E·X F Renesas Electronics America Inc - <u>UPD70F3842F1-CAH-A</u> Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	20MHz
Connectivity	CSI, EBI/EMI, I ² C, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	83
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-LBGA
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3842f1-cah-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

V850ES/JC3-L, V850ES/JE3-L RENESAS MCU

CHAPTER 1 INTRODUCTION

The V850ES/JC3-L and V850ES/JE3-L are one of the products in the Renesas Electronics V850 single-chip microcontroller series designed for low-power operation for real-time control applications.

1.1 General

The V850ES/JC3-L and V850ES/JE3-L are 32-bit single-chip microcontrollers that include the V850ES CPU core and peripheral functions such as ROM/RAM, timer/counters, serial interfaces, an A/D converter, a D/A converter.

In addition to high real-time response characteristics and 1-clock-pitch basic instructions, the The V850ES/JC3-L and V850ES/JE3-L feature multiply instructions, saturated operation instructions, bit manipulation instructions, etc., realized by a hardware multiplier, as optimum instructions for digital servo control applications. Moreover, as a real-time control system, the V850ES/JC3-L and V850ES/JE3-L enable an extremely high cost-performance for applications that require super low power consumption, such as PC peripheral device, ECR peripheral device, and industrial instrument.

1.3 Application Fields

Digital cameras, electrical power meters, mobile terminals, digital home electronics, other consumer devices

1.4 Ordering Information

1.4.1 V850ES/JC3-L

Part Number	Package	Internal Flash Memory
μ PD70F3797K8-4B4-AX	40-pin plastic WQFN (6 \times 6)	16 KB
μ PD70F3798K8-4B4-AX	40-pin plastic WQFN (6 \times 6)	32 KB
μ PD70F3799K8-4B4-AX	40-pin plastic WQFN (6 \times 6)	64 KB
μ PD70F3800K8-4B4-AX	40-pin plastic WQFN (6 \times 6)	128 KB
μ PD70F3838K8-4B4-AX	40-pin plastic WQFN (6×6)	256 KB
μ PD70F3801GA-GAM-AX	48-pin plastic LQFP (fine pitch) (7 \times 7)	16 KB
μ PD70F3802GA-GAM-AX	48-pin plastic LQFP (fine pitch) (7 \times 7)	32 KB
μ PD70F3803GA-GAM-AX	48-pin plastic LQFP (fine pitch) (7 \times 7)	64 KB
μ PD70F3804GA-GAM-AX	48-pin plastic LQFP (fine pitch) (7 \times 7)	128 KB
μ PD70F3839GA-GAM-AX	48-pin plastic LQFP (fine pitch) (7 \times 7)	256 KB
μ PD70F3801K8-5B4-AX	48-pin plastic WQFN (7 \times 7)	16 KB
μ PD70F3802K8-5B4-AX	48-pin plastic WQFN (7 \times 7)	32 KB
μ PD70F3803K8-5B4-AX	48-pin plastic WQFN (7 \times 7)	64 KB
μ PD70F3804K8-5B4-AX	48-pin plastic WQFN (7 \times 7)	128 KB
μ PD70F3839K8-5B4-AX	48-pin plastic WQFN (7 \times 7)	256 KB

Remark The V850ES/JC3-L is a lead-free product.

1.4.2 V850ES/JE3-L

Part Number	Package	Internal Flash Memory
μ PD70F3805GB-GAH-AX	64-pin plastic LQFP (fine pitch) (10 $ imes$ 10)	16 KB
μ PD70F3806GB-GAH-AX	64-pin plastic LQFP (fine pitch) (10 \times 10)	32 KB
μ PD70F3807GB-GAH-AX	64-pin plastic LQFP (fine pitch) (10 \times 10)	64 KB
μ PD70F3808GB-GAH-AX	64-pin plastic LQFP (fine pitch) (10 \times 10)	128 KB
μ PD70F3840GB-GAH-AX	64-pin plastic LQFP (fine pitch) (10 \times 10)	256 KB

Remark The V850ES/JE3-L is a lead-free product.

Address	Function Register Name	Symbol R/W	R/W	Manipulatable Bi		le Bits	Default Value
				1	8	16	
FFFFF152H	Interrupt control register (INTCB0R/INTIIC1)	CB0RIC/IICIC1	R/W	\checkmark	\checkmark		47H
FFFFF154H	Interrupt control register (INTCB0T)	CB0TIC		\checkmark	\checkmark		47H
FFFFF156H	Interrupt control register (INTCB1R)	CB1RIC		\checkmark	\checkmark		47H
FFFFF158H	Interrupt control register (INTCB1T)	CB1TIC		\checkmark	\checkmark		47H
FFFFF15AH	Interrupt control register (INTCB2R)	CB2RIC		\checkmark	\checkmark		47H
FFFFF15CH	Interrupt control register (INTCB2T)	CB2TIC		\checkmark	\checkmark		47H
FFFFF15EH	Interrupt control register (INTCB3R)	CB3RIC		\checkmark	\checkmark		47H
FFFFF160H	Interrupt control register (INTCB3T)	CB3TIC		\checkmark	\checkmark		47H
FFFFF162H	Interrupt control register (INTUA0R/INTCB4R)	UA0RIC/CB4RIC		\checkmark	\checkmark		47H
FFFFF164H	Interrupt control register (INTUA0T/INTCB4T)	UA0TIC/CB4TIC		\checkmark	\checkmark		47H
FFFFF166H	Interrupt control register (INTUA1R/INTIIC2)	UA1RIC/IICIC2		\checkmark	\checkmark		47H
FFFFF168H	Interrupt control register (INTUA1T)	UA1TIC		\checkmark	\checkmark		47H
FFFFF16AH	Interrupt control register (INTUA2R/INTIIC0)	UA2RIC/IICIC0		\checkmark			47H
FFFFF16CH	Interrupt control register (INTUA2T)	UA2TIC		\checkmark			47H
FFFFF16EH	Interrupt control register (INTAD)	ADIC		\checkmark	\checkmark		47H
FFFFF170H	Interrupt control register (INTDMA0)	DMAIC0		\checkmark	\checkmark		47H
FFFFF172H	Interrupt control register (INTDMA1)	DMAIC1		\checkmark			47H
FFFFF174H	Interrupt control register (INTDMA2)	DMAIC2		\checkmark	\checkmark		47H
FFFFF176H	Interrupt control register (INTDMA3)	DMAIC3		\checkmark	\checkmark		47H
FFFFF178H	Interrupt control register (INTKR)	KRIC		\checkmark	\checkmark		47H
FFFFF17AH	Interrupt control register (INTWTI/INTRTC2)	WTIIC/RTC2IC		\checkmark	\checkmark		47H
FFFFF17CH	Interrupt control register (INTWT/INTRTC0)	WTIC/RTC0IC		\checkmark	\checkmark		47H
FFFFF17EH	Interrupt control register (INTRTC1)	RTC1C		\checkmark	\checkmark		47H
FFFFF1FAH	In-service priority register	ISPR	R	\checkmark	\checkmark		00H
FFFFF1FCH	Command register	PRCMD	W		\checkmark		Undefined
FFFFF1FEH	Power save control register	PSC ^{Note}	R/W	\checkmark	\checkmark		00H
FFFFF200H	A/D converter mode register 0	ADA0M0		\checkmark	\checkmark		00H
FFFFF201H	A/D converter mode register 1	ADA0M1		\checkmark	\checkmark		00H
FFFFF202H	A/D converter channel specification register	ADA0S		\checkmark	\checkmark		00H
FFFFF203H	A/D converter mode register 2	ADA0M2		\checkmark	\checkmark		00H
FFFF204H	Power-fail compare mode register	ADA0PFM		\checkmark	\checkmark		00H
FFFFF205H	Power-fail compare threshold value register	ADA0PFT		\checkmark	\checkmark		00H
FFFFF210H	A/D conversion result register 0	ADA0CR0	R			\checkmark	Undefined
FFFFF211H	A/D conversion result register 0H	ADA0CR0H	1				Undefined
FFFFF212H	A/D conversion result register 1	ADA0CR1					Undefined
FFFFF213H	A/D conversion result register 1H	ADA0CR1H	1				Undefined
FFFFF214H	A/D conversion result register 2	ADA0CR2				\checkmark	Undefined
FFFFF215H	A/D conversion result register 2H	ADA0CR2H					Undefined
FFFFF216H	A/D conversion result register 3	ADA0CR3					Undefined
FFFFF217H	A/D conversion result register 3H		7		N		Lindefined

Note This is a special register.

(2) Port 0 mode register (PM0)

After res	et: FFH	R/W	Address: F	FFFF420	4				
	7	6	5	4	3	2	1	0	
PM0	1	1	PM05	1	PM03	PM02	1	1	
	PM0n			I/O mode	e control (n	= 2, 3, 5)			7
	0	Output mo	ode			,			1
	1	Input mod							_
			16						
V850ES/JE3-	L et: FFH	R/W	Address: F	FFFF420F	4				
V850ES/JE3-	L et: FFH	R/W 6	Address: F	FFFF420F	H 3	2	1	0	
V850ES/JE3- After res PM0	L et: FFH 7 1	R/W 6 PM06	Address: F 5 PM05	FFFF420F 4 PM04	H 3 PM03	2 PM02	1	0	
V850ES/JE3- After res PM0	L et: FFH 7 1	R/W 6 PM06	Address: F 5 PM05	FFFF420F 4 PM04	1 3 PM03	2 PM02	1	0	
V850ES/JE3- After res PM0	L et: FFH 7 1 PM0n	R/W 6 PM06	Address: F 5 PM05	FFFF420H 4 PM04 I/O mode	H 3 PM03 e control (n	2 PM02 = 2 to 6)	1 1	0	

(4/4)

PM(I/O port (P97) SIB1 input/TIP20 input/TOP20 output 96 Specification of pin operation I/O port (P96)
	SIB1 input/TIP20 input/TOP20 output 96 Specification of pin operation I/O port (P96)
	96 Specification of pin operation
	I/O port (P96)
-	
	TIP21 input/TOP21 output
PM	94 Specification of pin operation
(I/O port (P94)
1	TIP31 input/TOP31 output
PM	93 Specification of pin operation
(I/O port (P93)
1	TIP40 input/TOP40 output
PM	92 Specification of pin operation
(I/O port (P92)
	TIP41 input/TOP41 output
PM	91 Specification of pin operation
(I/O port (P91)
	KR7 input/RXDA1 input/SCL02 I/O
PM	90 Specification of pin operation
(I/O port (P90)
1	KR6 input/TXDA1 output/SDA02 I/O

(6)	Port 9	alternate	function	specifications
-----	--------	-----------	----------	----------------

PFCE915	PFC915	Specification of P915 pin alternate function				
0	0	Setting prohibited				
0	1	INTP6 input				
1	0	TIP50 input				
1	1	TOP50 output				
	-					
PFCE914	PFC914	Specification of P914 pin alternate function				
0	0	Setting prohibited				
0	1	INTP5 input				
1	0	TIP51 input				
1	1	TOP51 output				
-	-					
PFC913 ^{Note1}		Specification of P913 pin alternate function				
0	Setting prohibit	Setting prohibited				
1	INTP4 input					
	T					
PFC912 ^{Note1}		Specification of P912 pin alternate function				
0	Setting prohibit	ed				
1	SCKB3 I/O					
r	1					
PFC911 Note1		Specification of P911 pin alternate function				
0	Setting prohibited					
1	SOB3 output					
PFC910 ^{Note1}		Specification of P910 pin alternate function				
0	Setting prohibit	ed				
1	SIB3 input					

PFC99 ^{Note2}	Specification of P99 pin alternate function
0	Setting prohibited
1	SCKB1 I/O

PFC98 ^{Note2}	Specification of P98 pin alternate function
0	Setting prohibited
1	SOB1 output

PFCE97	PFC97	Specification of P97 pin alternate function
0	0	Setting prohibited
0	1	SIB1 input ^{Note2}
1	0	TIP20 input
1	1	TOP20 output

 Notes 1.
 V850ES/JE3-L only

 2.
 V850ES/JC3-L (48-pin), V850ES/JE3-L only

4.4 Block Diagrams

Figure 4-5. Block Diagram of Type A-1

Figure 4-12. Block Diagram of Type G-12

(d) Processing of overflow if capture trigger interval is long

If the pulse width is greater than one cycle of the 16-bit counter, care must be exercised because an overflow may occur more than once between the first capture trigger and the next. First, an example of incorrect processing is shown below.

If an overflow occurs twice or more when the capture trigger interval is long, the correct pulse width may not be obtained.

If the capture trigger interval is long, slow the count clock to lengthen one cycle of the 16-bit counter, or use software to resolve the problem. An example of how to use software to resolve the problem is shown below.

(2) Using pulse width measurement mode

(a) Clearing the overflow flag (TQ0OVF)

The overflow flag (TQ0OVF) can be cleared to 0 by reading the TQ0OVF bit and, if its value is 1, either clearing the bit to 0 by using the CLR1 instruction or by writing 8-bit data (with bit 0 as "0") to the TQ0OPT0 register.

7.4.8 Timer output operations

The following table shows the operations and output levels of the TOQ00 to TOQ03 pins.

Operation Mode	TOQ00 Pin	TOQ01 Pin	TOQ02 Pin	TOQ03 Pin		
Interval timer mode	Square wave output					
External event count mode		-	-			
External trigger pulse output mode	Square wave output	External trigger pulse output	External trigger pulse output	External trigger pulse output		
One-shot pulse output mode		One-shot pulse output	One-shot pulse output	One-shot pulse output		
PWM output mode		PWM output	PWM output	PWM output		
Free-running timer mode Square wave output (only when compare function is used)						
Pulse width measurement mode		-	=			

 Table 7-8. Timer Output Control in Each Mode

Table 7-9. Truth Table of TOQ00 to TOQ03 Pins Under Control of Timer Output Control Bits

TQ0IOC0.TQ0OLm Bit	TQ0IOC0.TQ0OEm Bit	TQ0CTL0.TQ0CE Bit	Level of TOQ0m Pin
0	0	×	Low-level output
	1	0	Low-level output
		1	Low level immediately before counting, high level after counting is started
1	0	×	High-level output
	1	0	High-level output
		1	High level immediately before counting, low level after counting is started

Remark m = 0 to 3

(2) Using interval timer mode

(a) Operation when TM0CMP0 register is set to 0000H

When the TM0CMP0 register is set to 0000H, the INTTM0EQ0 signal is generated for each count clock cycle. The value of the 16-bit counter is always 0000H.

Figure 8-6. Operation of Interval Timer When TM0CMP0 Register Is Set to 0000H

(b) Operation when TM0CMP0 register is set to N

When the TM0CMP0 register is set to N, the 16-bit counter increments up to N and is reset to 0000H in synchronization with the next increment timing. The INTTM0EQ0 signal is then generated.

(4) Start ~ Code ~ Data ~ Start ~ Address ~ Data ~ Stop

	<1> When W	TIMn t	oit = 0 (after restart	, addre	ss mis	smatch (= no	t exten	sion co	ode))										
ST	AD6 to AD0	R/W	ACK	D7 to D0	ACK	ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ĀCK	SP								
<u>-</u>			▲1		▲2					3		Δ4								
	▲1: IICS	n regist	er = 001	0X010B																
	▲2: IICSn register = 0010X000B																			
	▲3: IICS	n regist	er = 000	00X10B																
	Δ 4: IICS	n registe	er = 000	00001B																
	Remai <2> When W	rk ▲: ∆: X: TIMn b	Always Genera don't ca pit = 1 (generated ited only whe are after restart	en SPIE	n bit = ss mis	1 smatch (= no	t exten	sion co	ode))										
ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ACK	ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ĀCK	SP								
<u>-</u>			▲ 1 ▲	2		▲3				4		Δ5								
	▲1: IICS	n regist	er = 001	0X010B																
	▲2: IICS	n regist	er = 001	0X110B																
▲3: IICSn register = 0010XX00B																				
			▲4: IICSn register = 00000X10B																	
	▲4: IICS	n regist	er = 000	00X10B								Δ 5: IICSn register = 00000001B								
	▲4: IICS ∆ 5: IICS	n registe n registe	er = 000 er = 000	00X10B 00001B																

(6) When arbitration loss occurs due to low level of SDA0n pin when attempting to generate a restart condition

						llCCr	n.STTn bit = 1 ↓				
ST	AD6 to	AD0	R/W	ĀĊK	D7 to D0	ĀCK	D7 to D0	ĀCK	D7 to D0	ĀCK	SP
	•			4	▲ 1	▲2	3	▲4			
▲1	: IICSn re	jister	= 1000	X110B							
▲2	: IICSn re	jister	= 10002	X000B (WTIMn bit = 1)					
▲ 3	: IICSn re	jister	= 1000	XX00B ((WTIMn bit = 0))					
▲4	: IICSn re	jister	= 0100	0000B (I	Example: Whe	en ALDn	bit is read duri	ing interr	upt servicing)		
Δ 5	: IICSn re	ister	= 00000	0001B							
		∆:G X:do	enerate	ed only e	when SPIEr	n bit = 1					
• Wh	en WTIN	∆: G X: do n bi f	enerate on't car t = 1	ed only re	when SPIEr	n bit = 1 IICCr	n.STTn bit = 1 ↓				
• Wh	en WTIM	∆: G X: do n bi t	enerate on't car t = 1 R/\overline{W}	ed only e ĀCK	when SPIEr	IICCr	n.STTn bit = 1 ↓ D7 to D0	ĀCK	D7 to D0	ĀCK	SP
• Wh	en WTIM	∆: G X: do n bit	enerate on't car t = 1 R/\overline{W}	ed only e	when SPIEr D7 to D0	IICCr	n.STTn bit = 1 ↓ 	ĀĊĶ	D7 to D0	ĀĊĶ	SP
► Wh ST	AD6 to A	∆: G X: do n bi t \D0	enerate on't car t = 1 R/\overline{W} = 10002	ed only e ĀCK X110B	when SPIEr D7 to D0	IICCr	n.STTn bit = 1 ↓ D7 to D0 ▲2	ĀCK	D7 to D0	ĀCK	SP
> Wh ^a ST ▲1 ▲2	AD6 to A	∆: G X: do n bit \D0 jister	enerate on't car t = 1 R/W = 10002 = 10002	ACK	when SPIEr D7 to D0 ▲1		n.STTn bit = 1 ↓ D7 to D0 ▲2	ĀCK	D7 to D0 ▲3	ACK	SP
 Wh ST ▲1 ▲2 ▲3 	AD6 to . : IICSn re: : IICSn re: : IICSn re:	∆: G X: do n bi t \D0 gister gister	enerate on't car $\mathbf{t} = 1$ R/\overline{W} = 10002 = 01000	ed only e <u>ACK</u> X110B XX00B 0100B (I	when SPIEr D7 to D0 ▲1 Example: Whe	IICCr $\overline{\text{ACK}}$ en ALDn	n.STTn bit = 1 ↓ D7 to D0 ▲2 bit is read duri	ACK	D7 to D0 ▲3 upt servicing)	ACK	SP
 > Whe ST ▲1 ▲2 ▲3 △4: 	en WTIN AD6 to A : IICSn re : IICSn re : IICSn re	∆: G X: do n bit AD0 gister gister gister	enerate on't car t = 1 R/\overline{W} = 10002 = 01000 = 000000	ed only e <u>ACK</u> X110B XX00B 0100B (I 0001B	when SPIEr D7 to D0 1 Example: Whe	IICCr	n.STTn bit = 1 ↓ D7 to D0 ▲2 bit is read duri	ACK	D7 to D0 ▲3 upt servicing)	ĀĊŔ	SP
 Whe ST ▲1 ▲2 ▲3 △4: Rational State 	en WTIN AD6 to . : IICSn rea : IICSn rea : IICSn rea : IICSn rea	A: G X: do n bit AD0 gister gister gister gister ister	enerate on't car t = 1 R/W = 1000 = 01000 = 00000 lways g	ACK ACK X110B XX00B 0100B (I 0001B generati	when SPIEr D7 to D0 1 Example: Whe	n bit = 1 IICCr ACK	n.STTn bit = 1 ↓ D7 to D0 ▲2 bit is read duri	ACK	D7 to D0 ▲3 upt servicing)	ĀĊK	SP
 Whe ST ▲1 ▲2 ▲3 △4: R 	en WTIN AD6 to A : IICSn rea : IICSn rea : IICSn rea : IICSn rea : IICSn rea	A: G X: do n bit AD0 gister gister gister ister ∴ Al A: G	enerate on't car t = 1 R/W = 10002 = 10002 = 010002 = 000002 lways g enerate	ACK ACK X110B XX00B 0100B (I 0001B generatived only	when SPIEr D7 to D0 1 Example: Whe ed when SPIEr	$\frac{1}{ACK}$	n.STTn bit = 1 ↓ D7 to D0 ▲2 bit is read duri	ACK	D7 to D0 ▲3 upt servicing)	ĀĊK	SP

19.3.3 Priorities of maskable interrupts

The INTC can acknowledge an interrupt while servicing another. Interrupts that occur at the same time are serviced according to their priority order.

There are two types of priority level control: control based on the programmable priority levels that are specified by the interrupt priority level specification bit (xxPRn) of the interrupt control register (xxICn), and control based on the default priority levels. Programmable priority control classifies interrupt request signals into eight levels according to the setting of the xxPRn flag. When multiple interrupts having the same priority level specified by the xxPRn bit occur at the same time, the interrupts are serviced according to the priority levels assigned to the corresponding interrupt requests (default priority level) beforehand. For details, see **Table 19-1 Interrupt Source List**.

For details about multiple interrupts, see **19.7** Multiple Interrupt Servicing Control.

- Remark xx: Identification name of each peripheral unit (see Table 19-3 Interrupt Control Registers (xxICn))
 - n: Peripheral unit number (see Table 19-3 Interrupt Control Registers (xxICn)).

CHAPTER 24 LOW-VOLTAGE DETECTOR (LVI)

24.1 Functions

The low-voltage detector (LVI) has the following functions.

- If interrupt occurrence at low-voltage detection is selected as the operation mode, the low-voltage detector compares the supply voltage (V_{DD}) and the detection voltage (V_{LVI}), and generates an internal interrupt signal when the supply voltage drops below or rises above the detection voltage.
- If reset occurrence at low-voltage detection is selected as the operation mode, the low-voltage detector generates an internal reset signal when the supply voltage (V_{DD}) drops below the detection voltage (V_{LVI}).
- The level of the supply voltage to be detected can be changed by software.
- Interrupt or reset signal can be selected by software.
- The low-voltage detector is operable in the standby mode.

If a reset occurs when the low-voltage detector is selected to generate a reset signal, the RESF.LVIRF bit is set to 1. For details about the RESF register, see **22.3 Register to Check Reset Source**.

24.2 Configuration

The block diagram of the low-voltage detector is shown below.

30.8.8 LVI circuit characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VLVIO		2.7	2.8	2.9	V
	VLVI1		2.2	2.3	2.4	V
Response time ^{Note}	tlo	At rising edge: After V _{DD} reaches V _{LVI0} /V _{LVI1} (MAX.) At falling edge: After V _{DD} has dropped to V _{LVI0} /V _{LVI1} (MIN.)		0.2	2.0	ms
Minimum pulse width	t∟w	VDD = VLVI0/VLVI1 (MIN.)	0.2			ms
Reference voltage stabilization wait time	t lwait	After VDD reaches VLVI0/VLVI1 (MAX.)		0.1	0.2	ms

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = 2.2 to 3.6 V, Vss = EVss = AVss = 0 V, CL = 50 pF)

Note Time required to detect the detection voltage and output an interrupt or reset signal.

31.6.2 Supply current characteristics

Parameter	Symbol		Conditions	MIN.	TYP. ^{Note 1}	MAX. ^{Note 2}	Unit
Supply current ^{Note 3}	IDD1	Normal	$f_{XX} = 20 \text{ MHz} (f_X = 5 \text{ MHz})^{Note 4}$			20	mA
		operation	$f_{xx} = 10 \text{ MHz} (f_x = 10 \text{ MHz}), \text{ PLL off}^{Note 4}$		4.1 ^{Note 5}	10	mA
	IDD2	HALT mode	$f_{XX} = 20 \text{ MHz} (f_X = 5 \text{ MHz})^{Note 4}$		5.3	14	mA
	IDD3	IDLE1 mode	$f_{xx} = 5 \text{ MHz} (f_x = 5 \text{ MHz}), \text{ PLL off}^{Note 4}$		0.5	1	mA
	IDD4	IDLE2 mode	$f_{xx} = 5 \text{ MHz} (f_x = 5 \text{ MHz}), \text{ PLL off}^{Note 4}$		0.21	0.5	mA
	Idds	Subclock operation mode	fxr = 32.768 kHz, main clock stopped, internal oscillator stopped, PLL off REGOVL0 = 02H (low-voltage subclock operation mode)		9.6		μA
	Idd6	Sub-IDLE mode	fxr = 32.768 kHz, main clock stopped, internal oscillator stopped, PLL off REGOVL0 = 02H (low-voltage sub-IDLE mode)		1.9	30	μA
	IDD7 STOP mode	Subclock stopped, internal oscillator stopped REGOVL0 = 01H (low-voltage STOP mode) $T_A = 25^{\circ}C$		1.1	3.0	μA	
			Subclock stopped, internal oscillator stopped REGOVL0 = 01H (low-voltage STOP mode) T _A = 85°C			25	μA
			Subclock operating, internal oscillator stopped REGOVL0 = 01H (low-voltage STOP mode)		1.9	30	μA
	Idd8	Self programming mode	fxx = 20 MHz (fx = 5 MHz)		14	24	mA
LVI current	Ilvi				1.2	3	μA
WDT, internal oscillation current	Iwdt				5		μA

Notes 1. TYP. current is a value at $V_{DD} = EV_{DD} = 3.3 V$, $T_A = 25^{\circ}C$.

The TYP. value is not a value guaranteed for each device.

- 2. MAX. current is a value at which the characteristic in question is at the worst-case value at $V_{DD} = EV_{DD} = 3.6$ V, T_A = -40 to +85°C.
- **3.** Total of V_{DD} and EV_{DD} currents. Currents I_{LVI} and I_{WDT} flowing through the output buffers, A/D converter, D/A converter, and on-chip pull-down resistor are not included.
- 4. TYP. value indicates the current value when "RTC" or "watch timer + TMM (count by watch timer interrupt)" operate as peripheral functions.

MAX. value indicates the current value when all the functions operable in a range in which the pin status is not changed operate as peripheral functions.

- However, ILVI and IWDT are excluded.
- 5. TYP. value of IDD1 is a value when all instructions are executed.

Remark For details about the operating voltage, see 31.3 Operating Conditions.

31.8.6 I²C bus mode

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = AVREF1 = 2.2 to 3.6 V, Vss = EVss = AVss = 0 V)

Parameter		Symbol		Norma	l Mode	High-Spe	Unit	
				MIN.	MAX.	MIN.	MAX.	
SCL0n clock free	quency	fclк		0	100	0	400	kHz
Bus free time		t BUF	<66>	4.7	_	1.3	_	μs
(Between start a	nd stop conditions)							
Hold time ^{Note 1}		t hd:sta	<67>	4.0	-	0.6	-	μs
SCL0n clock low	r-level width	t∟ow	<68>	4.7		1.3	l	μS
SCL0n clock hig	h-level width	tніgн	<69>	4.0	-	0.6	-	μs
Setup time for st	art/restart conditions	tsu:sta	<70>	4.7	-	0.6	-	μs
Data hold time	CBUS compatible master	thd:dat	<71>	5.0	-	_	-	μS
	I ² C mode			0 ^{Note 2}	_	0 ^{Note 2}	0.9 ^{Note 3}	μS
Data setup time		tsu:dat	<72>	250	-	100 ^{Note 4}	-	ns
SDA0n and SCL	0n signal rise time	tя	<73>	_	1000	20 + 0.1Cb ^{Note 5}	300	ns
SDA0n and SCL	On signal fall time	t⊧	<74>	_	300	20 + 0.1Cb ^{Note 5}	300	ns
Stop condition se	etup time	tsu:sto	<75>	4.0	-	0.6	-	μS
Pulse width of sp input filter	bike suppressed by	ts₽	<76>	_	_	0	50	ns
Capacitance loa	d of each bus line	Cb		-	400	-	400	pF

Notes 1. At the start condition, the first clock pulse is generated after the hold time.

- 2. The system requires a minimum of 300 ns hold time internally for the SDA0n signal (at VIHmin. of SCL0n signal) in order to occupy the undefined area at the falling edge of SCL0n.
- **3.** If the system does not extend the SCL0n signal low hold time (tLOW), only the maximum data hold time (tHD:DAT) needs to be satisfied.
- **4.** The high-speed mode l²C bus can be used in the normal-mode l²C bus system. In this case, set the high-speed mode l²C bus so that it meets the following conditions.
- If the system does not extend the SCL0n signal's low state hold time: tsu:DAT $\geq 250 \mbox{ ns}$
- If the system extends the SCL0n signal's low state hold time: Transmit the following data bit to the SDA0n line prior to the SCL0n line release (t_{Rmax.} + t_{SU:DAT} = 1,000 + 250 = 1,250 ns: Normal mode l²C bus specification).
- 5. Cb: Total capacitance of one bus line (unit: pF)

Remark n = 0 to 2

CHAPTER 32 ELECTRICAL SPECIFICATIONS (V850ES/JE3-L) (Target)

32.1 Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD	$V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}$	–0.5 to +4.6	V
	EVDD	$V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}$	–0.5 to +4.6	V
	AV _{REF0}	$V_{DD} = EV_{DD} = AV_{REF0} = AV_{REF1}$	–0.5 to +4.6	V
	AV _{REF1}	VDD = EVDD = AVREF0 = AVREF1	–0.5 to +4.6	V
	Vss	Vss = EVss = AVss	–0.5 to +0.5	V
	AVss	Vss = EVss = AVss	–0.5 to +0.5	V
	EVss	Vss = EVss = AVss	–0.5 to +0.5	V
Input voltage	VI1	P97 to P915, PCM0, PDL5, RESET, FLMD0	-0.5 to EV _{DD} + 0.5 ^{Note 1}	V
	VI2	P10	-0.5 to AV _{REF1} + 0.5 ^{Note 1}	V
	Vıз	X1	-0.5 to V _{DD} + 0.5 ^{Note 1}	V
		X2	-0.5 to $V_{\text{RO}}^{\text{Note 2}}$ + $0.5^{\text{Note 1}}$	
	V ₁₄	P02 to P06, P30 to P35, P38, P39, P40 to P42, P50 to P55, P90 to P94, P96	–0.5 to +6.0	V
	VI5	XT1, XT2	-0.5 to V _{RO} ^{Note 2} + 0.5	V
Analog input voltage	VIAN	P70 to P79	-0.5 to AV _{REF0} + 0.5 ^{Note 1}	V

Absolute Maximum Ratings (T_A = 25°C) (1/2)

Notes 1. Be sure not to exceed the absolute maximum ratings (MAX. value) of each supply voltage.
 2. On-chip regulator output voltage

- Cautions 1. Do not directly connect the output (or I/O) pins of IC products to each other, or to V_{DD}, V_{CC}, and GND. Open-drain pins or open-collector pins, however, can be directly connected to each other. Direct connection of the output pins between an IC product and an external circuit is possible, if the output pins can be set to the high-impedance state and the output timing of the external circuit is designed to avoid output conflict.
 - 2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

The ratings and conditions indicated for DC characteristics, AC characteristics, and operating conditions represent the quality assurance range during normal operation.

Remark Unless specified otherwise, the ratings of alternate-function pins are the same as those of port pins.

32.4.2 Subclock oscillator characteristics

Resonator	Circuit Example	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator		Oscillation frequency (fxT) ^{Note 1}		32	32.768	35	kHz
		Oscillation stabilization time ^{Note 2}				10	S

(TA = -40 to +85°C, VDD = EVDD = AVREF0 = AVREF1 = 2.2 to 3.6 V, Vss = EVss = AVss = 0 V)

- Notes 1. The oscillation frequency shown above indicates only oscillator characteristics. Use the V850ES/JE3-L so that the internal operation conditions do not exceed the ratings shown in AC Characteristics, DC Characteristics, and operating conditions.
 - 2. Time required from when VDD reaches the oscillation voltage range (2.2 V (MIN.)) to when the crystal resonator stabilizes.
- Cautions 1. When using the subclock oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - The subclock oscillator is designed as a low-amplitude circuit for reducing power consumption, and is more prone to malfunction due to noise than the main clock oscillator.
 Particular care is therefore required with the wiring method when the subclock is used.
 - 3. For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

