

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	AX
Core Size	16-Bit
Speed	30MHz
Connectivity	UART/USART
Peripherals	PWM, WDT
Number of I/O	32
Program Memory Size	32KB (32K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/pxag37kba-512

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	1
	1
	1
	2
44-Pin PLCC Package	2
44-Pin LQFP Package	2
LOGIC SYMBOL	2
BLOCK DIAGRAM	3
PIN DESCRIPTIONS	4
SPECIAL FUNCTION REGISTERS	5
(A-G37 TIMER/COUNTERS	8
Timer 0 and Timer 1	8
New Enhanced Mode 0	ç
Mode 1	9
Mode 2	g
Mode 3	g
New Timer-Overflow Toggle Output	10
Timer T2	10
Capture Mode	10
Auto-Reload Mode (Up or Down Counter)	10
Baud Rate Generator Mode	11
Programmable Clock-Out	11
NATCHDOG TIMER	13
Watchdog Function	13
Watchdog Control Register (WDCON)	13
Watchdog Detailed Operation	13
	1/
	14
Sarial Dart Control Degister	14
	10
11 Flag	15
	15
	15
Note Regarding Older XA-G37 Devices	15
CLOCKING SCHEME/BAUD RATE GENERATION	16
Using Timer 2 to Generate Baud Rates	16
Prescaler Select for Timer Clock (TCLK)	16
JART INTERRUPT SCHEME	17
Error Handling, Status Flags and Break Detect	17
Multiprocessor Communications	17
Automatic Address Recognition	17
O PORT OUTPUT CONFIGURATION	19
EXTERNAL BUS	19
RESET	19
RESET OPTIONS	19
POWER REDUCTION MODES	19
NTERRUPTS	20
ABSOLUTE MAXIMUM RATINGS	21
DC ELECTRICAL CHARACTERISTICS	21
	22
AC ELECTRICAL CHARACTERISTICS (VDD = 4.5 V TO 5.5 V)	22
AC ELECTRICAL CHARACTERISTICS (VDD = 2.7 V TO 4.5 V)	23
EPROM CHARACTERISTICS	31
Security Bits	31
REVISION HISTORY	34

XA-G37

PIN CONFIGURATIONS 44-Pin PLCC Package

44-Pin LQFP Package

LOGIC SYMBOL

Product data

Х	A-	Gâ	37
- X X		\sim	<i>_</i>

	PIN.	NO.	TYPE					
	PLCC	LQFP						
PSEN	32	26	0	Program Store Enable: The read strobe for external program memory. When the microcontroller accesses external program memory, PSEN is driven low in order to enable memory devices. PSEN is only active when external code accesses are performed.				
EA/WAIT/ V _{PP}	35	29	I	External Access/Wait: The EA input determines whether the internal program memory of the microcontroller is used for code execution. The value on the EA pin is latched as the external reset input is released and applies during later execution. When latched as a 0, external program memory is used exclusively, when latched as a 1, internal program memory will be used up to its limit, and external program memory used above that point. After reset is released, this pin takes on the function of bus Wait input. If Wait is asserted high during any external bus access, that cycle will be extended until Wait is released. During EPROM programming, this pin is also the programming supply voltage input.				
XTAL1	21	15	I	Crystal 1: Input to the inverting amplifier used in the oscillator circuit and input to the internal clock generator circuits.				
XTAL2	20	14	0	Crystal 2: Output from the oscillator amplifier.				

SPECIAL FUNCTION REGISTERS

NAME	DESCRIPTION	SFR ADDRESS	MSB	BIT FUNCTIONS AND ADDRESSES MSB						LSB	RESET VALUE
									-		
BCR	Bus configuration register	46A	—	—	—	WAITD	BUSD	BC2	BC1	BC0	Note 1
BTRH	Bus timing register high byte	469	DW1	DW0	DWA1	DWA0	DR1	DR0	DRA1	DRA0	FF
BTRL	Bus timing register low byte	468	WM1	WM0	ALEW	—	CR1	CR0	CRA1	CRA0	EF
CS	Code segment	443									00
	Data segment	441									00
ES	Extra segment	442	33F	33E	33D	33C	33B	33A	339	338	00
IEH*	Interrupt enable high byte	427	_	_	-	—	ETI1	ERI1	ETI0	ERI0	00
			337	336	335	334	333	332	331	330	1
IEL*	Interrupt enable low byte	426	EA	—	—	ET2	ET1	EX1	ET0	EX0	00
											1
IPA0	Interrupt priority 0	4A0	_		PT0		—		PX0		00
IPA1	Interrupt priority 1	4A1			PT1		—		PX1		00
IPA2	Interrupt priority 2	4A2			_		—		PT2		00
IPA4	Interrupt priority 4	4A4			PTI0		—		PRI0		00
IPA5	Interrupt priority 5	4A5	-		PTI1		—		PRI1		00
			387	386	385	384	383	382	381	380	
P0*	Port 0	430	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	FF
			38F	38E	38D	38C	38B	38A	389	388	
P1*	Port 1	431	T2EX	T2	TxD1	RxD1	A3	A2	A1	WRH	FF
			397	396	395	394	393	392	391	390	
P2*	Port 2	432	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	FF

		SFR			BIT FUN		AND ADD	RESSES			RESET
	DESCRIPTION	ADDRESS	MSB							LSB	VALUE
			357	356	355	354	353	352	351	350	
SWR*	Software Interrupt Request	42A	—	SWR7	SWR6	SWR5	SWR4	SWR3	SWR2	SWR1	00
			2C7	2C6	2C5	2C4	2C3	2C2	2C1	2C0	
T2CON*	Timer 2 control register	418	TF2	EXF2	RCLK0	TCLK0	EXEN2	TR2	C/T2	CP/RL2	00
			2CF	2CE	2CD	2CC	2CB	2CA	2C9	2C8	
T2MOD*	Timer 2 mode control	419	—	—	RCLK1	TCLK1	—	—	T2OE	DCEN	00
TH2	Timer 2 high byte	459									00
TL2	Timer 2 low byte	458									00
T2CAPH	Timer 2 capture register, high byte	45B									00
T2CAPL	Timer 2 capture register, low byte	45A									00
			287	286	285	284	283	282	281	280	
TCON*	Timer 0 and 1 control register	410	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00
тно	Timer 0 high byte	451									00
TH1	Timer 1 high byte	453									00
TL0	Timer 0 low byte	450									00
TL1	Timer 1 low byte	452									00
TMOD	Timer 0 and 1 mode control	45C	GATE	C/T	M1	MO	GATE	C/T	M1	MO	00
			28F	28E	28D	28C	28B	28A	289	288	
TSTAT*	Timer 0 and 1 extended status	411	—	—	—	—	—	T10E	—	TOOE	00
			2FF	2FE	2FD	2FC	2FB	2FA	2F9	2F8	
WDCON*	Watchdog control register	41F	PRE2	PRE1	PRE0	—	—	WDRUN	WDTOF	—	Note 6
WDL	Watchdog timer reload	45F									00
WFEED1	Watchdog feed 1	45D									х
WFEED2	Watchdog feed 2	45E									х

NOTES:

SFRs are bit addressable.

1. At reset, the BCR register is loaded with the binary value 0000 0a11, where "a" is the value on the BUSW pin. This defaults the address bus size to 20 bits since the XA-G37 has only 20 address lines.

2. SFR is loaded from the reset vector.

3. All bits except F1, F0, and P are loaded from the reset vector. Those bits are all 0.

Unimplemented bits in SFRs are X (unknown) at all times. Ones should not be written to these bits since they may be used for other purposes in future XA derivatives. The reset value shown for these bits is 0.
 Port configurations default to quasi-bidirectional when the XA begins execution from internal code memory after reset, based on the

5. Port configurations default to quasi-bidirectional when the XA begins execution from internal code memory after reset, based on the condition found on the EA pin. Thus all PnCFGA registers will contain FF and PnCFGB registers will contain 00. When the XA begins execution using external code memory, the default configuration for pins that are associated with the external bus will be push-pull. The PnCFGA and PnCFGB register contents will reflect this difference.

6. The WDCON reset value is E6 for a Watchdog reset, E4 for all other reset causes.

7. The XA-G37 implements an 8-bit SFR bus, as stated in Chapter 8 of the XA User Guide. All SFR accesses must be 8-bit operations. Attempts to write 16 bits to an SFR will actually write only the lower 8 bits. Sixteen bit SFR reads will return undefined data in the upper byte.

T2CON Addres	ss:418	MSB	5						LSB	
Bit Addressable Reset Value: 00H		ТІ	F2 EXF2	RCLK0	TCLK0	EXEN2	TR2	C2 or T2	CP or RL2	
BIT	SYMBOL	FUNCTION								
T2CON.7	TF2	Timer 2 over TF2 will not	rflow flag. Se be set when	t by hardwa RCLK0, RC	re on Tim CLK1, TCL	er/Counte K0, TCLK	r overflow 1 or T2OI	. Must be E=1.	cleared by	/ software.
T2CON.6	EXF2	Timer 2 exte EXEN2 is se software.	ernal flag is se et). This flag	et when a c vill cause a	apture or i Timer 2 ir	eload occ	eurs due to hen this ir	o a negativ iterrupt is	ve transitic enabled. E	on on T2EX (and EXF2 is cleared by
T2CON.5	RCLK0	Receive Clo	ck Flag.							
T2CON.4	TCLK0	Transmit Clo UART0 inste	ock Flag. RC	-K0 and TC F1.	LK0 are u	sed to sel	ect Timer	2 overflov	w rate as a	a clock source for
T2CON.3	EXEN2	Timer 2 exte	ernal enable b	it allows a	capture or	reload to	occur due	e to a nega	ative trans	ition on T2EX.
T2CON.2	TR2	Start=1/Stop	=0 control fo	r Timer 2.						
T2CON.1	C2 or T2	Timer or cou 0=Internal tin 1=External e	inter select. mer event counter	(falling edg	ge triggere	d)				
T2CON.0	CP or RL2	Capture/Rel If CP/RL2 &), EXEN2=1 a If RCLK or T	oad flag. EXEN2=1 ca auto reloads CLK=1 the ti	ptures will occur with e mer is set t	occur on r either Time o auto relo	negative tr er 2 overflo pad on Tin	ansitions ows or ne ner 2 over	of T2EX. gative trar flow, this I	nsitions at bit has no	T2EX. effect.
										SU00606

Figure 4. Timer/Counter 2 Control (T2CON) Register

New Timer-Overflow Toggle Output

In the XA, the timer module now has two outputs, which toggle on overflow from the individual timers. The same device pins that are used for the T0 and T1 count inputs are also used for the new overflow outputs. An SFR bit (TnOE in the TSTAT register) is associated with each counter and indicates whether Port-SFR data or the overflow signal is output to the pin. These outputs could be used in applications for generating variable duty cycle PWM outputs (changing the auto-reload register values). Also variable frequency (Osc/8 to Osc/8,388,608) outputs could be achieved by adjusting the prescaler along with the auto-reload register values. With a 30.0MHz oscillator, this range would be 3.58Hz to 3.75MHz.

Timer T2

Timer 2 in the XA is a 16-bit Timer/Counter which can operate as either a timer or as an event counter. This is selected by C/T2 in the special function register T2CON. Upon timer T2 overflow/underflow, the TF2 flag is set, which may be used to generate an interrupt. It can be operated in one of three operating modes: auto-reload (up or down counting), capture, or as the baud rate generator (for either or both UARTs via SFRs T2MOD and T2CON). These modes are shown in Table 1.

Capture Mode

In the capture mode there are two options which are selected by bit EXEN2 in T2CON. If EXEN2 = 0, then timer 2 is a 16-bit timer or counter, which upon overflowing sets bit TF2, the timer 2 overflow bit. This will cause an interrupt when the timer 2 interrupt is enabled.

If EXEN2 = 1, then Timer 2 still does the above, but with the added feature that a 1-to-0 transition at external input T2EX causes the current value in the Timer 2 registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set. This will cause an interrupt in the same fashion as TF2 when the Timer 2 interrupt is enabled. The capture mode is illustrated in Figure 7.

Auto-Reload Mode (Up or Down Counter)

In the auto-reload mode, the timer registers are loaded with the 16-bit value in T2CAPH and T2CAPL when the count overflows. T2CAPH and T2CAPL are initialized by software. If the EXEN2 bit in T2CON is set, the timer registers will also be reloaded and the EXF2 flag set when a 1-to-0 transition occurs at input T2EX. The auto-reload mode is shown in Figure 8.

In this mode, Timer 2 can be configured to count up or down. This is done by setting or clearing the bit DCEN (Down Counter Enable) in the T2MOD special function register (see Table 1). The T2EX pin then controls the count direction. When T2EX is high, the count is in the up direction, when T2EX is low, the count is in the down direction.

Figure 8 shows Timer 2, which will count up automatically, since DCEN = 0. In this mode there are two options selected by bit EXEN2 in the T2CON register. If EXEN2 = 0, then Timer 2 counts up to FFFFH and sets the TF2 (Overflow Flag) bit upon overflow. This causes the Timer 2 registers to be reloaded with the 16-bit value in T2CAPL and T2CAPH, whose values are preset by software. If EXEN2 = 1, a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at input T2EX. This transition also sets the EXF2 bit. If enabled, either TF2 or EXF2 bit can generate the Timer 2 interrupt.

In Figure 9, the DCEN = 1; this enables the Timer 2 to count up or down. In this mode, the logic level of T2EX pin controls the direction of count. When a logic '1' is applied at pin T2EX, the Timer 2 will count up. The Timer 2 will overflow at FFFFH and set the TF2 flag, which can then generate an interrupt if enabled. This timer overflow, also causes the 16-bit value in T2CAPL and T2CAPH to be reloaded into the timer registers TL2 and TH2, respectively.

A logic '0' at pin T2EX causes Timer 2 to count down. When counting down, the timer value is compared to the 16-bit value contained in T2CAPH and T2CAPL. When the value is equal, the

Figure 7. Timer 2 in Capture Mode

Figure 8. Timer 2 in Auto-Reload Mode (DCEN = 0)

Figure 9. Timer 2 Auto Reload Mode (DCEN = 1)

CLOCKING SCHEME/BAUD RATE GENERATION

The XA UARTS clock rates are determined by either a fixed division (modes 0 and 2) of the oscillator clock or by the Timer 1 or Timer 2 overflow rate (modes 1 and 3).

The clock for the UARTs in XA runs at 16x the Baud rate. If the timers are used as the source for Baud Clock, since maximum speed of timers/Baud Clock is Osc/4, the maximum baud rate is timer overflow divided by 16 i.e. Osc/64.

In Mode 0, it is fixed at Osc/16. In Mode 2, however, the fixed rate is Osc/32.

Pre-scaler for all Timers T0,1,2 controlled by PT1, PT0 bits in SCR	00	Osc/4
	01	Osc/16
	10	Osc/64
	11	reserved

Baud Rate for UART Mode 0:

Baud_Rate = Osc/16

Baud Rate calculation for UART Mode 1 and 3:

Baud_Rate = Timer_Rate/16

Timer_Rate = Osc/(N*(Timer_Range-Timer_Reload_Value))

where N = the TCLK prescaler value: 4, 16, or 64. and Timer_Range = 256 for timer 1 in mode 2. 65536 for timer 1 in mode 0 and timer 2 in count up mode.

The timer reload value may be calculated as follows:

Timer_Reload_Value = Timer_Range-(Osc/(Baud_Rate*N*16))

NOTES:

- 1. The maximum baud rate for a UART in mode 1 or 3 is Osc/64.
- 2. The lowest possible baud rate (for a given oscillator frequency and N value) may be found by using a timer reload value of 0.
- 3. The timer reload value may never be larger than the timer range.
- If a timer reload value calculation gives a negative or fractional result, the baud rate requested is not possible at the given oscillator frequency and N value.

Baud Rate for UART Mode 2:

Baud_Rate = Osc/32

SnSTAT.0 STINTn

SnSTAT Address: S0STAT 421 S1STAT 425 MSB LSB Bit Addressable Reset Value: 00H FEn BRn OEn **STINT**n BIT SYMBOL FUNCTION SnSTAT.3 FEn Framing Error flag is set when the receiver fails to see a valid STOP bit at the end of the frame. Cleared by software. Break Detect flag is set if a character is received with all bits (including STOP bit) being logic '0'. Thus SnSTAT.2 BRn it gives a "Start of Break Detect" on bit 8 for Mode 1 and bit 9 for Modes 2 and 3. The break detect feature operates independently of the UARTs and provides the START of Break Detect status bit that a user program may poll. Cleared by software. Overrun Error flag is set if a new character is received in the receiver buffer while it is still full (before SnSTAT.1 OEn the software has read the previous character from the buffer), i.e., when bit 8 of a new byte is received while RI in SnCON is still set. Cleared by software.

only way it can be cleared is by a software write to this register.

This flag must be set to enable any of the above status flags to generate a receive interrupt (RIn). The

Figure 11. Serial Port Extended Status (SnSTAT) Register (See also Figure 13 regarding Framing Error flag)

Using Timer 2 to Generate Baud Rates

Timer T2 is a 16-bit up/down counter in XA. As a baud rate generator, timer 2 is selected as a clock source for either/both UART0 and UART1 transmitters and/or receivers by setting TCLKn and/or RCLKn in T2CON and T2MOD. As the baud rate generator, T2 is incremented as Osc/N where N = 4, 16 or 64 depending on TCLK as programmed in the SCR bits PT1, and PTO. So, if T2 is the source of one UART, the other UART could be clocked by either T1 overflow or fixed clock, and the UARTs could run independently with different baud rates.

T2CON 0x418	bit5	bit4	
	RCLK0	TCLK0	

T2MOD	bit5	bit4	
0x419	RCLK1	TCLK1	

Prescaler Select for Timer Clock (TCLK)

SCR	bit3	bit2	
0x440	PT1	PT0	

XA-G37

SU00607B

UART INTERRUPT SCHEME

There are separate interrupt vectors for each UART's transmit and receive functions.

Table 3.	Vector	Locations for	or UAR	Ts in	XA
----------	--------	---------------	--------	-------	----

Vector Address	Interrupt Source	Arbitration
A0H – A3H	UART 0 Receiver	7
A4H – A7H	UART 0 Transmitter	8
A8H – ABH	UART 1 Receiver	9
ACH – AFH	UART 1 Transmitter	10

NOTE:

The transmit and receive vectors could contain the same ISR address to work like a 8051 interrupt scheme

Error Handling, Status Flags and Break Detect

The UARTs in XA has the following error flags; see Figure 11.

Multiprocessor Communications

Modes 2 and 3 have a special provision for multiprocessor communications. In these modes, 9 data bits are received. The 9th one goes into RB8. Then comes a stop bit. The port can be programmed such that when the stop bit is received, the serial port interrupt will be activated only if RB8 = 1. This feature is enabled by setting bit SM2 in SCON. A way to use this feature in multiprocessor systems is as follows:

When the master processor wants to transmit a block of data to one of several slaves, it first sends out an address byte which identifies the target slave. An address byte differs from a data byte in that the 9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no slave will be interrupted by a data byte. An address byte, however, will interrupt all slaves, so that each slave can examine the received byte and see if it is being addressed. The addressed slave will clear its SM2 bit and prepare to receive the data bytes that will be coming. The slaves that weren't being addressed leave their SM2s set and go on about their business, ignoring the coming data bytes.

SM2 has no effect in Mode 0, and in Mode 1 can be used to check the validity of the stop bit although this is better done with the Framing Error (FE) flag. In a Mode 1 reception, if SM2 = 1, the receive interrupt will not be activated unless a valid stop bit is received.

Automatic Address Recognition

Automatic Address Recognition is a feature which allows the UART to recognize certain addresses in the serial bit stream by using hardware to make the comparisons. This feature saves a great deal of software overhead by eliminating the need for the software to examine every serial address which passes by the serial port. This feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be automatically set when the received byte contains either the "Given" address or the "Broadcast" address. The 9 bit mode requires that the 9th information bit is a 1 to indicate that the received information is an address and not data. Automatic address recognition is shown in Figure 14.

Using the Automatic Address Recognition feature allows a master to selectively communicate with one or more slaves by invoking the

Given slave address or addresses. All of the slaves may be contacted by using the Broadcast address. Two special Function Registers are used to define the slave's address, SADDR, and the address mask, SADEN. SADEN is used to define which bits in the SADDR are to be used and which bits are "don't care". The SADEN mask can be logically ANDed with the SADDR to create the "Given" address which the master will use for addressing each of the slaves. Use of the Given address allows multiple slaves to be recognized while excluding others. The following examples will help to show the versatility of this scheme:

Slave 0	SADDR	=	1100	0000
	SADEN	=	1111	1101
	Given	=	1100	00X0
Slave 1	SADDR	=	1100	0000
	SADEN	=	1111	1110
	Given	=	1100	000X

In the above example SADDR is the same and the SADEN data is used to differentiate between the two slaves. Slave 0 requires a 0 in bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is ignored. A unique address for Slave 0 would be 1100 0010 since slave 1 requires a 0 in bit 1. A unique address for slave 1 would be 1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be selected at the same time by an address which has bit 0 = 0 (for slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed with 1100 0000.

In a more complex system the following could be used to select slaves 1 and 2 while excluding slave 0:

Slave 0	SADDR	=	1100	0000
	SADEN	=	<u>1111</u>	<u>1001</u>
	Given	=	1100	0XX0
Slave 1	SADDR	=	1110	0000
	SADEN	=	<u>1111</u>	<u>1010</u>
	Given	=	1110	0X0X
Slave 2	SADDR	=	1110	0000
	SADEN	=	<u>1111</u>	<u>1100</u>
	Given	=	1110	00XX

In the above example the differentiation among the 3 slaves is in the lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and it can be uniquely addressed by 1110 and 0101. Slave 2 requires that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0 and 1 and exclude Slave 2 use address 1110 0100, since it is necessary to make bit 2 = 1 to exclude slave 2.

The Broadcast Address for each slave is created by taking the logical OR of SADDR and SADEN. Zeros in this result are teated as don't-cares. In most cases, interpreting the don't-cares as ones, the broadcast address will be FF hexadecimal.

Upon reset SADDR and SADEN are loaded with 0s. This produces a given address of all "don't cares" as well as a Broadcast address of all "don't cares". This effectively disables the Automatic Addressing mode and allows the microcontroller to use standard UART drivers which do not make use of this feature.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT
Operating temperature under bias	-55 to +125	°C
Storage temperature range	-65 to +150	°C
Voltage on \overline{EA}/V_{PP} pin to V_{SS}	0 to +13.0	V
Voltage on any other pin to V _{SS}	–0.5 to V _{DD} +0.5 V	V
Maximum I _{OL} per I/O pin	15	mA
Power dissipation (based on package heat transfer limitations, not device power consumption)	1.5	W

DC ELECTRICAL CHARACTERISTICS

V_{DD} = 2.7 V to 5.5 V unless otherwise specified; V_{DD} = T_{amb} = 0 to 70 °C for commercial, -40 °C to +85 °C for industrial, unless otherwise specified.

SYMPOL	DADAMETED	TEST CONDITIONS	LIMITS			
STWIDUL	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Supplies						
I _{DD}	Supply current operating ^{9,10}	f _{osc} = 30 MHz	-	60	80	mA
I _{ID}	Idle mode supply current ^{9,10}	f _{osc} = 30 MHz	-	22	30	mA
I _{PD}	Power-down current	-	-	15	100	μΑ
I _{PDI}	Power-down current (–40°C to +85°C)	-	-		150	μΑ
V _{RAM}	RAM-keep-alive voltage	RAM-keep-alive voltage	1.5		-	V
V _{IL}	Input low voltage	-	-0.5		0.22 V _{DD}	V
Max	Input high voltage, execut VTAL 1, PST	At 5.0 V	2.2		-	V
VIH Input nigr	Input high voltage, except ATALT, RST	At 3.3 V	2		-	V
V _{IH1}	Input high voltage to XTAL1, RST	For both 3.0 & 5.0 V	0.7 V _{DD}		-	V
N/	Output low veltere all parts ALE DEEN3	I _{OL} = 3.2mA, V _{DD} = 5.0 V	-		0.5	V
VOL	Output low voltage all ports, ALE, PSEN*	1.0mA, V _{DD} = 3.0 V	-		0.4	V
M	Output high voltage all parts ALE DEEN1	$I_{OH} = -100 \mu A, V_{DD} = 4.5 V$	2.4		-	V
VOH1	Output high voltage all ports, ALE, PSEN	$I_{OH} = -15 \mu A, V_{DD} = 2.7 V$	2.0		-	V
M	Output high voltage parts D0 2 ALE DEEN?	I _{OH} = 3.2mA, V _{DD} = 4.5 V	2.4		-	V
VOH2	Output high voltage, ports P0-3, ALE, PSEN-	I _{OH} = 1mA, V _{DD} = 2.7 V	2.2		-	V
C _{IO}	Input/Output pin capacitance	-	_		15	pF
I _{IL}	Logical 0 input current, P0–3 ⁶	V _{IN} = 0.45 V	-	-25	-75	μΑ
I _{LI}	Input leakage current, P0–3 ⁵	$V_{IN} = V_{IL} \text{ or } V_{IH}$	-		±10	μΑ
I _{TL}	Logical 1 to 0 transition current all ports ⁴	At 5.5 V	-		-650	μΑ

NOTES:

1. Ports in Quasi bi-directional mode with weak pull-up (applies to ALE, PSEN only during RESET).

2. Ports in Push-Pull mode, both pull-up and pull-down assumed to be same strength

3. In all output modes

4. Port pins source a transition current when used in quasi-bidirectional mode and externally driven from 1 to 0. This current is highest when VIN is approximately 2 V.

5. Measured with port in high impedance output mode.

6. Measured with port in quasi-bidirectional output mode.

Load capacitance for all outputs=80 pF. 7.

8. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:

Maximum IOL per port pin: 15 mA (*NOTE: This is 85°C specification for $V_{DD} = 5$ V.)

Maximum IOL per 8-bit port: 26 mA

Maximum total IOL for all output: 71 mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

9. See Figures 25, 26, 29, and 30 for I_{DD} test conditions, and Figures 27 and 28 for I_{CC} vs. Frequency.

Max. 5 V Active I_{DD} = (fosc * 1.77 mA) + 7 mA Max. 5 V Idle I_{DD} = (fosc * 0.87 mA) + 4 mA

- Max. 3 V Active I_{DD} = (fosc * 0.77 mA) + 7 mA
- Max. 3 V Idle I_{DD} = (fosc * 0.54 mA) + 4 mA

10. V_{DDMIN} = 2.85 V for operating at f_{OSC} = 30 MHz and -40 °C to +85 °C

AC ELECTRICAL CHARACTERISTICS ($V_{DD} = 2.7 \text{ V TO } 4.5 \text{ V}$)

 $T_{amb} = 0$ to +70 °C for commercial, -40 °C to +85 °C for industrial.

SVMBOL			VARIABLE CLOCK		LINUT		
STMBOL	FIGURE	PARAMETER	MIN	MAX			
Address Cycle							
t _{CRAR}	21	Delay from clock rising edge to ALE rising edge	15	60	ns		
t _{LHLL}	16	ALE pulse width (programmable)	(V1 * t _C) – 10		ns		
t _{AVLL}	16	Address valid to ALE de-asserted (set-up)	(V1 * t _C) – 18		ns		
t _{LLAX}	16	Address hold after ALE de-asserted	(t _C /2) - 12		ns		
Code Read	Cycle			_	_		
t _{PLPH}	16	PSEN pulse width	(V2 * t _C) – 12		ns		
t _{LLPL}	16	ALE de-asserted to PSEN asserted	$(t_{\rm C}/2) - 9$		ns		
t _{AVIVA}	16	Address valid to instruction valid, ALE cycle (access time)		(V3 * t _C) – 58	ns		
t _{AVIVB}	17	Address valid to instruction valid, non-ALE cycle (access time)		(V4 * t _C) – 52	ns		
t _{PLIV}	16	PSEN asserted to instruction valid (enable time)		(V2 * t _C) – 52	ns		
t _{PXIX}	16	Instruction hold after PSEN de-asserted	0		ns		
t _{PXIZ}	16	Bus 3-State after PSEN de-asserted (disable time)		t _C - 8	ns		
t _{IXUA}	16	Hold time of unlatched part of address after instruction latched		ns			
Data Read C	Cycle	-		-			
t _{RLRH}	18	RD pulse width	(V7 * t _C) – 12		ns		
t _{LLRL}	18	ALE de-asserted to \overline{RD} asserted (t _C /2) – 9			ns		
t _{AVDVA}	18	18 Address valid to data input valid, ALE cycle (access time) (V6 *		(V6 * t _C) – 58	ns		
t _{AVDVB}	19	19 Address valid to data input valid, non-ALE cycle (access time) (V5 * t _C) -		(V5 * t _C) – 52	ns		
t _{RLDV}	18	\overline{RD} low to valid data in, enable time (V7 * t _C) – 5		(V7 * t _C) – 52	ns		
t _{RHDX}	18	Data hold time after RD de-asserted	0		ns		
t _{RHDZ}	18	Bus 3-State after RD de-asserted (disable time)		t _C - 8	ns		
t _{DXUA}	18	Hold time of unlatched part of address after data latched	0		ns		
Data Write O	Cycle	-		<u>-</u>	-		
t _{WLWH}	20	WR pulse width	(V8 * t _C) – 12		ns		
t _{LLWL}	20	ALE falling edge to WR asserted	(V12 * t _C) – 10		ns		
t _{QVWX}	20	Data valid before \overline{WR} asserted (data setup time) (V13 * t _C) – 28			ns		
t _{WHQX}	20	Data hold time after \overline{WR} de-asserted (Note 6)	(V11 * t _C) – 8		ns		
t _{AVWL}	20	Address valid to \overline{WR} asserted (address setup time) (Note 5) (V9 * t _C) – 28			ns		
tUAWH	20	Hold time of unlatched part of address after \overline{WR} is de-asserted (V11 * t _C) – 10			ns		
Wait Input		·	-	-	-		
t _{WTH}	21	WAIT stable after bus strobe (RD, WR, or PSEN) asserted		(V10 * t _C) - 40	ns		
t _{WTL}	21	21 WAIT hold after bus strobe (RD, \overline{WR} , or \overline{PSEN}) assertion (V10 * t _C) – 5			ns		

NOTES:

1. Load capacitance for all outputs = 80 pF.

 Variables V1 through V13 reflect programmable bus timing, which is programmed via the Bus Timing registers (BTRH and BTRL). Refer to the XA User Guide for details of the bus timing settings.

V1) This variable represents the programmed width of the ALE pulse as determined by the ALEW bit in the BTRL register.

V1 = 0.5 if the ALEW bit = 0, and 1.5 if the ALEW bit = 1.

V2) This variable represents the programmed width of the PSEN pulse as determined by the CR1 and CR0 bits or the CRA1, CRA0, and ALEW bits in the BTRL register.

For a bus cycle with no ALE, V2 = 1 if CR1/0 = 00, 2 if CR1/0 = 01, 3 if CR1/0 = 10, and 4 if CR1/0 = 11. Note that during burst
mode code fetches, PSEN does not exhibit transitions at the boundaries of bus cycles. V2 still applies for the purpose of
determining peripheral timing requirements.

For a bus cycle with an ALE, V2 = the total bus cycle duration (2 if CRA1/0 = 00, 3 if CRA1/0 = 01, 4 if CRA1/0 = 10, and 5 if CRA1/0 = 11) minus the number of clocks used by ALE (V1 + 0.5).

Example: If CRA1/0 = 10 and ALEW = 1, the V2 = 4 - (1.5 + 0.5) = 2.

Figure 16. External Program Memory Read Cycle (ALE Cycle)

Figure 17. External Program Memory Read Cycle (Non-ALE Cycle)

Figure 18. External Data Memory Read Cycle (ALE Cycle)

Figure 19. External Data Memory Read Cycle (Non-ALE Cycle) 8 Bit Bus Only

Figure 20. External Data Memory Write Cycle

Figure 21. WAIT Signal Timing

Figure 22. External Clock Drive

Figure 24. Float Waveform

Figure 25. I_{DD} Test Condition, Active Mode All other pins are disconnected

Figure 26. I_{DD} Test Condition, Idle Mode All other pins are disconnected

Figure 30. I_{DD} Test Condition, Power Down Mode All other pins are disconnected. V_{DD} =2 V to 5.5 V

Product data

The XA-G37 is programmed by using a modified Improved Quick-Pulse Programming[™] algorithm. This algorithm is essentially

the same as that used by the later 80C51 family EPROM parts.

However different pins are used for many programming functions.

Detailed EPROM programming information may be obtained from

The XA-G37 contains three signature bytes that can be read and used by an EPROM programming system to identify the device. The

™Trademark phrase of Intel Corporation.

signature bytes identify the device as an XA-Gx manufactured by Philips.

EPROM CHARACTERISTICS

Table 6. Program Security Bits

the internet at www.philipsmcu.com/ftp.html.

PROGRAM LOCK BITS SB3 **PROTECTION DESCRIPTION** SB1 SB2 1 U U U No Program Security features enabled. 2 Ρ U U MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory and further programming of the EPROM is disabled. 3 Ρ Ρ U Same as 2, also verify is disabled. Р Ρ Ρ 4 Same as 3, external execution is disabled. Internal data RAM is not accessible.

NOTES:

1. P - programmed. U - unprogrammed.

2. Any other combination of the security bits is not defined.

Security Bits

With none of the security bits programmed the code in the program program memory execution is disabled. (See Table 6)

memory can be verified. When only security bit 1 (see Table 6) is programmed, MOVC instructions executed from external program memory are disabled from fetching code bytes from the internal memory. All further programming of the EPROM is disabled. When security bits 1 and 2 are programmed, in addition to the above, verify mode is disabled. When all three security bits are programmed, all of the conditions above apply and all external

OUTLINE		REFERENCES					
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT187-2	112E10	MS-018	EDR-7319			-99-12-27- 01-11-14	

Product data

REVISION HISTORY

Date	CPCN	Description
2002 Mar 25	9397 750 09585	– Deleted information for XA-G33
		 Spun off XA-G30 into a separate data sheet
		 Corrected Figure 27 (I_{DD} vs. Frequency)
		– Corrected typical power down current to 15 μA
2001 Jun 25	9397 750 08554	Previous release

Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31

Fax: +31 40 27 24825

© Koninklijke Philips Electronics N.V. 2002 All rights reserved. Printed in U.S.A.

Date of release: 03-02

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

Document order number:

9397 750 09585

Let's make things better.

