, TPTG, and TPICK are 3 ns higher for XTL2 when the pin is configured as a user input.

Speed Grade -8
Description Symbol Min Max Units

Propagation Delays (Input)
Pad to Direct In (I)
Pad to Registered In (Q) with latch transparent
Clock (IK) to Registered In (Q)

3

4

TPID
TPTG
TIKRI

5.0
24.0
6.0

ns
ns
ns

Set-up Time (Input)
Pad to Clock (IK) set-up time 1 TPICK 22.0 ns

Propagation Delays (Output)
Clock (OK) to Pad (fast)
same (slew rate limited)
Output (O) to Pad (fast)
same (slew-rate limited)
3-state to Pad begin hi-Z (fast)
same (slew-rate limited)
3-state to Pad active and valid (fast)
same (slew -rate limited)

7
7
10
10
9
9
8
8

TOKPO
TOKPO
TOPF
TOPS
TTSHZ
TTSHZ
TTSON
TTSON

12.0
28.0
9.0

25.0
12.0
28.0
16.0
32.0

ns
ns
ns
ns
ns
ns
ns
ns

Set-up and Hold Times (Output)
Output (O) to clock (OK) set-up time
Output (O) to clock (OK) hold time

5
6

TOOK
TOKO

12.0
0

ns
ns

Clock
Clock High time
Clock Low time
Max. flip-flop toggle rate

11
12

TIOH
TIOL
FCLK

5.0
5.0
80.0

ns
ns

MHz

Global Reset Delays (based on XC3042L)
RESET Pad to Registered In (Q)
RESET Pad to output pad  (fast)

(slew-rate limited)

13
15
15

TRRI
TRPO
TRPO

25.0
35.0
51.0

ns
ns
ns
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XC3000L IOB Switching Characteristics Guidelines (continued)
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XC3100L Absolute Maximum Ratings

Note:  Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are 
stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under 
Recommended Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended 
periods of time may affect device reliability.

XC3100L Global Buffer Switching Characteristics Guidelines

Notes: 1. Timing is based on the XC3142L, for other devices see timing calculator.
2. The use of two pull-up resistors per longline, available on other XC3000 devices, is not a valid option for XC3100L devices.

Symbol Description Units
VCC Supply voltage relative to GND –0.5 to +7.0 V

VIN Input voltage with respect to GND –0.5 to VCC +0.5 V

VTS Voltage applied to 3-state output –0.5 to VCC +0.5 V

TSTG Storage temperature (ambient) –65 to +150 °C
TSOL Maximum soldering temperature (10 s @ 1/16 in.) +260 °C

TJ
Junction temperature plastic +125 °C
Junction temperature ceramic +150 °C

Speed Grade -3 -2
Description Symbol Max Max Units

Global and Alternate Clock Distribution1

Either:Normal IOB input pad through clock buffer
to any CLB or IOB clock input

Or: Fast (CMOS only) input pad through clock
 buffer to any CLB or IOB clock input

TPID

TPIDC

5.6

4.3

4.7

3.7

ns

ns

TBUF driving a Horizontal Longline (L.L.)1

I to L.L. while T is Low (buffer active)
T↓ to L.L. active and valid with single pull-up resistor
T↑ to L.L. High with single pull-up resistor

TIO
TON
TPUS

3.1
4.2
11.4

3.1
4.2
11.4

ns
ns
ns

BIDI
Bidirectional buffer delay TBIDI 1.0 0.9 ns

Advance
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XC3100L IOB Switching Characteristics Guidelines
Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100%
functionally tested. Since many internal timing parameters cannot be measured directly, they are derived from benchmark
timing patterns. The following guidelines reflect worst-case values over the recommended operating conditions. For more
detailed, more precise, and more up-to-date timing information, use the values provided by the timing calculator and used
in the simulator.

Notes: 1. Timing is measured at pin threshold, with 50 pF external capacitive loads (incl. test fixture). Typical slew rate limited output 
rise/fall times are approximately four times longer.

2. Voltage levels of unused (bonded and unbonded) pads must be valid logic levels. Each can be configured with the internal 
pull-up resistor or alternatively configured as a driven output or driven from an external source.

3. Input pad set-up time is specified with respect to the internal clock (IK). In order to calculate system set-up time, subtract 
clock delay (pad to ik) from the input pad set-up time value. Input pad holdtime with respect to the internal clock (IK) is 
negative. This means that pad level changes immediately before the internal clock edge (IK) will not be recognized.

Speed Grade -3 -2
Description Symbol Min Max Min Max Units

Propagation Delays (Input)
Pad to Direct In (I)
Pad to Registered In (Q) with latch (XC3100L)

transparent
Clock (IK) to Registered In (Q)

3

4

TPID
TPTG

TIKRI

2.2
11.0

2.2

2.0
11.0

1.9

ns
ns

ns

Set-up Time (Input)
Pad to Clock (IK) set-up time

XC3142L
XC3190L

1 TPICK
9.5
9.9

9.0
9.4

ns
ns

Propagation Delays (Output)
Clock (OK) to Pad (fast)
same (slew rate limited)
Output (O) to Pad (fast)
same (slew-rate limited)(XC3100L)
3-state to Pad begin hi-Z (fast)
same (slew-rate limited)
3-state to Pad active and valid (fast)(XC3100L)
same (slew -rate limited)

7
7
10
10
9
9
8
8

TOKPOTOK

PO
TOPF
TOPF
TTSHZ
TTSHZ
TTSON
TTSON

4.4
10.0
3.3
9.0
5.5
5.5
9.0
15.0

4.0
9.7
3.0
8.7
5.0
5.0
8.5
14.2

ns
ns
ns
ns
ns
ns
ns
ns

Set-up and Hold Times (Output)
Output (O) to clock (OK) set-up time (XC3100L)
Output (O) to clock (OK) hold time

5
6

TOOK
TOKO

4.0
0

3.6
0

ns
ns

Clock
Clock High time
Clock Low time
Export Control Maximum flip-flop toggle rate

11
12

TIOH
TIOL
FTOG

1.6
1.6
270

1.3
1.3
325

ns
ns

MHz

Global Reset Delays
RESET Pad to Registered In (Q)

(XC3142L)
(XC3190L)

RESET Pad to output pad (fast)
(slew-rate limited)

13

15
15

TRRI

TRPO
TRPO

16.0
21.0
17.0
23.0

16.0
21.0
17.0
23.0

ns
ns
ns
ns

Advance
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XC3064A/XC3090A/XC3195A 84-Pin PLCC Pinouts
XC3000A, XC3000L, XC3100A, and XC3100L families have identical pinouts

Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs.
Programmed outputs are default slew-rate limited. 

* In the PC84 package, XC3064A, XC3090A and XC3195A have additional VCC and GND pins and thus a different pin
definition than XC3020A/XC3030A/XC3042A.

PLCC Pin Number     XC3064A, XC3090A, XC3195A PLCC Pin Number XC3064A, XC3090A, XC3195A

12 PWRDN  54 RESET

13 TCLKIN-I/O 55 DONE-PG

14 I/O  56 D7-I/O

15 I/O  57 XTL1(OUT)-BCLKIN-I/O

16 I/O  58 D6-I/O

17 I/O  59 I/O

18 I/O  60 D5-I/O

19 I/O  61 CS0-I/O

20 I/O  62 D4-I/O

21 GND*  63 I/O

22 VCC  64 VCC

23 I/O  65 GND*

24 I/O  66 D3-I/O*

25 I/O  67 CS1-I/O*

26 I/O  68 D2-I/O*

27 I/O  69 I/O

28 I/O  70 D1-I/O

29 I/O  71 RDY/BUSY-RCLK-I/O

30 I/O  72 D0-DIN-I/O

31 M1-RDATA 73 DOUT-I/O

32 M0-RTRIG  74 CCLK

33 M2-I/O  75 A0-WS-I/O

34 HDC-I/O  76 A1-CS2-I/O

35 I/O  77 A2-I/O

36 LDC-I/O  78 A3-I/O

37 I/O  79 I/O

38 I/O  80 I/O

39 I/O  81 A15-I/O

40 I/O  82 A4-I/O

41 INIT/I/O* 83 A14-I/O

42 VCC*  84 A5-I/O

43 GND  1 GND

44 I/O  2 VCC*

45 I/O  3 A13-I/O*

46 I/O  4 A6-I/O*

47 I/O  5 A12-I/O*

48 I/O  6  A7-I/O*

49 I/O  7 I/O 

50 I/O  8 A11-I/O

51 I/O 9 A8-I/O

52 I/O 10 A10-I/O

53 XTL2(IN)-I/O 11 A9-I/O
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XC3000 Series 176-Pin TQFP Pinouts
XC3000A, XC3000L, XC3100A, and XC3100L families have identical pinouts

Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs.
Programmed outputs are default slew-rate limited.

Pin 
Number

XC3090A

1 PWRDWN

2 TCLKIN-I/O

3 I/O

4 I/O

5 I/O

6 I/O

7 I/O

8 I/O

9 I/O

10 I/O

11 I/O

12 I/O

13 I/O

14 I/O

15 I/O

16 I/O

17 I/O

18 I/O

19 I/O

20 I/O

21 I/O

22 GND

23 VCC

24 I/O

25 I/O

26 I/O

27 I/O

28 I/O

29 I/O

30 I/O

31 I/O

32 I/O

33 I/O

34 I/O

35 I/O

36 I/O

37 I/O

38 I/O

39 I/O

40 I/O

41 I/O

42 I/O

43 I/O

44 –

45 M1-RDATA

46 GND

47 M0-RTRIG

48 VCC

49 M2-I/O

50 HDC-I/O

51 I/O

52 I/O

53 I/O

54 LDC-I/O

55 –

56 I/O

57 I/O

58 I/O

59 I/O

60 I/O

61 I/O

62 I/O

63 I/O

64 I/O

65 INIT-I/O

66 VCC

67 GND

68 I/O

69 I/O

70 I/O

71 I/O

72 I/O

73 I/O

74 I/O

75 I/O

76 I/O

77 I/O

78 I/O

79 I/O

80 I/O

81 I/O

82 –

83 –

84 I/O

85 XTAL2(IN)-I/O

86 GND

87 RESET

88 VCC

Pin 
Number

XC3090A

89 DONE-PG

90 D7-I/O

91 XTAL1(OUT)-BCLKIN-I/O

92 I/O

93 I/O

94 I/O

95 I/O

96 D6-I/O

97 I/O

98 I/O

99 I/O

100 I/O

101 I/O

102 D5-I/O

103 CS0-I/O

104 I/O

105 I/O

106 I/O

107 I/O

108 D4-I/O

109 I/O

110 VCC

111 GND

112 D3-I/O

113 CS1-I/O

114 I/O

115 I/O

116 I/O

117 I/O

118 D2-I/O

119 I/O

120 I/O

121 I/O

122 I/O

123 I/O

124 D1-I/O

125 RDY/BUSY-RCLK-I/O

126 I/O

127 I/O

128 I/O

129 I/O

130 D0-DIN-I/O

131 DOUT-I/O

132 CCLK

Pin 
Number

XC3090A

133 VCC

134 GND

135 A0-WS-I/O

136 A1-CS2-I/O

137 –

138 I/O

139 I/O

140 A2-I/O

141 A3-I/O

142 –

143 –

144 I/O

145 I/O

146 A15-I/O

147 A4-I/O

148 I/O

149 I/O

150 A14-I/O

151 A5-I/O

152 I/O

153 I/O

154 GND

155 VCC

156 A13-I/O

157 A6-I/O

158 I/O

159 I/O

160 –

161 –

162 I/O

163 I/O

164 A12-I/O

165 A7-I/O

166 I/O

167 I/O

168 –

169 A11-I/O

170 A8-I/O

171 I/O

172 I/O

173 A10-I/O

174 A9-I/O

175 VCC

176 GND

Pin 
Number

XC3090A
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