E·XFL

AMD Xilinx - XC3195A-3PQ160C Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	484
Number of Logic Elements/Cells	-
Total RAM Bits	94984
Number of I/O	138
Number of Gates	7500
Voltage - Supply	4.25V ~ 5.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	160-BQFP
Supplier Device Package	160-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc3195a-3pq160c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Detailed Functional Description

The perimeter of configurable Input/Output Blocks (IOBs) provides a programmable interface between the internal logic array and the device package pins. The array of Configurable Logic Blocks (CLBs) performs user-specified logic functions. The interconnect resources are programmed to form networks, carrying logic signals among blocks, analogous to printed circuit board traces connecting MSI/SSI packages.

The block logic functions are implemented by programmed look-up tables. Functional options are implemented by program-controlled multiplexers. Interconnecting networks between blocks are implemented with metal segments joined by program-controlled pass transistors.

These FPGA functions are established by a configuration program which is loaded into an internal, distributed array of configuration memory cells. The configuration program is loaded into the device at power-up and may be reloaded on command. The FPGA includes logic and control signals to implement automatic or passive configuration. Program data may be either bit serial or byte parallel. The development system generates the configuration program bitstream used to configure the device. The memory loading process is independent of the user logic functions.

Configuration Memory

The static memory cell used for the configuration memory in the Field Programmable Gate Array has been designed specifically for high reliability and noise immunity. Integrity of the device configuration memory based on this design is assured even under adverse conditions. As shown in Figure 3, the basic memory cell consists of two CMOS inverters plus a pass transistor used for writing and reading cell data. The cell is only written during configuration and only read during readback. During normal operation, the cell provides continuous control and the pass transistor is off and does not affect cell stability. This is quite different from the operation of conventional memory devices, in which the cells are frequently read and rewritten.

X3241

Figure 2: Field Programmable Gate Array Structure.

It consists of a perimeter of programmable I/O blocks, a core of configurable logic blocks and their interconnect resources. These are all controlled by the distributed array of configuration program memory cells.

Configurable Logic Block

The array of CLBs provides the functional elements from which the user's logic is constructed. The logic blocks are arranged in a matrix within the perimeter of IOBs. For example, the XC3020A has 64 such blocks arranged in 8 rows and 8 columns. The development system is used to compile the configuration data which is to be loaded into the internal configuration memory to define the operation and interconnection of each block. User definition of CLBs and their interconnecting networks may be done by automatic translation from a schematic-capture logic diagram or optionally by installing library or user macros.

Each CLB has a combinatorial logic section, two flip-flops, and an internal control section. See Figure 5. There are: five logic inputs (A, B, C, D and E); a common clock input (K); an asynchronous direct RESET input (RD); and an enable clock (EC). All may be driven from the interconnect resources adjacent to the blocks. Each CLB also has two outputs (X and Y) which may drive interconnect networks.

Data input for either flip-flop within a CLB is supplied from the function F or G outputs of the combinatorial logic, or the block input, DI. Both flip-flops in each CLB share the asynchronous RD which, when enabled and High, is dominant over clocked inputs. <u>All flip-flops</u> are reset by the active-Low chip input, RESET, or during the configuration process. The flip-flops share the enable clock (EC) which, when Low, recirculates the flip-flops' present states and inhibits response to the data-in or combinatorial function inputs on a CLB. The user may enable these control inputs and select their sources. The user may also select the clock net input (K), as well as its active sense within each CLB. This programmable inversion eliminates the need to route both phases of a clock signal throughout the device.

Figure 5: Configurable Logic Block.

Each CLB includes a combinatorial logic section, two flip-flops and a program memory controlled multiplexer selection of function. It has the following:

- five logic variable inputs A, B, C, D, and E
- a direct data in DI
- an enable clock EC
- a clock (invertible) K
- an asynchronous direct RESET RD
- two outputs X and Y

Flexible routing allows use of common or individual CLB clocking.

The combinatorial-logic portion of the CLB uses a 32 by 1 look-up table to implement Boolean functions. Variables selected from the five logic inputs and two internal block flip-flops are used as table address inputs. The combinatorial propagation delay through the network is independent of the logic function generated and is spike free for single input variable changes. This technique can generate two independent logic functions of up to four variables each as shown in Figure 6a, or a single function of five variables as shown in Figure 6b, or some functions of seven variables as shown in Figure 6c. Figure 7 shows a modulo-8 binary counter with parallel enable. It uses one CLB of each type. The partial functions of six or seven variables are implemented using the input variable (E) to dynamically select between two functions of four different variables. For the two functions of four variables each, the independent results (F and G) may be used as data inputs to either flip-flop or either logic block output. For the single function of five variables and merged functions of six or seven variables, the F and G outputs are identical. Symmetry of the F and G functions and the flip-flops allows the interchange of CLB outputs to optimize routing efficiencies of the networks interconnecting the CLBs and IOBs.

Programmable Interconnect

Programmable-interconnection resources in the Field Programmable Gate Array provide routing paths to connect inputs and outputs of the IOBs and CLBs into logic networks. Interconnections between blocks are composed of a two-layer grid of metal segments. Specially designed pass transistors, each controlled by a configuration bit, form programmable interconnect points (PIPs) and switching matrices used to implement the necessary connections between selected metal segments and block pins. Figure 8 is an example of a routed net. The development system provides automatic routing of these interconnections. Interactive routing is also available for design optimization. The inputs of the CLBs or IOBs are multiplexers which can be programmed to select an input network from the adjacent interconnect segments. Since the switch connections to block inputs are unidirectional, as are block outputs, they are usable only for block input connection and not for routing. Figure 9 illustrates routing access to logic block input variables, control inputs and block outputs. Three types of metal resources are provided to accommodate various network interconnect requirements.

- General Purpose Interconnect
- Direct Connection
- Longlines (multiplexed busses and wide AND gates)

Figure 6: Combinational Logic Options

6a. Combinatorial Logic Option FG generates two functions of four variables each. One variable, A, must be common to both functions. The second and third variable can be any choice of B, C, QX and QY. The fourth variable can be any choice of D or E.

6b. Combinatorial Logic Option F generates any function of five variables: A, D, E and two choices out of B, C, QX, QY.

6c. Combinatorial Logic Option FGM allows variable E to select between two functions of four variables: Both have common inputs A and D and any choice out of B, C, QX and QY for the remaining two variables. Option 3 can then implement some functions of six or seven variables.

Configuration

Initialization Phase

An internal power-on-reset circuit is triggered when power is applied. When V_{CC} reaches the voltage at which portions of the FPGA device begin to operate (nominally 2.5 to 3 V), the programmable I/O output buffers are 3-stated and a high-impedance pull-up resistor is provided for the user I/O pins. A time-out delay is initiated to allow the power supply voltage to stabilize. During this time the power-down mode is inhibited. The Initialization state time-out (about 11 to 33 ms) is determined by a 14-bit counter driven by a self-generated internal timer. This nominal 1-MHz timer is subject to variations with process, temperature and power supply. As shown in Table 1, five configuration mode choices are available as determined by the input levels of three mode pins; M0, M1 and M2.

Table 1: Configuration Mode Choices

MO	M1	M2	CCLK	Mode	Data
0	0	0	output	Master	Bit Serial
0	0	1	output	Master	Byte Wide Addr. = 0000 up
0	1	0	—	reserved	—
0	1	1	output	Master	Byte Wide Addr. = FFFF down
1	0	0		reserved	
1	0	1	output	Peripheral	Byte Wide
1	1	0	—	reserved	—
1	1	1	input	Slave	Bit Serial

XC3000 Series Field Programmable Gate Arrays

In Master configuration modes, the device becomes the source of the Configuration Clock (CCLK). The beginning of configuration of devices using Peripheral or Slave modes must be delayed long enough for their initialization to be completed. An FPGA with mode lines selecting a Master configuration mode extends its initialization state using four times the delay (43 to 130 ms) to assure that all daisy-chained slave devices, which it may be driving, will be ready even if the master is very fast, and the slave(s) very slow. Figure 20 shows the state sequences. At the end of Initialization, the device enters the Clear state where it clears the configuration memory. The active Low, open-drain initialization signal INIT indicates when the Initialization and Clear states are complete. The FPGA tests for the absence of an external active Low RESET before it makes a final sample of the mode lines and enters the Configuration state. An external wired-AND of one or more INIT pins can be used to control configuration by the assertion of the active-Low RESET of a master mode device or to signal a processor that the FPGAs are not yet initialized.

If a configuration has begun, a re-assertion of RESET for a minimum of three internal timer cycles will be recognized and the FPGA will initiate an abort, returning to the Clear state to clear the partially loaded configuration memory words. The FPGA will then resample RESET and the mode lines before re-entering the Configuration state.

During configuration, the XC3000A, XC3000L, XC3100A, and XC3100L devices check the bit-stream format for stop bits in the appropriate positions. Any error terminates the configuration and pulls INIT Low.

All User I/O Pins 3-Stated with High Impedance Pull-Up, HDC=High, LDC=Low

7-19

a synchronous start-up sequence and become operational. See Figure 22. Two CCLK cycles after the completion of loading configuration data, the user I/O pins are enabled as configured. As selected, the internal user-logic RESET is released either one clock cycle before or after the I/O pins become active. A similar timing selection is programmable for the DONE/PROG output signal. DONE/PROG may also be programmed to be an open drain or include a pull-up resistor to accommodate wired ANDing. The High During Configuration (HDC) and Low During Configuration (LDC) are two user I/O pins which are driven active while an FPGA is in its Initialization, Clear or Configure states. They and DONE/PROG provide signals for control of external logic signals such as RESET, bus enable or PROM enable during configuration. For parallel Master configuration modes, these signals provide PROM enable control and allow the data pins to be shared with user logic signals.

User I/O inputs can be programmed to be either TTL or CMOS compatible thresholds. At power-up, all inputs have TTL thresholds and can change to CMOS thresholds at the completion of configuration if the user has selected CMOS thresholds. The threshold of PWRDWN and the direct clock inputs are fixed at a CMOS level.

If the crystal oscillator is used, it will begin operation before configuration is complete to allow time for stabilization before it is connected to the internal circuitry. **Configuration Data**

Configuration data to define the function and interconnection within a Field Programmable Gate Array is loaded from an external storage at power-up and after a re-program signal. Several methods of automatic and controlled loading of the required data are available. Logic levels applied to mode selection pins at the start of configuration time determine the method to be used. See Table 1. The data may be either bit-serial or byte-parallel, depending on the configuration mode. The different FPGAs have different sizes and numbers of data frames. To maintain compatibility between various device types, the Xilinx product families use compatible configuration formats. For the XC3020A, configuration requires 14779 bits for each device, arranged in 197 data frames. An additional 40 bits are used in the header. See Figure 22. The specific data format for each device is produced by the development system and one or more of these files can then be combined and appended to a length count preamble and be transformed into a PROM format file by the development system. A compatibility exception precludes the use of an XC2000-series device as the master for XC3000-series devices if their DONE or RESET are programmed to occur after their outputs become active. The Tie Option defines output levels of unused blocks of a design and connects these to unused routing resources. This prevents indeterminate levels that might produce parasitic supply currents. If unused blocks are not sufficient to complete the tie, the user can indicate nets which must not

Figure 22: Configuration and Start-up of One or More FPGAs.

be used to drive the remaining unused routing, as that might affect timing of user nets. Tie can be omitted for quick breadboard iterations where a few additional milliamps of lcc are acceptable.

The configuration bitstream begins with eight High preamble bits, a 4-bit preamble code and a 24-bit length count. When configuration is initiated, a counter in the FPGA is set to zero and begins to count the total number of configuration clock cycles applied to the device. As each configuration data frame is supplied to the device, it is internally assembled into a data word, which is then loaded in parallel into one word of the internal configuration memory array. The configuration loading process is complete when the current length count equals the loaded length count and the required configuration program data frames have been written. Internal user flip-flops are held Reset during configuration.

Two user-programmable pins are defined in the unconfigured Field Programmable Gate Array. High During Configuration (HDC) and Low During Configuration (LDC) as well as DONE/PROG may be used as external control signals during configuration. In Master mode configurations it is convenient to use LDC as an active-Low EPROM Chip Enable. After the last configuration data bit is loaded and the length count compares, the user I/O pins become active. Options allow timing choices of one clock earlier or later for the timing of the end of the internal logic RESET and the assertion of the DONE signal. The open-drain DONE/PROG output can be AND-tied with multiple devices and used as an active-High READY, an active-Low PROM enable or a RESET to other portions of the system. The state diagram of Figure 20 illustrates the configuration process.

Configuration Modes

Master Mode

In Master mode, the FPGA automatically loads configuration data from an external memory device. There are three Master modes that use the internal timing source to supply the configuration clock (CCLK) to time the incoming data. Master Serial mode uses serial configuration data supplied to Data-in (DIN) from a synchronous serial source such as the Xilinx Serial Configuration PROM shown in Figure 23. Master Parallel Low and High modes automatically use parallel data supplied to the D0-D7 pins in response to the 16-bit address generated by the FPGA. Figure 25 shows an example of the parallel Master mode connections required. The HEX starting address is 0000 and increments for Master Low mode and it is FFFF and decrements for Master High mode. These two modes provide address compatibility with microprocessors which begin execution from opposite ends of memory.

Peripheral Mode

Peripheral mode provides a simplified interface through which the device may be loaded byte-wide, as a processor peripheral. Figure 27 shows the peripheral mode connections. Processor write cycles are decoded from the common assertion of the active low Write Strobe (WS), and two active low and one active high Chip Selects (CS0, CS1, CS2). The FPGA generates a configuration clock from the internal timing generator and serializes the parallel input data for internal framing or for succeeding slaves on Data Out (DOUT). A output High on READY/BUSY pin indicates the completion of loading for each byte when the input register is ready for a new byte. As with Master modes, Peripheral mode may also be used as a lead device for a daisy-chain of slave devices.

Slave Serial Mode

Slave Serial mode provides a simple interface for loading the Field Programmable Gate Array configuration as shown in Figure 29. Serial data is supplied in conjunction with a synchronizing input clock. Most Slave mode applications are in daisy-chain configurations in which the data input is driven from the previous FPGA's data out, while the clock is supplied by a lead device in Master or Peripheral mode. Data may also be supplied by a processor or other special circuits.

Daisy Chain

The development system is used to create a composite configuration for selected FPGAs including: a preamble, a length count for the total bitstream, multiple concatenated data programs and a postamble plus an additional fill bit per device in the serial chain. After loading and passing-on the preamble and length count to a possible daisy-chain, a lead device will load its configuration data frames while providing a High DOUT to possible down-stream devices as shown in Figure 25. Loading continues while the lead device has received its configuration program and the current length count has not reached the full value. The additional data is passed through the lead device and appears on the Data Out (DOUT) pin in serial form. The lead device also generates the Configuration Clock (CCLK) to synchronize the serial output data and data in of down-stream FPGAs. Data is read in on DIN of slave devices by the positive edge of CCLK and shifted out the DOUT on the negative edge of CCLK. A parallel Master mode device uses its internal timing generator to produce an internal CCLK of 8 times its EPROM address rate, while a Peripheral mode device produces a burst of 8 CCLKs for each chip select and write-strobe cycle. The internal timing generator continues to operate for general timing and synchronization of inputs in all modes.

Configuration Timing

This section describes the configuration modes in detail.

Master Serial Mode

In Master Serial mode, the CCLK output of the lead FPGA drives a Xilinx Serial PROM that feeds the DIN input. Each rising edge of the CCLK output increments the Serial PROM internal address counter. This puts the next data bit on the SPROM data output, connected to the DIN pin. The lead FPGA accepts this data on the subsequent rising CCLK edge.

The lead FPGA then presents the preamble data (and all data that overflows the lead device) on its DOUT pin. There is an internal delay of 1.5 CCLK periods, which means that

DOUT changes on the falling CCLK edge, and the next device in the daisy-chain accepts data on the subsequent rising CCLK edge.

The SPROM <u>CE</u> input can be driven from either <u>LDC</u> or DONE. Using <u>LDC</u> avoids potential contention on the DIN pin, if this pin is configured as user-I/O, but <u>LDC</u> is then restricted to be a permanently High user output. Using DONE also avoids contention on DIN, provided the early DONE option is invoked.

Figure 23: Master Serial Mode Circuit Diagram

Peripheral Mode

Peripheral mode uses the trailing edge of the logic AND condition of the CS0, CS1, CS2, and WS inputs to accept byte-wide data from a microprocessor bus. In the lead FPGA, this data is loaded into a double-buffered UART-like parallel-to-serial converter and is serially shifted into the internal logic. The lead FPGA presents the preamble data (and all data that overflows the lead device) on the DOUT pin.

The Ready/Busy output from the lead device acts as a handshake signal to the microprocessor. RDY/BUSY goes Low when a byte has been received, and goes High again

when the byte-wide input buffer has transferred its information into the shift register, and the buffer is ready to receive new data. The length of the BUSY signal depends on the activity in the UART. If the shift register had been empty when the new byte was received, the BUSY signal lasts for only two CCLK periods. If the shift register was still full when the new byte was received, the BUSY signal can be as long as nine CCLK periods.

Note that after the last byte has been entered, only seven of its bits are shifted out. CCLK remains High with DOUT equal to bit 6 (the next-to-last bit) of the last byte entered.

Figure 27: Peripheral Mode Circuit Diagram

Product Obsolete or Under Obsolescence

XC3000 Series Field Programmable Gate Arrays

Program Readback Switching Characteristics

	Description	Symbol	Min	Max	Units
RTRIG	RTRIG High	1 T _{RTH}	250		ns
	RTRIG setup	2 T _{RTCC}	200	400	ns
CCLK	RDATA delay	3 I _{CCRD}		100	ns
001	High time	4 T _{CCHR}	0.5		μs
	Low time	5 T _{CCLR}	0.5	5	μs

Notes: 1. During Readback, CCLK frequency may not exceed 1 MHz.

2. RETRIG (M0 positive transition) shall not be done until after one clock following active I/O pins.

3. Readback should not be initiated until configuration is complete.

4. T_{CCLR} is 5 µs min to 15 µs max for XC3000L.

Product Obsolete or Under Obsolescence

XC3000 Series Field Programmable Gate Arrays

SPECIFIED WORST-CASE VALUES 1.00 MAX MILITARY (4.5-V) 0.80 NORMALIZED DELAY 0.60 TYPICAL COMMERCIAL (+5.0)V, 25°C) TYPICAL MILITARY MIN MILITARY (4.5 V) 0.40 OMMERCIA MIN MILITARY (5.5 0.20 - 55 - 40 - 20 0 25 40 70 80 100 125

Figure 32: Relative Delay as a Function of Temperature, Supply Voltage and Processing Variations

Figure 33: Clock Rate as a Function of Logic Complexity (Number of Combinational Levels between Flip-Flops)

Power

Power Distribution

Power for the FPGA is distributed through a grid to achieve high noise immunity and isolation between logic and I/O. Inside the FPGA, a dedicated V_{CC} and ground ring surrounding the logic array provides power to the I/O drivers. An independent matrix of V_{CC} and groundlines supplies the interior logic of the device. This power distribution grid provides a stable supply and ground for all internal logic, providing the external package power pins are all connected and appropriately decoupled. Typically a 0.1- μ F capacitor connected near the V_{CC} and ground pins will provide adequate decoupling.

Output buffers capable of driving the specified 4- or 8-mA loads under worst-case conditions may be capable of driving as much as 25 to 30 times that current in a best case. Noise can be reduced by minimizing external load capacitance and reducing simultaneous output transitions in the same direction. It may also be beneficial to locate heavily loaded output buffers near the ground pads. The I/O Block output buffers have a slew-limited mode which should be used where output rise and fall times are not speed critical. Slew-limited outputs maintain their dc drive capability, but generate less external reflections and internal noise.

Dynamic Power Consumption

	XC3042A	XC3042L	XC3142A	
One CLB driving three local interconnects	0.25	0.17	0.25	mW per MHz
One global clock buffer and clock line	2.25	1.40	1.70	mW per MHz
One device output with a 50 pF load	1.25	1.25	1.25	mW per MHz

Power Consumption

The Field Programmable Gate Array exhibits the low power consumption characteristic of CMOS ICs. For any design, the configuration option of TTL chip input threshold requires power for the threshold reference. The power required by the static memory cells that hold the configuration data is very low and may be maintained in a power-down mode.

Typically, most of power dissipation is produced by external capacitive loads on the output buffers. This load and frequency dependent power is 25 μ W/pF/MHz per output. Another component of I/O power is the external dc loading on all output pins.

Internal power dissipation is a function of the number and size of the nodes, and the frequency at which they change. In an FPGA, the fraction of nodes changing on a given clock is typically low (10-20%). For example, in a long binary counter, the total activity of all counter flip-flops is equivalent to that of only two CLB outputs toggling at the clock frequency. Typical global clock-buffer power is between 2.0 mW/MHz for the XC3020A and 3.5 mW/MHz for the XC3090A. The internal capacitive load is more a function of interconnect than fan-out. With a typical load of three general interconnect segments, each CLB output requires about 0.25 mW per MHz of its output frequency.

Because the control storage of the FPGA is CMOS static memory, its cells require a very low standby current for data retention. In some systems, this low data retention current characteristic can be used as a method of preserving configurations in the event of a primary power loss. The FPGA has built in powerdown logic which, when activated, will disable normal operation of the device and retain only the configuration data. All internal operation is suspended and output buffers are placed in their high-impedance state with no pull-ups. Different from the XC3000 family which can be powered down to a current consumption of a few micro-amps, the XC3100A draws 5 mA, even in power-down. This makes power-down operation less meaningful. In contrast, I_{CCPD} for the XC3000L is only 10 μ A.

To force the FPGA into the Powerdown state, the user must pull the PWRDWN pin Low and continue to supply a retention voltage to the V_{CC} pins. When normal power is restored, V_{CC} is elevated to its normal operating voltage and PWRDWN is returned to a High. The FPGA resumes operation with the same internal sequence that occurs at the conclusion of configuration. Internal-I/O and logic-block storage elements will be reset, the outputs will become enabled and the DONE/PROG pin will be released.

When V_{CC} is shut down or disconnected, some power might unintentionally be supplied from an incoming signal driving an I/O pin. The conventional electrostatic input protection is implemented with diodes to the supply and ground. A positive voltage applied to an input (or output) will cause the positive protection diode to conduct and drive the V_{CC} connection. This condition can produce invalid power conditions and should be avoided. A large series resistor might be used to limit the current or a bipolar buffer may be used to isolate the input signal.

Pin Functions During Configuration

	Configur	ation Mode <m< th=""><th>2:M1:M0></th><th></th><th>***</th><th></th><th></th><th>**</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>****</th><th></th></m<>	2:M1:M0>		***			**									****	
SLAVE SERIAL <1:1:1>	MASTER- SERIAL <0:0:0>	PERIPH <1:0:1>	MASTER- HIGH <1:1:0>	MASTER- LOW <1:0:0>	44 PLCC	64 VQFP	68 PLCC	84 PLCC	84 PGA	100 PQFP	100 VQFP TQFP	132 PGA	144 TQFP	160 PQFP	175 PGA	176 TQFP	208 PQFP	User Function
POWR DWN (I)	POWER DWN (I)	POWER DWN (I)	POWER DWN (I)	POWER DWN (I)	7	17	10	12	B2	29	26	A1	1	159	B2	1	3	POWER DWN (1)
M1 (HIGH) (I)	M1 (LOW) (I)	M1 (LOW) (I)	M1 (HIGH) (I)	M1 (LOW) (I)	16	31	25	31	J2	52	49	B13	36	40	B14	45	48	RDATA
M0 (HIGH) (I)	M0 (LOW) (I)	M0 (HIGH) (I)	M0 (LOW) (I)	M0 (LOW) (I)	17	32	26	32	L1	54	51	A14	38	42	B15	47	50	RTRIG (I)
M2 (HIGH) (I)	M2 (LOW) (I)	M2 (HIGH) (I)	M2 (HIGH) (I)	M2 (HIGH) (I)	18	33	27	33	K2	56	53	C13	40	44	C15	49	56	I/O
HDC (HIGH)	HDC (HIGH)	HDC (HIGH)	HDC (HIGH)	HDC (HIGH)	19	34	28	34	K3	57	54	B14	41	45	E14	50	57	I/O
LDC (LOW)	LDC (LOW)	LDC (LOW)	LDC (LOW)	LDC (LOW)	20	36	30	36	L3	59	56	D14	45	49	D16	54	61	I/O
INIT*	INIT*	INIT*	INIT*	INIT*	22	40	34	42	K6	65	62	G14	53	59	H15	65	77	I/O
GND	GND	GND	GND	GND	23	41	35	43	J6	66	63	H12	55	61	J14	67	79	GND
		1	1	1	26	47	43	53	L11	76	73	M13	69	76	P15	85	100	XTL2 OR I/O
RESET (I)	RESET (I)	RESET (I)	RESET (I)	RESET (I)	27	48	44	54	K10	78	75	P14	71	78	R15	87	102	RESET (I)
DONE	DONE	DONE	DONE	DONE	28	49	45	55	J10	80	77	N13	73	80	R14	89	107	PROGRAM (I)
		DATA 7 (I)	DATA 7 (I)	DATA 7 (I)		50	46	56	K11	81	78	M12	74	81	N13	90	109	I/O
					30	51	47	57	J11	82	79	P13	75	82	T14	91	110	XTL1 OR I/O
		DATA 6 (I)	DATA 6 (I)	DATA 6 (I)		52	48	58	H10	83	80	N11	78	86	P12	96	115	I/O
		DATA 5 (I)	DATA 5 (I)	DATA 5 (I)		53	49	60	F10	87	84	M9	84	92	T11	102	122	I/O
		CS0 (I)				54	50	61	G10	88	85	N9	85	93	R10	103	123	I/O
		DATA 4 (I)	DATA 4 (I)	DATA 4 (I)		55	51	62	G11	89	86	N8	88	96	R9	108	128	I/O
		DATA 3 (I)	DATA 3 (I)	DATA 3 (I)		57	53	65	F11	92	89	N7	92	102	P8	112	132	I/O
		CS1 (I)				58	54	66	E11	93	90	P6	93	103	R8	113	133	I/O
		DATA 2 (I)	DATA 2 (I)	DATA 2 (I)		59	55	67	E10	94	91	M6	96	106	R7	118	138	I/O
		DATA 1 (I)	DATA 1 (I)	DATA 1 (I)		60	56	70	D10	98	95	M5	102	114	R5	124	145	I/O
		RDY/BUSY	RCLK	RCLK		61	57	71	C11	99	96	N4	103	115	P5	125	146	I/O
DIN (I)	DIN (I)	DATA 0 (I)	DATA 0 (I)	DATA 0 (I)	38	62	58	72	B11	100	97	N2	106	119	R3	130	151	I/O
DOUT	DOUT	DOUT	DOUT	DOUT	39	63	59	73	C10	1	98	M3	107	120	N4	131	152	I/O
CCLK (I)	CCLK (O)	CCLK (O)	CCLK (O)	CCLK (O)	40	64	60	74	A11	2	99	P1	108	121	R2	132	153	CCLK (I)
		WS (I)	A0	A0		1	61	75	B10	5	2	M2	111	124	P2	135	161	I/O
		CS2 (I)	A1	A1		2	62	76	B9	6	3	N1	112	125	M3	136	162	I/O
			A2	A2		3	63	77	A10	8	5	L2	115	128	P1	140	165	I/O
			A3	A3		4	64	78	A9	9	6	L1	116	129	N1	141	166	I/O
			A15	A15			65	81	B6	12	9	K1	119	132	M1	146	172	5
			A4	A4		5	66	82	B7	13	10	J2	120	133	L2	147	173	I/O
			A14	A14		6	67	83	A7	14	11	H1	123	136	K2	150	178	I/O
			A5	A5		7	68	84	C7	15	12	H2	124	137	K1	151	179	I/O
			A13	A13		9	2	2	A6	17	14	G2	128	141	H2	156	184	I/O
			A6	A6		10	3	3	A5	18	15	G1	129	142	H1	157	185	I/O
			A12	A12		11	4	4	B5	19	16	F2	133	147	F2	164	192	I/O
			A7	A7		12	5	5	C5	20	17	E1	134	148	E1	165	193	I/O
			A11	A11		13	6	8	A3	23	20	D1	137	151	D1	169	199	I/O
			A8	A8		14	7	9	A2	24	21	D2	138	152	C1	170	200	I/O
			A10	A10		15	8	10	B3	25	22	B1	141	155	E3	173	203	I/O
			A9	A9		16	9	11	A1	26	26	C2	142	156	C2	174	204	I/O
			L															All Others
							Х	Х	Х	Х								XC3x20A etc.
					Х	Х	Х	Х	Х	Х	Х							XC3x30A etc.
								Х	Х	Х	Х	Х	Х					XC3x42A etc.
								X**				Х	Х					XC3x64A etc.
								X**					Х	Х	х	Х	Х	XC3x90A etc.
Notes:								X**						Х	Х		Х	XC3195A
					L													

Generic I/O pins are not shown.

For a detailed description of the configuration modes, see page 25 through page 34.

For pinout details, see page 65 through page 76.

Represents a weak pull-up before and during configuration.

INIT is an open drain output during configuration.

(I) ** Represents an input.

Pin assignment for the XC3064A/XC3090A and XC3195A differ from those shown.

*** Peripheral mode and master parallel mode are not supported in the PC44 package. ****

Pin assignments for the XC3195A PQ208 differ from those shown.

Pin assignments of PGA Footprint PLCC sockets and PGA packages are not identical.

The information on this page is provided as a convenient summary. For detailed pin descriptions, see the preceding two pages.

Note: Before and during configuration, all outputs that are not used for the configuration process are 3-stated with a weak pull-up resistor.

XC3000A Switching Characteristics

Xilinx maintains test specifications for each product as controlled documents. To insure the use of the most recently released device performance parameters, please request a copy of the current test-specification revision.

XC3000A Operating Conditions

Symbol	Description	Min	Max	Units
V _{CC}	Supply voltage relative to GND Commercial 0°C to +85°C junction	4.75	5.25	V
	Supply voltage relative to GND Industrial -40°C to +100°C junction	4.5	5.5	V
V _{IHT}	High-level input voltage — TTL configuration	2.0	V _{CC}	V
V _{ILT}	Low-level input voltage — TTL configuration	0	0.8	V
V _{IHC}	High-level input voltage — CMOS configuration	70%	100%	V _{CC}
V _{ILC}	Low-level input voltage — CMOS configuration	0	20%	V _{CC}
T _{IN}	Input signal transition time		250	ns

Note: At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.3% per °C.

XC3000A DC Characteristics Over Operating Conditions

Symbol	Description		Min	Max	Units
V _{OH}	High-level output voltage (@ $I_{OH} = -4.0 \text{ mA}, V_{CC} \text{ min}$)	Commercial	3.86		V
V _{OL}	Low-level output voltage (@ I _{OL} = 4.0 mA, V _{CC} min)	Commercial		0.40	V
V _{OH}	High-level output voltage (@ $I_{OH} = -4.0$ mA, V_{CC} min)	Industrial	3.76		V
V _{OL}	Low-level output voltage (@ I _{OL} = 4.0 mA, V _{CC} min)	Industrial		0.40	V
V _{CCPD}	Power-down supply voltage (PWRDWN must be Low)		2.30		V
I _{CCPD}	Power-down supply current				
	(V _{CC(MAX)} @ T _{MAX})	3020A		100	μA
		3030A		160	μA
		3042A		240	μA
		3064A		340	μA
		3090A		500	μA
	Quiescent FPGA supply current in addition to I _{CCPD}				
Icco	Chip thresholds programmed as CMOS levels			500	μA
	Chip thresholds programmed as TTL levels			10	μA
IIL	Input Leakage Current		-10	+10	μA
	Input capacitance, all packages except PGA175				
	(sample tested)				
	All Pins except XTL1 and XTL2			10	pF
C	XTL1 and XTL2			15	pF
CIN	Input capacitance, PGA 175				
	(sample tested)				
	All Pins except XTL1 and XTL2			16	pF
	XTL1 and XTL2			20	pF
I _{RIN}	Pad pull-up (when selected) @ $V_{IN} = 0 V^3$		0.02	0.17	mA
I _{RLL}	Horizontal Longline pull-up (when selected) @ logic Low			3.4	mA

Notes: 1. With no output current loads, no active input or Longline pull-up resistors, all package pins at V_{CC} or GND, and the FPGA device configured with a tie option.

 Total continuous output sink current may not exceed 100 mA per ground pin. Total continuous output source may not exceed 100 mA per V_{CC} pin. The number of ground pins varies from the XC3020A to the XC3090A.

3. Not tested. Allow an undriven pin to float High. For any other purposes use an external pull-up.

XC3000A IOB Switching Characteristics Guidelines

Testing of the switching parameters is modeled after testing methods specified by MIL-M-38510/605. All devices are 100% functionally tested. Since many internal timing parameters cannot be measured directly, they are derived from benchmark timing patterns. The following guidelines reflect worst-case values over the recommended operating conditions. For more detailed, more precise, and more up-to-date timing information, use the values provided by the timing calculator and used in the simulator.

		Sp	eed Grade	-	7	-	6	
Description		S	ymbol	Min	Max	Min	Max	Units
Propagation Delays (Input)								
Pad to Direct In (I)		3	T _{PID}		4.0		3.0	ns
Pad to Registered In (Q) with la	tch transparent		T _{PTG}		15.0		14.0	ns
Clock (IK) to Registered In (Q)		4	T _{IKRI}		3.0		2.5	ns
Set-up Time (Input)								
Pad to Clock (IK) set-up time		1	T _{PICK}	14.0		12.0		ns
Propagation Delays (Output)								
Clock (OK) to Pad	(fast)	7	Т _{ОКРО}		8.0		7.0	ns
same	(slew rate limited)	7	Т _{ОКРО}		18.0		15.0	ns
Output (O) to Pad	(fast)	10	T _{OPF}		6.0		5.0	ns
same	(slew-rate limited)	10	T _{OPS}		16.0		13.0	ns
3-state to Pad begin hi-Z	(fast)	9	T _{TSHZ}		10.0		9.0	ns
same	(slew-rate limited)	9	T _{TSHZ}		20.0		12.0	ns
3-state to Pad active and valid	(fast)	8	T _{TSON}		11.0		10.0	ns
same	(slew -rate limited)	8	T _{TSON}		21.0		18.0	ns
Set-up and Hold Times (Output)								
Output (O) to clock (OK) set-up	time	5	Т _{ООК}	8.0		7.0		ns
Output (O) to clock (OK) hold tin	me	6	т _{око}	0		0		ns
Clock								
Clock High time		11	T _{IOH}	4.0		3.5		ns
Clock Low time		12	T _{IOL}	4.0		3.5		ns
Max. flip-flop toggle rate			F _{CLK}	113.0		135.0		MHz
Global Reset Delays (based on XC	3042A)							
RESET Pad to Registered In	(Q)	13	T _{RRI}		24.0		23.0	ns
RESET Pad to output pad	(fast)	15	T _{RPO}		33.0		29.0	ns
	(slew-rate limited)	15	T _{RPO}		43.0		37.0	ns

Notes: 1. Timing is measured at pin threshold, with 50 pF external capacitive loads (incl. test fixture). Typical slew rate limited output rise/fall times are approximately four times longer.

2. Voltage levels of unused (bonded and unbonded) pads must be valid logic levels. Each can be configured with the internal pull-up resistor or alternatively configured as a driven output or driven from an external source.

3. Input pad set-up time is specified with respect to the internal clock (ik). In order to calculate system set-up time, subtract clock delay (pad to ik) from the input pad set-up time value. Input pad holdtime with respect to the internal clock (ik) is negative. This means that pad level changes immediately before the internal clock edge (ik) will not be recognized.

4. T_{PID} , T_{PTG} , and T_{PICK} are 3 ns higher for XTL2 when the pin is configured as a user input.

XILINX[®]

XC3100A CLB Switching Characteristics Guidelines (continued)

XC3100L Switching Characteristics

Xilinx maintains test specifications for each product as controlled documents. To insure the use of the most recently released device performance parameters, please request a copy of the current test-specification revision.

XC3100L Operating Conditions

Symbol	Description	Min	Max	Units
V _{CC}	Supply voltage relative to GND Commercial 0°C to +85°C junction	3.0	3.6	V
V _{IH}	High-level input voltage	2.0	V _{CC} + 0.3	V
V _{IL}	Low-level input voltage	-0.3	0.8	V
T _{IN}	Input signal transition time		250	ns

Notes: 1. At junction temperatures above those listed as Operating Conditions, all delay parameters increase by 0.3% per °C. 2. Although the present (1996) devices operate over the full supply voltage range from 3.0 V to 5.25 V, Xilinx reserves the right to restrict operation to the 3.0 and 3.6 V range later, when smaller device geometries might preclude operation @ 5 V. Operating conditions are guaranteed in the $3.0 - 3.6 \vee V_{CC}$ range.

XC3100L DC Characteristics Over Operating Conditions

Symbol	Description	Min	Max	Units
V	High-level output voltage (@ I _{OH} = -4.0 mA, V _{CC} min)	2.4		V
⊻ОН	High-level output voltage (@ I_{OH} = -100.0 μ A, V _{CC} min)	V _{CC} -0.2		V
V.	Low-level output voltage (@ I _{OH} = 4.0 mA, V _{CC} min)		0.40	V
VOL	Low-level output voltage (@ I_{OH} = +100.0 µA, V _{CC} min)		0.2	V
V _{CCPD}	Power-down supply voltage (PWRDWN must be Low)	2.30		V
I _{CCO}	Quiescent FPGA supply current		1.5	mA
	Chip thresholds programmed as CMOS levels ¹			
١ _{IL}	Input Leakage Current	-10	+10	μΑ
	Input capacitance			
Curr	(sample tested)			
CIN	All pins except XTL1 and XTL2		10	pF
	XTL1 and XTL2		15	pF
I _{RIN}	Pad pull-up (when selected) @ V_{IN} = 0 V ³	0.02	0.17	mA
I _{RLL}	Horizontal long line pull-up (when selected) @ logic Low	0.20	2.80	mA

Notes: 1. With no output current loads, no active input or long line pull-up resistors, all package pins at V_{CC} or GND, and the FPGA configured with a tie option.

2. Total continuous output sink current may not exceed 100 mA per ground pin. Total continuous output source current may not exceed 100 mA per V_{CC} pin. The number of ground pins varies from the XC3142L to the XC3190L. 3. Not tested. Allows undriven pins to float High. For any other purpose, use an external pull-up.

XC3000 Series Pin Assignments

Xilinx offers the six different array sizes in the XC3000 families in a variety of surface-mount and through-hole package types, with pin counts from 44 to 208.

Each chip is offered in several package types to accommodate the available PC board space and manufacturing technology. Most package types are also offered with different chips to accommodate design changes without the need for PC board changes.

Note that there is no perfect match between the number of bonding pads on the chip and the number of pins on a package. In some cases, the chip has more pads than there are pins on the package, as indicated by the information ("unused" pads) below the line in the following table. The IOBs of the unconnected pads can still be used as storage elements if the specified propagation delays and set-up times are acceptable.

In other cases, the chip has fewer pads than there are pins on the package; therefore, some package pins are not connected (n.c.), as shown above the line in the following table.

XC3000 Series 44-Pin PLCC Pinouts

XC3000A, XC3000L, and XC3100A families have identical pinouts

Pin No.	XC3030A
1	GND
2	I/O
3	I/O
4	I/O
5	I/O
6	I/O
7	PWRDWN
8	TCLKIN-I/O
9	I/O
10	I/O
11	I/O
12	VCC
13	I/O
14	I/O
15	I/O
16	M1-RDATA
17	M0-RTRIG
18	M2-I/O
19	HDC-I/O
20	LDC-I/O
21	I/O
22	INIT-I/O

Pin No.	XC3030A
23	GND
24	I/O
25	I/O
26	XTL2(IN)-I/O
27	RESET
28	DONE-PGM
29	I/O
30	XTL1(OUT)-BCLK-I/O
31	I/O
32	I/O
33	I/O
34	VCC
35	I/O
36	I/O
37	I/O
38	DIN-I/O
39	DOUT-I/O
40	CCLK
41	I/O
42	I/O
43	I/O
44	I/O

Peripheral mode and Master Parallel mode are not supported in the PC44 package

XC3000 Series 176-Pin TQFP Pinouts

XC3000A, XC3000L, XC3100A, and XC3100L families have identical pinouts

Pin Number	XC3090A	Pin Number	XC3090A	Pin Number	Pin XC3090A Number		XC3090A
1	PWRDWN	45	M1-RDATA	89	89 DONE-PG		VCC
2	TCLKIN-I/O	46	GND	90	D7-I/O	134	GND
3	I/O	47	M0-RTRIG	91	XTAL1(OUT)-BCLKIN-I/O	135	A0-WS-I/O
4	I/O	48	VCC	92	I/O	136	A1-CS2-I/O
5	I/O	49	M2-I/O	93	I/O	137	-
6	I/O	50	HDC-I/O	94	I/O	138	I/O
7	I/O	51	I/O	95	I/O	139	I/O
8	I/O	52	I/O	96	D6-I/O	140	A2-I/O
9	I/O	53	I/O	97	I/O	141	A3-I/O
10	I/O	54	LDC-I/O	98	I/O	142	-
11	I/O	55	-	99	I/O	143	-
12	I/O	56	I/O	100	I/O	144	I/O
13	I/O	57	I/O	101	I/O	145	I/O
14	I/O	58	I/O	102	D5-I/O	146	A15-I/O
15	I/O	59	I/O	103	CS0-I/O	147	A4-I/O
16	I/O	60	I/O	104	I/O	148	I/O
17	I/O	61	I/O	105	I/O	149	I/O
18	I/O	62	I/O	106	I/O	150	A14-I/O
19	I/O	63	I/O	107	I/O	151	A5-I/O
20	I/O	64	I/O	108	D4-I/O	152	I/O
21	I/O	65	INIT-I/O	109	I/O	153	I/O
22	GND	66	VCC	110	VCC	154	GND
23	VCC	67	GND	111	GND	155	VCC
24	I/O	68	I/O	112	D3-I/O	156	A13-I/O
25	I/O	69	I/O	113	CS1-I/O	157	A6-I/O
26	I/O	70	I/O	114	I/O	158	I/O
27	I/O	71	I/O	115	I/O	159	I/O
28	I/O	72	I/O	116	I/O	160	_
29	I/O	73	I/O	117	I/O	161	_
30	I/O	74	I/O	118	D2-I/O	162	I/O
31	I/O	75	I/O	119	I/O	163	I/O
32	I/O	76	I/O	120	I/O	164	A12-I/O
33	I/O	77	I/O	121	I/O	165	A7-I/O
34	I/O	78	I/O	122	I/O	166	I/O
35	I/O	79	I/O	123	I/O	167	I/O
36	I/O	80	I/O	124	D1-I/O	168	_
37	I/O	81	I/O	125	RDY/BUSY-RCLK-I/O	169	A11-I/O
38	I/O	82	-	126	I/O	170	A8-I/O
39	I/O	83	-	127	I/O	171	I/O
40	I/O	84	I/O	128	I/O	172	I/O
41	I/O	85	XTAL2(IN)-I/O	129	I/O	173	A10-I/O
42	I/O	86	GND	130	D0-DIN-I/O	174	A9-I/O
43	I/O	87	RESET	131	DOUT-I/O	175	VCC
44	-	88	VCC	132	CCLK	176	GND

Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed outputs are default slew-rate limited.

XC3000 Series 208-Pin PQFP Pinouts

XC3000A, and XC3000L families have identical pinouts

Pin Number	XC3090A	Pin Number	XC3090A	Pin Number	XC3090A	Pin Number	XC3090A
1	-	53	-	105	-	157	-
2	GND	54	-	106	VCC	158	-
3	PWRDWN	55	VCC	107	D/P	159	-
4	TCLKIN-I/O	56	M2-I/O	108	-	160	GND
5	I/O	57	HDC-I/O	109	D7-I/O	161	WS-A0-I/O
6	I/O	58	I/O	110	XTL1-BCLKIN-I/O	162	CS2-A1-I/O
7	I/O	59	I/O	111	I/O	163	I/O
8	I/O	60	I/O	112	I/O	164	I/O
9	I/O	61	LDC-I/O	113	I/O	165	A2-I/O
10	I/O	62	I/O	114	I/O	166	A3-I/O
11	I/O	63	I/O	115	D6-I/O	167	I/O
12	I/O	64	-	116	I/O	168	I/O
13	I/O	65	-	117	I/O	169	-
14	I/O	66	-	118	I/O	170	-
15	-	67	-	119	-	171	_
16	I/O	68	I/O	120	I/O	172	A15-I/O
17	I/O	69	I/O	121	I/O	173	A4-I/O
18	I/O	70	I/O	122	D5-I/O	174	I/O
19	I/O	71	I/O	123	CS0-I/O	175	I/O
20	I/O	72	-	124	I/O	176	_
21	I/O	73	-	125	I/O	177	-
22	I/O	74	I/O	126	I/O	178	A14-I/O
23	I/O	75	I/O	127	I/O	179	A5-I/O
24	I/O	76	I/O	128	D4-I/O	180	I/O
25	GND	77	INIT-I/O	129	I/O	181	I/O
26	VCC	78	VCC	130	VCC	182	GND
27	I/O	79	GND	131	GND	183	VCC
28	I/O	80	I/O	132	D3-I/O	184	A13-I/O
29	I/O	81	I/O	133	CS1-I/O	185	A6-I/O
30	I/O	82	I/O	134	I/O	186	I/O
31	I/O	83	-	135	I/O	187	I/O
32	I/O	84	-	136	I/O	188	_
33	I/O	85	I/O	137	I/O	189	-
34	I/O	86	I/O	138	D2-I/O	190	I/O
35	I/O	87	I/O	139	I/O	191	I/O
36	I/O	88	I/O	140	I/O	192	A12-I/O
37	-	89	I/O	141	I/O	193	A7-I/O
38	I/O	90	-	142	-	194	-
39	I/O	91	-	143	I/O	195	-
40	I/O	92	-	144	I/O	196	-
41	I/O	93	I/O	145	D1-I/O	197	I/O
42	I/O	94	I/O	146	RDY/BUSY-RCLK-I/O	198	I/O
43	I/O	95	I/O	147	I/O	199	A11-I/O
44	I/O	96	I/O	148	I/O	200	A8-I/O
45	I/O	97	I/O	149	I/O	201	I/O
46	I/O	98	I/O	150	I/O	202	I/O
47	I/O	99	I/O	151	DIN-D0-I/O	203	A10-I/O
48	M1-RDATA	100	XTL2-I/O	152	DOUT-I/O	204	A9-I/O
49	GND	101	GND	153	CCLK	205	VCC
50	M0-RTRIG	102	RESET	154	VCC	206	-
51	-	103	-	155	-	207	-
52	-	104	-	156	-	208	-
1		L			1		

Unprogrammed IOBs have a default pull-up. This prevents an undefined pad level for unbonded or unused IOBs. Programmed outputs are default slew-rate limited.

* In PQ208, XC3090A and XC3195A have different pinouts.

Pins		44	64	68	8	4	100		132		144 160		175		176	208	
Туре		Plast. PLCC	Plast. VQFP	Plast. PLCC	Plast. PLCC	Cer. PGA	Plast. PQFP	Plast. TQFP	Plast. VQFP	Plast. PGA	Cer. PGA	Plast. TQFP	Plast. PQFP	Plast. PGA	Cer. PGA	Plast. TQFP	Plast. PQFP
Code		PC44	VQ64	PC68	PC84	PG84	PQ100	TQ100	VQ100	PP132	PG132	TQ144	PQ160	PP175	PG175	TQ176	PQ208
XC3142L					С				С			С					
					С				С			С					
XC3190L					С							С				С	
					С							С				С	
Note: $C = Commercial T = 0^{\circ}$ to $185^{\circ}C$ $I = Industrial T = 40^{\circ}$ to $1400^{\circ}C$																	

C = Commercial, $T_J = 0^\circ$ to +85°C Notes: I = Industrial, $T_J = -40^\circ$ to +100°C

Number of Available I/O Pins

		Number of Package Pins										
	Max I/O	44	64	68	84	100	132	144	160	175	176	208
XC3020A/XC3120A	64			58	64	64						
XC3030A/XC3130A	80	34	54	58	74	80						
XC3042A/3142A	96				74	82	96	96				
XC2064A/XC3164A	120				70		110	120	120			
XC3090A/XC3190A	144				70			122	138	144	144	144
XC3195A	176				70				138	144		176

Ordering Information

Revision History

Date	Revision
11/98	Revised version number to 3.1, removed XC3100A-5 obsolete packages.

XILINX[®]