

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	20MHz
Connectivity	CSI, EBI/EMI, I ² C, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	50
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 10x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3840gb-r-gah-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	4.3.2 Port 1 (V850ES/JC3-L (48-pin), V850ES/JE3-L)	
	4.3.3 Port 3	
	4.3.4 Port 4	114
	4.3.5 Port 5	
	4.3.6 Port 7	
	4.3.7 Port 9	
	4.3.8 Port CM	136
	4.3.9 Port DL	
4.4	Block Diagrams	139
4.5	Port Register Settings When Alternate Function Is Used	171
4.6	Cautions	177
	4.6.1 Cautions on setting port pins	177
	4.6.2 Cautions on bit manipulation instruction for port n register (Pn)	
	4.6.3 Cautions on on-chip debug pins	
	4.6.4 Cautions on P05/INTP2/DRST pin	
	4.6.5 Cautions on P10, P11, and P53 pins when power is turned on	
	4.6.6 Hysteresis characteristics	
CHAPTE	ER 5 CLOCK GENERATOR	
5.1	Overview	
5.2	5	
5.3	Registers	
5.4		
	5.4.1 Operation of each clock	190
	5.4.2 External clock signal input	
5.5	PLL Function	
	5.5.1 Overview	
	5.5.2 Registers	
	5.5.3 Usage	
5.6	How to Connect a Resonator	
	5.6.1 Main clock oscillator	
	5.6.2 Subclock oscillator	
	ER 6 16-BIT TIMER/EVENT COUNTER P (TMP)	
6.1	Overview	
6.2	5	
	6.2.1 Pins used by TMPn	
	6.2.2 Register configuration	
C 0	6.2.3 Interrupts	
6.3	Registers	
6.4		
	6.4.1 Interval timer mode (TPnMD2 to TPnMD0 bits = 000)	
	6.4.2 External event count mode (TPnMD2 to TPnMD0 bits = 001)	
	6.4.3 External trigger pulse output mode (TPnMD2 to TPnMD0 bits = 010)	
	6.4.4 One-shot pulse output mode (TPnMD2 to TPnMD0 bits = 011)	
	 6.4.5 PWM output mode (TPnMD2 to TPnMD0 bits = 100) 6.4.6 Free-running timer mode (TPnMD2 to TPnMD0 bits = 101) 	
	6.4.7 Pulse width measurement mode (TPnMD2 to TPnMD0 bits = 110)6.4.8 Timer output operations	
6.5	Selector (V850ES/JE3-L only)	
0.0		2J1

(3/4)

After re	set: 0000H	R/W	Address:	PMC9 FI PMC9L F		, H, PMC9H∣	FFFFF453	Н
	15	14	13	12	11	10	9	8
PMC9 (PMC9H)	PMC915	PMC914	PMC913	PMC912	PMC911	PMC910	PMC99	PMC98
	7	6	5	4	3	2	1	0
(PMC9L)	PMC97	PMC96	0	PMC94	PMC93	PMC92	PMC91	PMC90
	PMC915			Specifier	tion of pin	operation		
		1/0	2015)	Specifica		operation		
	0	I/O port (F	ut/TIP50 in	put/TOP50	output			
	PMC914				tion of pin	operation		
	0	I/O port (P	914)	opeemed		operation		
	1		ut/TIP51 in	put/TOP51	output			
	PMC913			Specifica	tion of pin	operation		
	0	I/O port (P	913)					
	1	INTP4 inp	ut					
	PMC912			Specifica	tion of pin	operation		
	0	I/O port (P	912)					
	1	SCKB3 I/C)					
	PMC911			Specifica	tion of pin	operation		
	0	I/O port (P	911)					
	1	SOB3 out	put					
	PMC910			Specifica	tion of pin	operation		
	0	I/O port (P						
	1	SIB3 input	1					
	PMC99			Specifica	tion of pin	operation		
	0	I/O port (P						
	1	SCKB1 I/C)					
	PMC98			Specifica	tion of pin	operation		
	0	I/O port (F SOB1 out						

Figure 4-10. Block Diagram of Type G-3

6.2.2 Register configuraiton

For the V850ES/JC3-L and V850ES/JE3-L, the registers and their bit assignment differ for each product. The register configuration for each product is shown in the following tables

(1) V850ES/JC3-L (40-pin)

Channel	Register name				Bit po	osition			
		7	6	5	4	3	2	1	0
TMP0	TP0CTL0	TP0CE	0	0	0	0	TP0CKS2	TP0CKS1	TP0CKS0
	TP0CTL1	0	0	0	0	0	TP0MD2	TP0MD1	TP0MD0
TMP1	TP1CTL0	TP1CE	0	0	0	0	TP1CKS2	TP1CKS1	TP1CKS0
	TP1CTL1	0			0	0	TP1MD2	TP1MD1	TP1MD0
TMP2	TP2CTL0	TP2CE	0	0	0	0	TP2CKS2	TP2CKS1	TP2CKS0
	TP2CTL1	0	TP2EST	TP2EEE	0	0	TP2MD2	TP2MD1	TP2MD0
	TP2IOC0	0	0	0	0	TP2OL1	TP2OE1	TP2OL0	TP2OE0
	TP2IOC1	0	0	0	0	TP2IS3	TP2IS2	TP2IS1	TP2IS0
	TP2IOC2	0	0	0	0	TP2EES1	TP2EES0	TP2ETS1	TP2ETS0
	TP2OPT0	0	0	TP2CCS1	TP2CCS0	0	0	0	TP2OVF
TMP3	TP3CTL0	TP3CE	0	0	0	0	TP3CKS2	TP3CKS1	TP3CKS0
	TP3CTL1	0	0	0	0	0	TP3MD2	TP3MD1	TP3MD0
TMP4	TP4CTL0	TP4CE	0	0	0	0	TP4CKS2	TP4CKS1	TP4CKS0
	TP4CTL1	0	0	0	0	0	TP4MD2	TP4MD1	TP4MD0
TMP5	TP5CTL0	TP5CE	0	0	0	0	TP5CKS2	TP5CKS1	TP5CKS0
	TP5CTL1	0	TP5EST	TP5EEE	0	0	TP5MD2	TP5MD1	TP5MD0
	TP5IOC0	0	0	0	0	TP5OL1	TP5OE1	TP5OL0	TP5OE0
	TP5IOC1	0	0	0	0	TP5IS3	TP5IS2	TP5IS1	TP5IS0
	TP5IOC2	0	0	0	0	TP5EES1	TP5EES0	TP5ETS1	TP5ETS0
	TP5OPT0	0	0	TP5CCS1	TP5CCS0	0	0	0	TP5OVF

Remark The TPnCCR0, TPnCCR1, and TPnCNT registers are available for all channels.

Figure 6-3. Anytime Write Timing

Figure 6-55. Register Settings in Free-Running Timer Mode (1/2)

(10) TMQ0 capture/compare register 3 (TQ0CCR3)

The TQ0CCR3 register can be used as a capture register or a compare register depending on the mode.

This register can be selected as a capture register or a compare register only in the free-running timer mode, according to the setting of the TQ0OPT0.TQ0CCS3 bit. In the pulse width measurement mode, the TQ0CCR3 register can be used only as a capture register. In any other mode, this register can be used only as a compare register.

The TQ0CCR3 register can be read or written during operation.

This register can be read or written in 16-bit units.

Reset sets this register to 0000H.

Caution Accessing the TQ0CCR3 register is prohibited in the following statuses. Moreover, if the system is in the wait status, the only way to cancel the wait status is to execute a reset. For details, see 3.4.9 (1) Accessing specific on-chip peripheral I/O registers.

• When the CPU operates on the subclock and main clock oscillation is stopped

• When the CPU operates on the internal oscillator clock

TOOCCR3	After res	set: 0	000H	F	R/W	Ade	dress:	F	FFFF	54CH	ł						
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TQ0CCR3																

(a) Function as compare register

The TQ0CCR3 register can be rewritten even when the TQ0CTL0.TQ0CE bit = 1.

The set value of the TQ0CCR3 register is transferred to the CCR3 buffer register. When the value of the 16-bit counter matches the value of the CCR3 buffer register, a compare match interrupt request signal (INTTQ0CC3) is generated. If TOQ03 pin output is enabled at this time, the output of the TOQ03 pin is inverted (For details, see the descriptions of each operating mode.).

(b) Function as capture register

When the TQ0CCR3 register is used as a capture register in the free-running timer mode, the count value of the 16-bit counter is stored in the TQ0CCR3 register if the valid edge of the capture trigger input pin (TIQ03 pin) is detected. In the pulse-width measurement mode, the count value of the 16-bit counter is stored in the TQ0CCR3 register and the 16-bit counter is cleared (0000H) if the valid edge of the capture trigger input pin (TIQ03 pin) is detected.

Even if the capture operation and reading the TQ0CCR3 register conflict, the correct value of the TQ0CCR3 register can be read.

(b) Operation when TQ0CCR0 register is set to FFFFH

When the TQ0CCR0 register is set to FFFFH, the 16-bit counter increments up to FFFFH and is reset to 0000H in synchronization with the next increment timing. The INTTQ0CC0 signal is then generated and the output of the TOQ00 pin is inverted. At this time, an overflow interrupt request signal (INTTQ0OV) is not generated, nor is the overflow flag (TQ0OPT0.TQ0OVF bit) set to 1.

Figure 7-11. Operation of Interval Timer When TQ0CCR0 Register Is Set to FFFFH

(13) A/D conversion result hysteresis characteristics

The successive comparison type A/D converter holds the analog input voltage in the internal sample & hold capacitor and then performs A/D conversion. After A/D conversion has finished, the analog input voltage remains in the internal sample & hold capacitor. As a result, the following phenomena may occur.

- When the same channel is used for A/D conversions, if the voltage is higher or lower than the previous A/D conversion, then hysteresis characteristics may appear where the conversion result is affected by the previous value. Thus, even if the conversion is performed at the same potential, the result may vary.
- When switching the analog input channel, hysteresis characteristics may appear where the conversion result is affected by the previous channel value. This is because one A/D converter is used for the A/D conversions. Thus, even if the conversion is performed at the same potential, the result may vary.

Therefore, to obtain a more accurate conversion result, perform A/D conversion twice successively for the same channel, and discard the first conversion result.

(2/2)

		Data transfer o	order
0	MSB first		
1	LSB first		
and the	UAnRXE b	e rewritten only when the UAnPV it are 0. and reception are performed in	
UAnPS1	UAnPS0	Parity selection during transmission	Parity selection during reception
0	0	No parity output	Reception with no parity
0	1	0 parity output	Reception with 0 parity
1	0	Odd parity output	Odd parity check
1	1	Even parity output	Even parity check
 If "Rece Therefo When tr 	re, the UAn ansmission	parity" is selected during reception STR.UAnPE bit is not set. and reception are performed in	
 If "Rece Therefo When tr UAnPS UAnCL 	otion with 0 re, the UAn ansmission and UAnF Specifica	STR.UAnPE bit is not set.	the LIN format, clear the
 If "Rece Therefo When tr UAnPS 	otion with 0 re, the UAn ansmission and UAnF Specifica 7 bits	STR.UAnPE bit is not set. and reception are performed in 2S0 bits to 00.	the LIN format, clear the
 If "Rece Therefo When tr UAnPS⁻ UAnCL 0 1 This reg and the 	btion with 0 re, the UAn ansmission and UAnF Specifica 7 bits 8 bits ister can be UAnRXE b	STR.UAnPE bit is not set. and reception are performed in SO bits to 00. tion of data character length of 1 e rewritten only when the UAnPW	the LIN format, clear the frame of transmit/receive data
 If "Rece Therefo When tr UAnPS⁻ UAnCL 0 1 This reg and the When tr 	btion with 0 re, the UAn ansmission and UAnF Specifica 7 bits 8 bits ister can be UAnRXE b	STR.UAnPE bit is not set. and reception are performed in 20 bits to 00. tion of data character length of 1 e rewritten only when the UAnPW it are 0.	the LIN format, clear the frame of transmit/receive data /R bit is 0 or the UAnTXE bit the LIN format, set the UAnCL
 If "Rece Therefo When tr UAnPS UAnCL 0 1 This reg and the When tr bit to 1. 	btion with 0 re, the UAn ansmission and UAnF Specifica 7 bits 8 bits ister can be UAnRXE b	STR.UAnPE bit is not set. and reception are performed in 20 bits to 00. tion of data character length of 1 e rewritten only when the UAnPW it are 0. and reception are performed in	the LIN format, clear the frame of transmit/receive data /R bit is 0 or the UAnTXE bit the LIN format, set the UAnCL
 If "Recent Therefore Therefore When the UAnPS" UAnCL 0 1 This regard the When the the When the bit to 1. UAnSL 	btion with 0 re, the UAn ansmission and UAnF Specifica 7 bits 8 bits ister can be UAnRXE b ansmission	STR.UAnPE bit is not set. and reception are performed in 20 bits to 00. tion of data character length of 1 e rewritten only when the UAnPW it are 0. and reception are performed in	the LIN format, clear the frame of transmit/receive data /R bit is 0 or the UAnTXE bit the LIN format, set the UAnCL

(2) UARTAn control register 1 (UAnCTL1)

For details, see 15.7 (2) UARTAn control register 1 (UAnCTL1).

(3) UARTAn control register 2 (UAnCTL2)

For details, see 15.7 (3) UARTAn control register 2 (UAnCTL2).

17.4 Registers

I²C0n is controlled by the following registers.

- IIC control registers n (IICCn)
- IIC status registers n (IICSn)
- IIC flag registers n (IICFn)
- IIC clock select registers n (IICCLn)
- IIC function expansion registers n (IICXn)
- IIC division clock select registers 0, 1 (OCKS0, OCKS1)

The following registers are also used.

- IIC shift registers n (IICn)
- Slave address registers n (SVAn)
- Remark For the alternate-function pin settings, see Table 4-17 Settings When Pins Are Used for Alternate Functions.

(1) IIC control registers n (IICCn)

The IICCn register enables/stops I²C0n operations, sets the wait timing, and sets other I²C operations. These registers can be read or written in 8-bit or 1-bit units. However, set the SPIEn, WTIMn, and ACKEn bits when the IICEn bit is 0 or during the wait period. When setting the IICEn bit from "0" to "1", these bits can also be set at the same time.

Reset sets these registers to 00H.

(3) IIC flag registers n (IICFn)

The IICFn register sets the l^2 C0n operation mode and indicates the l^2 C bus status.

These registers can be read or written in 8-bit or 1-bit units. However, the STCFn and IICBSYn bits are read-only. IICRSVn enables/disables the communication reservation function (see **17.14 Communication Reservation**).

The initial value of the IICBSYn bit is set by using the STCENn bit (see **17.15 Cautions**).

The IICRSVn and STCENn bits can be written only when operation of l^2C0n is disabled (IICCn.IICEn bit = 0). After operation is enabled, IICFn can be read.

Reset sets these registers to 00H.

17.7.2 Slave device operation (when receiving slave address data (address match))

(1) Start ~ Address ~ Data ~ Data ~ Stop

(4) Start ~ Code ~ Data ~ Start ~ Address ~ Data ~ Stop

ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ACK	ST	AD6 to AD0	R/W	ACK	D7 to D0	ACK	SP	
		4	▲1	4	▲2					3			$\Delta \epsilon$
	▲1: IICS	n registe	er = 001	0X010B									
	▲2: IICS	n registe	er = 001	0X000B									
	▲3: IICS	n registe	er = 000	00X10B									
	Δ 4: IICS	n registe	er = 0000	00001B									
	Remai	rk ▲:	Always	generated									
		Δ:	Genera	ited only whe	n SPIE	in bit =	1						
		v٠	don't ca	are									
	<2> When W				, addre	ess mis	match (= not	t exten	sion co	ode))			
ST	<2> When W AD6 to AD0	/TIMn k R/W	bit = 1 (ACK		ĀCK	ss mis ST ▲3	AD6 to AD0	t exten R/W	ĀCK	D7 to D0	ĀCK	SP	
	1	/TIMn k R/W	Dit = 1 (after restart D7 to D0 ▲2	ĀCK	ST	-		ĀCK	D7 to D0	ĀĊĶ	SP	Δ
	AD6 to AD0	TIMn k R/W	Dit = 1 (ACK 1 Ack er = 001	after restart D7 to D0 ▲2 0X010B	ĀCK	ST	-		ĀCK	D7 to D0	ĀĊĸ	SP	Δ
	AD6 to AD0	TIMn k R/W n registe	ACK ACK 1 ar = 001 ar = 001	after restart D7 to D0 ▲2 0X010B 0X110B	ĀCK	ST	-		ĀCK	D7 to D0	ĀĊĸ	SP	
	AD6 to AD0 ▲1: IICS ▲2: IICS	TIMn t R/W n registe n registe	Dit = 1 (ACK 1 er = 001 er = 001 er = 001	after restart D7 to D0 ▲2 0X010B 0X110B 0XX00B	ĀCK	ST	-		ĀCK	D7 to D0	ĀĊĶ	SP	
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS	TIMn t R/W n registe n registe n registe n registe	Dit = 1 (ACK 1 er = 001 er = 001 er = 001 er = 000	after restart D7 to D0 ▲2 0X010B 0X110B 0XX00B 00X10B	ĀCK	ST	-		ĀCK	D7 to D0	ĀĊĶ	SP	
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS	TIMn t R/W n registe n registe n registe n registe n registe	Dit = 1 (ACK 1 4 er = 001 er = 001 er = 001 er = 000 er = 000	after restart D7 to D0 ▲2 0X010B 0X110B 0XX00B 00X10B	ĀCK	ST	-		ĀCK	D7 to D0	ĀĊĸ	SP	Δ
	AD6 to AD0 ▲1: IICS ▲2: IICS ▲3: IICS ▲4: IICS ▲ 5: IICS	TIMn k R/₩ n registe n registe n registe n registe n registe rk ▲:	ACK ACK ar = 001 er = 001 er = 001 er = 001 er = 000 er = 0000 Always	after restart D7 to D0 ▲2 0X010B 0X110B 0XX00B 00X10B 00001B	ACK	ST ▲3	AD6 to AD0		ĀCK	D7 to D0	ĀĊĸ	SP	

(3) External interrupt falling, rising edge specification register 9H (INTF9H, INTR9H)

The INTF9H and INTR9H registers are 8-bit registers that specify detection of the falling and rising edges of the external interrupt pins (INTP4 to INTP6).

These registers can be read or written in 8-bit or 1-bit units.

Reset sets these registers to 00H.

Caution When switching from the port function to the external interrupt function (alternate function), an edge might be detected. Therefore, set the INTF9n and INTR9n bits to 00, and then specify the external interrupt function (PMC9.PMC9n bit = 1).

When switching from the external interrupt function to the port function, an edge might be detected as well. Therefore, set the INTF9n and INTR9n bits to 00, and then specify the port function (PMC9.PMC9n bit = 0).

Table 19-6. Valid Edge Specification

INTF9n	INTR9n	Valid Edge Specification (n = 13 to 15)
0	0	No edge detected
0	1	Rising edge
1	0	Falling edge
1	1	Both rising and falling edges

Caution Be sure to clear the INTF9n and INTR9n bits to 00 when these registers are not used for the INTP4 to INTP6 pins.

Remark n = 13 to 15: Control of INTP4 to INTP6 pins

29.3 ROM Security Function

29.3.1 Security ID

The flash memory versions of the V850ES/JC3-L and V850ES/JE3-L perform authentication using a 10-byte ID code to prevent the contents of the flash memory from being read by an unauthorized person during on-chip debugging by the on-chip debug emulator.

Set the ID code in the 10-byte internal flash memory area from 0000070H to 0000079H to allow the debugger perform ID authentication.

If the IDs match, the security is released and reading the flash memory and using the on-chip debug emulator are enabled.

- Set the 10-byte ID code to 0000070H to 0000079H.
- Bit 7 of 0000079H is the on-chip debug emulator enable flag.
 (0: Disable, 1: Enable)
- When the on-chip debug emulator is started, the debugger requests ID input. When the ID code input to the debugger and the ID code set in 0000070H to 0000079H match, the debugger starts.
- Debugging cannot be performed if the on-chip debug emulator enable flag is 0, even if the ID codes match.

Figure 29-6. Security ID Area

CHAPTER 30 ELECTRICAL SPECIFICATIONS (V850ES/JC3-L (40-pin))

30.1 Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD	$V_{DD} = EV_{DD} = AV_{REF0}$	–0.5 to +4.6	V
	EVDD	$V_{DD} = EV_{DD} = AV_{REF0}$	–0.5 to +4.6	V
	AV _{REF0}	$V_{DD} = EV_{DD} = AV_{REF0}$	–0.5 to +4.6	V
	Vss	Vss = EVss = AVss	–0.5 to +0.5	V
	AVss	Vss = EVss = AVss	–0.5 to +0.5	V
	EVss	Vss = EVss = AVss	–0.5 to +0.5	V
Input voltage	VI1	P97, P914, P915, PCM0, PDL5, RESET, FLMD0	-0.5 to EV _{DD} + 0.5 ^{Note 1}	V
	Vı3	X1	-0.5 to V _{DD} + 0.5 ^{Note 1}	V
		X2	-0.5 to Vro ^{Note 2} + $0.5^{Note 1}$	
	V14	P02, P03, P05, P30, P31, P40 to P42, P50 to P55, P90, P91, P96	-0.5 to +6.0	V
	V15	XT1, XT2	-0.5 to V _{RO} ^{Note 2} + 0.5	V
Analog input voltage	VIAN	P70 to P74	-0.5 to AV _{REF0} + 0.5 ^{Note 1}	V

Absolute Maximum Ratings (T_A = 25°C) (1/2)

- **Notes 1.** Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.
 - 2. On-chip regulator output voltage
- Cautions 1. Do not directly connect the output (or I/O) pins of IC products to each other, or to VDD, Vcc, and GND. Open-drain pins or open-collector pins, however, can be directly connected to each other. Direct connection of the output pins between an IC product and an external circuit is possible, if the output pins can be set to the high-impedance state and the output timing of the external circuit is designed to avoid output conflict.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics, AC characteristics, and operating

conditions represent the quality assurance range during normal operation.

Remark Unless specified otherwise, the ratings of alternate-function pins are the same as those of port pins.

(2) Slave mode

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = AVREF1, VSS = EVSS = AVSS = 0 V, CL = 50 pF)

-						
Parameter	Sy	mbol	Conditions	MIN.	MAX.	Unit
SCKBn cycle time	t ксү2	<60>	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	125		ns
			$2.2~V \leq V_{\text{DD}} < 2.7~V$	800		ns
SCKBn high-level width	tĸH2	<61>	$2.2~V \leq V_{\text{DD}} \leq 3.6~V$	54.5		ns
SCKBn low-level width	tĸL2	<62>	$2.2~V \leq V_{\text{DD}} \leq 3.6~V$	54.5		ns
SIBn setup time (to SCKBn↑)	tsik2	<63>	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	27		ns
			$2.2~V \leq V_{\text{DD}} < 2.7~V$	100		ns
SIBn hold time (from SCKBn↑)	tksi2	<64>	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$	27		ns
			$2.2~V \leq V_{\text{DD}} < 2.7~V$	100		ns
Delay time from $\overline{\mathrm{SCKBn}}\downarrow$ to SOBn output	tks02	<65>	$2.7~V \leq V_{\text{DD}} \leq 3.6~V$		27	ns
			$2.2~V \leq V_{\text{DD}} < 2.7~V$		95	ns

Remark n = 0 to 2, 4

31.9 Flash Memory Programming Characteristics

(1) Basic characteristics

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = AVREF1 = 2.7 to 3.6 V, Vss = EVss = AVss = 0 V, CL = 50 pF)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Operating frequency	fcpu			2.5		20	MHz
Supply voltage	VDD	$2.5 \text{ MHz} \leq f_{XX} \leq 20 \text{ MHz}$		2.7		3.6	V
Number of rewrites	Cwrt	Used for updating programs When using flash memory programmer and Renesas Electronics self programming library	Retained for 15 years	1,000			times
		Used for updating data When using Renesas Electronics EEPROM emulation library (usable ROM size: 12 KB of 6 consecutive blocks, or 6 KB of 3 consecutive blocks)	Retained for 5 years	10,000			times
Programming temperature	t PRG			-40		+85	°C

(2) Serial write operation characteristics

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = AVREF1 = 2.7 to 3.6 V, Vss = EVss = AVss = 0 V, CL = 50 pF)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
FLMD0, FLMD1 setup time	t MDSET		2		3000	ms
FLMD0 count start time from $\overline{\text{RESET}}$	t RFCF	fx = 2.5 to 10 MHz	800			μS
FLMD0 counter high-level width/ low-level width	tсн/tc∟		10		100	μs
FLMD0 counter rise time/fall time	tr/tr				1	μS

Flash write mode setup timing

A.4.2 When using MINICUBE QB-V850MINIL

(1) On-chip emulation using MINICUBE

The system configuration when connecting MINICUBE to the host machine (PC-9821 series, PC/AT compatible) is shown below.

Figure A-3. On-Chip Emulation System Configuration

<1>	Host machine	PC with USB ports
<2>	Software	The integrated debugger ID850QB, device file, etc. Download the device file from the Renesas Electronics website. http://www2.renesas.com/micro/en/ods/index.html
<3>	USB interface cable	USB cable to connect the host machine and MINICUBE. It is supplied with MINICUBE. The cable length is approximately 2 m.
<4>	MINICUBE On-chip debug emulator	This on-chip debug emulator serves to debug hardware and software when developing application systems using the V850ES/JC3-L, V850ES/JE3-L. It supports integrated debugger ID850QB.
<5>	OCD cable	Cable to connect MINICUBE and the target system. It is supplied with MINICUBE. The cable length is approximately 20 cm.

Remark The numbers in the angular brackets correspond to the numbers in Figure A-3.

