

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	20MHz
Connectivity	CSI, EBI/EMI, I ² C, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	34
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 6x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3839ga-gam-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-2.	V850ES/JE3-L	Product List
------------	--------------	---------------------

Generic	Name				V850ES/JE3-L								
Part Nur	nber		μ PD70F3805	μ PD70F3806	μ PD70F3807	μ PD70F3808	μ PD70F3840						
Internal	Flash r	memory	16 KB	32 KB	64 KB	128 KB	256 KB						
memory	/ RAM	-	8 KB	8 KB	8 KB	8 KB	16 KB						
Memory	/ space			64 MB									
Genera	l-purpose	register	32 bits × 32 registe	ers									
Clock	Main cloo (oscillatio	ck on frequency)	Ceramic/crystal (in PLL mode: fx = External clock (in PLL mode: fx =	2.5 to 5 MHz (multi 2.5 to 5 MHz (multi	olied by 4), in clock olied by 4), in clock	through mode: fx = 3 through mode: fx = 3	2.5 to 10 MHz) 2.5 to 5 MHz)						
	Subclock (oscillatio	on frequency)	Crystal (fxT = 32.76	68 kHz)									
	Internal of	oscillator	f _R = 220 kHz (TYP.)									
	Minimum executior	instruction time	50 ns (main clock	(fxx) = 20 MHz)									
I/O port			I/O: 50 (5 V tolerar	nt/N-ch open-drain c	output selectable: 28	3)							
Timer	16-bit TM	1P			6 channels								
	16-bit TN	1Q			1 channel								
	16-bit TMM 1 channel Watch timer 1 channel RTC 1 channel												
	RTC				1 channel								
	WDT				1 channel								
Real-tim	ne output p	port		4 bits × 1 channel,	2 bits $ imes$ 1 channel, c	or 6 bits \times 1 channel							
10-bit A	/D convert	ter			10 channels								
8-bit D//	A converte	er			1 channel								
Serial	CSIB				3 channels								
interface	^e UARTA	V/CSIB			1 channel								
	CSIB/I	²C bus			1 channel								
	UARTA	√I²C bus			2 channels								
	UARTA	A			-								
DMA co	ontroller		4 c	hannels (transfer ta	rget: on-chip periph	eral I/O, internal RA	M)						
Interrup	t source	External			9 (9) ^{Note}								
		Internal			48								
Power s	ave functi	on	HALT/IDLE1/IDLE2 low-voltage STOP/	2/STOP/subclock/su /low-voltage subcloo	ıb-IDLE/ k/low-voltage sub-l	DLE mode							
Reset s	ource		RESET pin input, v	watchdog timer 2 (V	/DT2), clock monito	r (CLM), Iow-voltage	e detector (LVI)						
CRC fu	nction		16-bit error detecti	on code generated	for 8-bit unit data								
On-chip	debug		MINICUBE, MINIC	UBE2 supported									
Operatio	ng power s	supply voltage	2.2 to 3.6 V @5 M	Hz, 2.7 to 3.6 V @2	0 MHz								
Operatio	ng ambier	it temperature	–40 to +85°C										
Package	e		64-pin LQFP (10 ×	10 mm)									

Notes The figure in parentheses indicates the number of external interrupts that can release STOP mode.

Figure 4-33. Block Diagram of Type U-22

R01UH0018EJ0200 Rev.2.00 Mar 25, 2014

Table 4-17.	7. Settings When Pins Are Used for Alternate Fun	ctions (2/5
-------------	--	-------------

Function	Alternate	e Function	Pnx Bit of	PMnx Bit of	PMCnx Bit of	PFCEnx Bit of	PFCnx Bit of	Other Bits
Name	Name	I/O	Pn Register	PMn Register	PMCn Register	PFCEn Register	PFCn Register	(Registers)
P38	TXDA2	Output	P38 = Setting not required	PM38 = Setting not required	PMC38 = 1	_	PFC38 = 0	
	SDA00	I/O	P38 = Setting not required	PM38 = Setting not required	PMC38 = 1	_	PFC38 = 1	PF38 (PF3) = 1
P39	RXDA2	Input	P39 = Setting not required	PM39 = Setting not required	PMC39 = 1	_	PFC39 = 0	
	SCL00	I/O	P39 = Setting not required	PM39 = Setting not required	PMC39 = 1	_	PFC39 = 1	PF39 (PF3) = 1
P40	SIB0	Input	P40 = Setting not required	PM40 = Setting not required	PMC40 = 1	_	PFC40 = 0	
	SDA01	I/O	P40 = Setting not required	PM40 = Setting not required	PMC40 = 1	-	PFC40 = 1	PF40 (PF4) = 1
P41	SOB0	Output	P41 = Setting not required	PM41 = Setting not required	PMC41 = 1	_	PFC41 = 0	
	SCL01	I/O	P41 = Setting not required	PM41 = Setting not required	PMC41 = 1	_	PFC41 = 1	PF41 (PF4) = 1
P42	SCKB0	I/O	P42 = Setting not required	PM42 = Setting not required	PMC42 = 1	_	-	
P50	TIQ01	Input	P50 = Setting not required	PM50 = Setting not required	PMC50 = 1	PFCE50 = 0	PFC50 = 1	KRM0 (KRM) = 0
	KR0	Input	P50 = Setting not required	PM50 = Setting not required	PMC50 = 1	PFCE50 = 0	PFC50 = 1	TQ0TIG2,TQ0TIG3 (TQ0IOC1) = 0
	TOQ01	Output	P50 = Setting not required	PM50 = Setting not required	PMC50 = 1	PFCE50 = 1	PFC50 = 0	
	RTP00	Output	P50 = Setting not required	PM50 = Setting not required	PMC50 = 1	PFCE50 = 1	PFC50 = 1	
P51	TIQ02	Input	P51 = Setting not required	PM51 = Setting not required	PMC51 = 1	PFCE51 = 0	PFC51 = 1	KRM1 (KRM) = 0
	KR1	Input	P51 = Setting not required	PM51 = Setting not required	PMC51 = 1	PFCE51 = 0	PFC51 = 1	TQ0TIG4,TQ0TIG5 (TQ0IOC1) = 0
	TOQ02	Output	P51 = Setting not required	PM51 = Setting not required	PMC51 = 1	PFCE51 = 1	PFC51 = 0	
	RTP01	Output	P51 = Setting not required	PM51 = Setting not required	PMC51 = 1	PFCE51 = 1	PFC51 = 1	
P52	TIQ03	Input	P52 = Setting not required	PM52 = Setting not required	PMC52 = 1	PFCE52 = 0	PFC52 = 1	KRM2 (KRM) = 0
	KR2	Input	P52 = Setting not required	PM52 = Setting not required	PMC52 = 1	PFCE52 = 0	PFC52 = 1	TQ0TIG6,TQ0TIG7 (TQ0IOC1) = 0
	TOQ03	Output	P52 = Setting not required	PM52 = Setting not required	PMC52 = 1	PFCE52 = 1	PFC52 = 0	
	RTP02	Output	P52 = Setting not required	PM52 = Setting not required	PMC52 = 1	PFCE52 = 1	PFC52 = 1	
	DDI	Input	P52 = Setting not required	PM52 = Setting not required	PMC52 = Setting not required	PMCE52 = Setting not required	PFC52 = Setting not required	OCDM0 (OCDM) = 1

(2) Clock control register (CKC)

The CKC register is a special register. Data can be written to this register only in a combination of specific sequences (see **3.4.7 Special registers**).

The CKC register controls the internal system clock in the PLL mode.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 0AH.

After res	set: 0AH	R/W	Address:	FFFFF822	!Η			
	7	6	5	4	3	2	1	0
CKC	0	0	0	0	1	0	1	CKDIV0
	CKDIV0		Internal s	system cloo	k (fxx) in P	LL mode		
	0	$fxx = 4 \times f$	x (fx = 2.5 to	o 5.0 MHz)				
	1	Setting pr	ohibited					
Cautions 1. The Pl 2. Be su not gu	LL mode re to set laranteed	cannot b the CKC	e used wi register t	hen fx = 5 to 0AH. ∣	.0 to 10.0 If a value	MHz. other th	an 0AH i	is set, the

(4) PLL lockup time specification register (PLLS)

The PLLS register is an 8-bit register used to select the PLL lockup time when the PLLCTL.PLLON bit is changed from 0 to 1.

This register can be read or written in 8-bit units.

Reset sets this register to 03H.

	7	6	5	4	3	2	1	0
PLLS	0	0	0	0	0	0	PLLS1	PLLS0
	PLLS1	PLLS0		Sele	ection of Pl	L lockup	time	
	0	0	2 ¹⁰ /fx					
	0	1	2 ¹¹ /fx					
	1	0	2 ¹² /fx					
	1	1	2 ¹³ /fx (de	efault value)			

Figure 6-28. Register Settings in External Trigger Pulse Output Mode (2/2)

(d)	TMPn I/O	control r	egister 2	(TPnIOC	:2)				
					TPnEES1	TPnEES0	TPnETS1	TPnETSC)
TPnIOC2	0	0	0	0	0	0	0/1	0/1]
									These bits select the valid edge of the external trigger input.
(e)	TMPn cou The value	unter read	d buffer r -bit counte	egister (1 er can be	FPnCNT) read by re	eading this	s register.		
(f)	TMPn cap If the TPr follows:	oture/con nCCR0 re	n pare reg gister is s	isters 0 a set to Do	and 1 (TPi and the 1	n CCR0 a i IPnCCR1	n d TPnC(register	CR1) is set to	D_1 , the PWM waveform is as
	PWM w PWM w	aveform c aveform a	cycle = (De active leve	0 + 1) × C I width = I	ount clock D1 × Coun	cycle t clock cy	cle		
	Remark	TMPn I/0 the exte	O control ernal trigge	register 1 er pulse o	(TPnIOC output mod	1) and TN le.	/IPn optio	n register	0 (TPnOPT0) are not used in

CHAPTER 7 16-BIT TIMER/EVENT COUNTER Q (TMQ)

Timer Q (TMQ) is a 16-bit timer/event counter. The V850ES/JC3-L, V850ES/JE3-L incorporate one TMQ timer/counter, TMQ0.

7.1 Functions

TMQ0 has the following features:

- Interval timer
 TMQ0 generates an interrupt at a preset interval and can output a square wave.
- (2) External event counterTMQ0 counts the number of externally input signal pulses.
- (3) External trigger pulse output TMQ0 starts counting and outputs a pulse when the specified external signal is input.
- (4) One-shot pulse output
 TMQ0 outputs a one-shot pulse with an output width that can be freely specified.
- (5) PWM output

TMQ0 outputs a pulse with a constant cycle whose active width can be changed. The pulse duty can also be changed freely even while the timer is operating.

- (6) Free-running timer The 16-bit counter increments from 0000H to FFFFH and then resets.
- (7) Pulse width measurement

TMQ0 can be used to measure the pulses of a signal input externally.

(2) Using external event count mode

(a) Operation when TQ0CCR0 register is set to FFFFH

When the TQ0CCR0 register is set to FFFFH, the 16-bit counter increments up to FFFFH upon detection of the valid edge of the external event count signal and is reset to 0000H in synchronization with the next increment timing. The INTTQ0CC0 signal is then generated. At this time, the TQ0OPT0.TQ0OVF bit is not set to 1.

1

Figure 7-46. Register Settings in PWM Output Mode (3/3)

(f)	TMQ0 capture/compare registers 0 to 3 (TQ0CCR0 to TQ0CCR3) If the TQ0CCR0 register is set to D_0 and the TQ0CCRk register is set to D_k , the PWM waveform is as follows:
	PWM waveform cycle = $(D_0 + 1) \times$ Count clock cycle PWM waveform active level width = $D_k \times$ Count clock cycle
	 Remarks 1. TMQ0 I/O control register 1 (TQ0IOC1) and TMQ0 option register 0 (TQ0OPT0) are not used in the PWM output mode. Updating TMQ0 capture/compare register 2 (TQ0CCR2) and TMQ0 capture/compare register 3 (TQ0CCR3) is enabled by writing to TMQ0 capture/compare register 1 (TQ0CCR1).

7.4.7 Pulse width measurement mode (TQ0MD2 to TQ0MD0 bits = 110)

In the pulse width measurement mode, TMQ0 starts incrementing when the TQ0CTL0.TQ0CE bit is set to 1. Each time it is detected that a valid edge has been input to the TIQ0m pin, the value of the 16-bit counter is stored in the TQ0CCRm register, and the 16-bit counter is cleared to 0000H.

The interval of the valid edge can be measured by reading the TQ0CCRm register after a capture interrupt request signal (INTTQ0CCm) occurs.

Select one of the TIQ00 to TIQ03 pins as the capture trigger input pin. Specify "No edge detected" by using the TQ0IOC1 register for the unused pins.

- Remarks 1. For how to set the TIQ0m pin, see Table 7-2 Pins Used by TMQ0 and Table 4-17 Settings When Pins Are Used for Alternate Functions.
 - 2. For how to enable the INTTQ0CCm interrupt signal, see CHAPTER 19 INTERRUPT SERVICING/ EXCEPTION PROCESSING FUNCTION.

3. m = 0 to 3

k = 1 to 3

Figure 7-65. Configuration of TMQ0 in Pulse Width Measurement Mode

(3) Watch timer operation mode register (WTM)

The WTM register enables or disables the count clock and operation of the watch timer, sets the interval time of the prescaler, controls the operation of the 5-bit counter, and sets the set time of the watch flag. Set the PRSM0, PRSCM0 register before setting the WTM register.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

									 -
After res	set: 00H	R/W	Address:	FFFFF680	ЭН				
	7	6	5	4	3	2	<1>	<0>	
WTM	WTM7	WTM6	WTM5	WTM4	WTM3	WTM2	WTM1	WTM0	
			<u> </u>						
	WTM7	WTM6	WTM5	WTM4	Selection	of interval t	time of pres	scaler	
	0	0	0	0	24/fw (488	μ s: fw = fx	т)		
	0	0	0	1	2 ⁵ /fw (977	μ s: fw = fx	т)		
	0	0	1	0	2 ⁶ /fw (1.95	ms: fw = f	іхт)		
	0	0	1	1	2 ⁷ /fw (3.91	ms: fw = f	іхт)		
	0	1	0	0	2 ⁸ /fw (7.81	ms: fw = f	і́хт)		
	0	1	0	1	2 ⁹ /fw (15.6	ms: fw = f	іхт)		
	0	1	1	0	2 ¹⁰ /fw (31.3	3 ms: fw =	fxt)		
	0	1	1	1	2 ¹¹ /fw (62.5	5 ms: fw =	fxt)		
	1	0	0	0	24/fw (488)	μ s: fw = fB	RG)		
	1	0	0	1	2 ⁵ /fw (977	μ s: fw = fB	rg)		
	1	0	1	0	2 ⁶ /fw (1.95	ms: fw = f	ibrg)		
	1	0	1	1	2 ⁷ /fw (3.90	ms: fw = f	ibrg)		
	1	1	0	0	2 ⁸ /fw (7.81	ms: fw = f	ÍBRG)		
	1	1	0	1	2º/fw (15.6	ms: fw = f	ibrg)		
	1	1	1	0	2 ¹⁰ /fw (31.2	2 ms: fw =	fвяg)		
	1	1	1	1	211/fw (62.5	5 ms: fw =	fвяg)		

\setminus	WDCS24	WDCS23	WDCS22	WDCS21	WDCS20	Selected Clock	100 kHz (MIN.)	220 kHz (TYP.)	400 kHz (MAX.)
	0	0	0	0	0	2 ¹² /f _R	41.0 ms	18.6 ms	10.2 ms
сk	0	0	0	0	1	2 ¹³ /f _R	81.9 ms	37.2 ms	20.5 ms
r clo	0	0	0	1	0	2 ¹⁴ /f _R	163.8 ms	74.5 ms	41.0 ms
illato	0	0	0	1	1	2 ¹⁵ /f _R	327.7 ms	148.9 ms	81.9 ms
osc	0	0	1	0	0	2 ¹⁶ /f _R	655.4 ms	297.9 ms	163.8 ms
erna	0	0	1	0	1	2 ¹⁷ /f _R	1310.7 ms	595.8 ms	327.7 ms
Inte	0	0	1	1	0	2 ¹⁸ /f _R	2621.4 ms	1191.6 ms	655.4 ms
	0	0	1	1	1	2 ¹⁹ /f _R	5242.9 ms	2383.1 ms	1310.7 ms
							fxx = 20 MHz	fxx = 16 MHz	fxx = 10 MHz
	0	1	0	0	0	2 ¹⁸ /fxx	13.1 ms	16.4 ms	26.2 ms
	0	1	0	0	1	2 ¹⁹ /fxx	26.2 ms	32.8 ms	52.4 ms
ock	0	1	0	1	0	2 ²⁰ /fxx	52.4 ms	65.5 ms	104.9 ms
in cl	0	1	0	1	1	2 ²¹ /fxx	104.9 ms	131.1 ms	209.7 ms
Maj	0	1	1	0	0	2 ²² /fxx	209.7 ms	262.1 ms	419.4 ms
	0	1	1	0	1	2 ²³ /fxx	419.4 ms	524.3 ms	838.9 ms
	0	1	1	1	0	2 ²⁴ /fxx	838.9 ms	1048.6 ms	1677.7 ms
	0	1	1	1	1	2 ²⁵ /fxx	1677.7 ms	2097.2 ms	3355.4 ms
							fxt = 32.768 kHz	2	
	1	×	0	0	0	2 ⁹ /fx⊤	15.625 ms		
	1	×	0	0	1	2 ¹⁰ /fxT	31.25 ms		
ck	1	×	0	1	0	2 ¹¹ /fxT	62.5 ms		
lbclo	1	×	0	1	1	2 ¹² /fxT	125 ms		
SL	1	×	1	0	0	2 ¹³ /fxT	250 ms		
	1	×	1	0	1	2 ¹⁴ /fxT	500 ms		
	1	×	1	1	0	2 ¹⁵ /fxT	1000 ms		
	1	×	1	1	1	2 ¹⁶ /f _{XT}	2000 ms		

Table 11-2. Loop Detection Time Interval of Watchdog Timer 2

Remark \times = Either 0 or 1

(4/4)

0	Stop condition is not generated.
1	Stop condition is generated (termination of master device's transfer). After the SDA0n line goes to low level, either set the SCL0n line to high level or wait until the SCL0n pin goes to high level. Next, after the rated amount of time has elapsed, the SDA0n line is changed from low level to high level and a stop condition is generated.
Cautions o	oncerning set timing
For master	reception: Cannot be set to 1 during transfer.
	Can be set to 1 only when the ACKEn bit has been set to 0 and during the wait period
	after the slave has been notified of final reception.
For master	transmission: A stop condition cannot be generated normally during the ACK reception period. Set to
	1 during the wait period that follows output of the ninth clock.
 Cannot k 	be set to 1 at the same time as the STTn bit.
 The SPT 	n bit can be set to 1 only when in master mode ^{Note} .
 When th eight clo The WTI SPTn bit When th 	e WTIMn bit has been set to 0, if the SPTn bit is set to 1 during the wait period that follows output of cks, note that a stop condition will be generated during the high-level period of the ninth clock. Mn bit should be changed from 0 to 1 during the wait period following output of eight clocks, and the should be set to 1 during the wait period that follows output of the ninth clock. e SPTn bit is set to 1, setting the SPTn bit to 1 again is disabled until the setting is cleared to 0.
 When th eight clo The WTI SPTn bit When th Condition 1 	e WTIMn bit has been set to 0, if the SPTn bit is set to 1 during the wait period that follows output of cks, note that a stop condition will be generated during the high-level period of the ninth clock.Mn bit should be changed from 0 to 1 during the wait period following output of eight clocks, and the should be set to 1 during the wait period that follows output of the ninth clock.e SPTn bit is set to 1, setting the SPTn bit to 1 again is disabled until the setting is cleared to 0.for clearing (SPTn bit = 0)Condition for setting (SPTn bit = 1)

Caution When the TRCn bit = 1, the WRELn bit is set to 1 during the ninth clock and the wait state is canceled, after which the TRCn bit is cleared to 0 and the SDA0n line is set to high impedance.

Remarks The SPTn bit is 0 if it is read immediately after data setting.

29.2.3 Allocation of user resources

The user must prepare the following resources to perform communication between MINICUBE2 and the target device and implement each debug function. These items need to be set in the user program or using the compiler options.

(1) Allocation of memory space

The shaded portions in Figure 29-5 are the areas reserved for placing the debug monitor program, so user programs and data cannot be allocated to these spaces. These spaces must be secured so as not to be used by the user program.

(2) Security ID setting

The ID code must be embedded in the area between 0000070H and 0000079H in Figure 29-5, to prevent the memory from being read by an unauthorized person. For details, see **29.3 ROM Security Function**.

32.6.2 Supply current characteristics

Parameter	Symbol		Conditions	MIN.	TYP. ^{Note 1}	MAX.Note 2	Un
Supply current ^{Note 3}	IDD1	Normal	$f_{XX} = 20 \text{ MHz} (f_X = 5 \text{ MHz})^{Note 4}$		8.2 ^{Note 5}	20	m/
		operation	$f_{XX} = 10 \text{ MHz} (f_X = 10 \text{ MHz}), \text{ PLL off}^{Note 4}$		4.1 ^{Note 5}	10	m/
	IDD2	HALT mode	$f_{XX} = 20 \text{ MHz} (f_X = 5 \text{ MHz})^{Note 4}$		5.3	14	mA
	IDD3	IDLE1 mode	$f_{XX} = 5 \text{ MHz} (f_X = 5 \text{ MHz}), \text{ PLL off}^{Note 4}$		0.5	1	m/
	IDD4	IDLE2 mode	$f_{XX} = 5 \text{ MHz} (f_X = 5 \text{ MHz}), \text{ PLL off}^{Note 4}$		0.21	0.5	mA
	Idd5	Subclock operation mode	fxr = 32.768 kHz, main clock stopped, internal oscillator stopped, PLL off REGOVL0 = 02H (low-voltage subclock operation mode)		9.6		μA
	Idd6	Sub-IDLE mode	fxr = 32.768 kHz, main clock stopped, internal oscillator stopped, PLL off REGOVL0 = 02H (low-voltage sub-IDLE mode)		1.9	30	μA
	Idd7	STOP mode	Subclock stopped, internal oscillator stopped REGOVL0 = 01H (low-voltage STOP mode) T _A = 25°C		1.1	3.0	μA
			Subclock stopped, internal oscillator stopped REGOVL0 = 01H (low-voltage STOP mode) T _A = 85°C			25	μA
			Subclock operating, internal oscillator stopped REGOVL0 = 01H (low-voltage STOP mode)		1.9	30	μP
	Idd8	Self programming mode	fxx = 20 MHz (fx = 5 MHz)		14	24	mA
LVI current	Ilvi				1.2	3	μA
WDT, internal	Iwdt				5		μA

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = \text{EV}_{DD} = \text{AV}_{REF0} = \text{AV}_{REF1}, V_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Notes 1. TYP. current is a value at $V_{DD} = EV_{DD} = 3.3 \text{ V}$, $T_A = 25^{\circ}C$.

The TYP. value is not a value guaranteed for each device.

- 2. MAX. current is a value at which the characteristic in question is at the worst-case value at $V_{DD} = EV_{DD} = 3.6$ V, T_A = -40 to +85°C.
- **3.** Total of V_{DD} and EV_{DD} currents. Currents I_{LVI} and I_{WDT} flowing through the output buffers, A/D converter, D/A converter, and on-chip pull-down resistor are not included.
- 4. TYP. value indicates the current value when "RTC" or "watch timer + TMM (count by watch timer interrupt)" operate as peripheral functions.

MAX. value indicates the current value when all the functions operable in a range in which the pin status is not changed operate as peripheral functions.

- However, ILVI and IWDT are excluded.
- 5. TYP. value of I_{DD1} is a value when all instructions are executed.

Remark For details about the operating voltage, see 32.3 Operating Conditions.

A.4.3 When using MINICUBE2 QB-MINI2

The system configuration when connecting MINICUBE2 to the host machine (PC-9821 series, PC/AT compatible) is shown below.

Figure A-4. System Configuration of On-Chip Emulation System

<1>	Host machine	PC with USB ports
<2>	Software	The integrated debugger ID850QB, device file, etc. Download the device file from the Renesas Electronics website. http://www2.renesas.com/micro/en/ods/index.html
<3>	USB interface cable	USB cable to connect the host machine and MINICUBE. It is supplied with MINICUBE. The cable length is approximately 2 m.
<4>	MINICUBE2 On-chip debug emulator	This on-chip debug emulator serves to debug hardware and software when developing application systems using the V850ES/JC3-L, V850ES/JE3-L. It supports integrated debugger ID850QB.
<5>	16-pin target cable	Cable to connect MINICUBE2 and the target system. It is supplied with MINICUBE. The cable length is approximately 15 cm.
<6>	Target connector (sold separately)	Use a 16-pin general-purpose connector with 2.54 mm pitch.

Remark The numbers in the angular brackets correspond to the numbers in Figure A-4.

A.5 Debugging Tools (Software)

ID850QB	This debugger supports the in-circuit emulators for V850 microcontrollers. The				
Integrated debugger	ID850QB is Windows-based software.				
	It has improved C-compatible debugging functions and can display the results of				
	tracing with the source program using an integrating window function that				
	associates the source program, disassemble display, and memory display with the				
	trace result.				
	It should be used in combination with the device file.				

APPENDIX D INSTRUCTION SET LIST

D.1 Conventions

(1) Register symbols used to describe operands

Register Symbol	Explanation
reg1	General-purpose registers: Used as source registers.
reg2	General-purpose registers: Used mainly as destination registers. Also used as source register in some instructions.
reg3	General-purpose registers: Used mainly to store the remainders of division results and the higher 32 bits of multiplication results.
bit#3	3-bit data for specifying the bit number
immX	X bit immediate data
dispX	X bit displacement data
regID	System register number
vector	5-bit data that specifies the trap vector (00H to 1FH)
сссс	4-bit data that shows the conditions code
sp	Stack pointer (r3)
ер	Element pointer (r30)
listX	X item register list

(2) Register symbols used to describe opcodes

Register Symbol	Explanation			
R	1-bit data of a code that specifies reg1 or regID			
r	1-bit data of the code that specifies reg2			
W	1-bit data of the code that specifies reg3			
d	1-bit displacement data			
Ι	1-bit immediate data (indicates the higher bits of immediate data)			
i	1-bit immediate data			
сссс	4-bit data that shows the condition codes			
CCCC	4-bit data that shows the condition codes of Bcond instruction			
bbb	3-bit data for specifying the bit number			
L	1-bit data that specifies a program register in the register list			

		-								(2	2/6)	
Mnemonic	Operand	Opcode	Operation		Execution			Flags				
				(Clocł	k I.			7 047			
DBTRAP		1111100001000000	DBPC←PC+2 (restored PC) DBPSW←PSW PSW.NP←1	3	3	3	UT	00	ס	2	SAI	
			PSW.EP←1 PSW.ID←1 PC←0000060H									
DI		0000011111100000 0000000101100000	PSW.ID←1	1	1	1						
DISPOSE	imm5,list12	0000011001iiiiiL LLLLLLLLL00000	sp←sp+zero-extend(imm5 logically shift left by 2) GR[reg in list12]←Load-memory(sp,Word) sp←sp+4 repeat 2 steps above until all regs in list12 is loaded	n+1 Note4	n+1 Note4	n+1 Note4						
	imm5,list12,[reg1]	0000011001iiiiiL LLLLLLLLRRRRR Note 5	sp←sp+zero-extend(imm5 logically shift left by 2) GR[reg in list12]←Load-memory(sp,Word) sp←sp+4 repeat 2 steps above until all regs in list12 is loaded PC←GR[reg1]	n+3 Note4	n+3 Note 4	n+3 Note4						
DIV	reg1,reg2,reg3	rrrr111111RRRRR wwwww01011000000	GR[reg2]←GR[reg2]÷GR[reg1] GR[reg3]←GR[reg2]%GR[reg1]	35	35	35		×	×	×		
DIVH	reg1,reg2	rrrr000010RRRR	GR[reg2]←GR[reg2]÷GR[reg1] ^{№te 6}	35	35	35		×	×	×		
	reg1,reg2,reg3	rrrr111111RRRRR wwww01010000000	GR[reg2]←GR[reg2]÷GR[reg1] ^{Note 6} GR[reg3]←GR[reg2]%GR[reg1]	35	35	35		×	×	×		
DIVHU	reg1,reg2,reg3	rrrr111111RRRRR wwww01010000010	GR[reg2]←GR[reg2]÷GR[reg1] ^{№№ 6} GR[reg3]←GR[reg2]%GR[reg1]	34	34	34		×	×	×		
DIVU	reg1,reg2,reg3	rrrr111111RRRRR wwwww01011000010	GR[reg2]-GR[reg2]÷GR[reg1] GR[reg3]-GR[reg2]%GR[reg1]	34	34	34		×	×	×		
EI		1000011111100000 0000000101100000	PSW.ID←0	1	1	1						
HALT		0000011111100000 0000000100100000	Stop	1	1	1						
HSW	reg2,reg3	rrrr11111100000 wwww01101000100	GR[reg3]←GR[reg2](15 : 0) II GR[reg2] (31 : 16)	1	1	1	×	0	×	×		
JARL	disp22,reg2	rrrrr11110dddddd dddddddddddddd Note 7	GR[reg2]←PC+4 PC←PC+sign-extend(disp22)	2	2	2						
JMP	[reg1]	00000000011RRRRR	PC←GR[reg1]	3	3	3						
JR	disp22	0000011110dddddd ddddddddddddddd	PC←PC+sign-extend(disp22)	2	2	2						
LD.B	disp16[reg1],reg2	rrrr111000RRRRR dddddddddddddddd	adr←GR[reg1]+sign-extend(disp16) GR[reg2]←sign-extend(Load-memory(adr,Byte))	1	1	Note 11						
LD.BU	disp16[reg1],reg2	rrrrr11110bRRRRR ddddddddddddd	adr←GR[reg1]+sign-extend(disp16) GR[reg2]←zero-extend(Load-memory(adr,Byte))	1	1	Note 11						

V850ES/JC3-L, V850ES/JE3-L User's Manual: Hardware Publication Date: Rev.0.01 Jul 23, 2010 Rev.1.00 Mar 29, 2011 Rev.1.01 Aug 25, 2011 Rev.2.00 Mar 25, 2014 Published by: Renesas Electronics Corporation