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Table 2. Recommended Operating Conditions

Characteristic Symbol Recommended Value1 Unit
Current 

Requirement

Core supply voltage VDD 1.0 V ± 50 mV V 469 mA

Internal core logic constant power VDDC 1.0 V ± 50 mV V 377 mA

SerDes internal digital power XCOREVDD 1.0 V 170 mA

SerDes internal digital ground XCOREVSS 0.0 V —

SerDes I/O digital power XPADVDD 1.0 V 10 mA

SerDes I/O digital ground XPADVSS 0.0 V —

SerDes analog power for PLL SDAVDD 1.0 V ± 50 mV V 10 mA

SerDes analog ground for PLL SDAVSS 0.0 V —

Dedicated 3.3 V analog power for USB PLL USB_PLL_PWR3 3.3 V ± 300 mV V 2–3 mA

Dedicated 1.0 V analog power for USB PLL USB_PLL_PWR1 1.0 V ± 50 mV V 2–3 mA

Dedicated analog ground for USB PLL USB_PLL_GND 0.0 V —

Dedicated USB power for USB bias circuit USB_VDDA_BIAS 3.3 V ± 300 mV V 4–5 mA

Dedicated USB ground for USB bias circuit USB_VSSA_BIAS 0.0 V —

Dedicated power for USB transceiver USB_VDDA 3.3 V ± 300 mV V 75 mA

Dedicated ground for USB transceiver USB_VSSA 0.0 V —

Analog power for e300 core APLL AVDD1 
6 1.0 V ± 50 mV V 2–3 mA

Analog power for system APLL AVDD2 
6 1.0 V ± 50 mV V 2–3 mA

DDR1 DRAM I/O voltage (333 MHz, 32-bit operation) GVDD 2.5 V ± 125 mV V 131 mA

DDR2 DRAM I/O voltage (333 MHz, 32-bit operation) GVDD 1.8 V ± 80 mV V 140 mA

Differential reference voltage for DDR controller MVREF 1/2 DDR supply 
(0.49  GVDD to 
0.51  GVDD)

V —

Standard I/O voltage NVDD 3.3 V ± 300 mV2 V 74 mA

eTSEC2 I/O supply LVDDA 2.5 V ± 125 mV/
3.3 V ± 300 mV

V 22 mA

eTSEC1/USB DR I/O supply LVDDB 2.5 V ± 125 mV/
3.3 V ± 300 mV

V 44 mA

Supply for eLBC IOs LVDD 3.3 V ± 300 mV V 16 mA

Analog and digital ground VSS 0.0 V —

Junction temperature range TA/TJ 
3 0 to 105 C
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8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) 
(10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical 
Characteristics

The electrical characteristics specified here apply to all the media independent interface (MII), reduced 
gigabit media independent interface (RGMII), serial gigabit media independent interface (SGMII), and 
reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management 
data clock (MDC). The RGMII and RTBI interfaces are defined for 2.5 V, while the MII interface can be 
operated at 3.3 V. The RMII and SGMII interfaces can be operated at either 3.3 or 2.5 V. The RGMII and 
RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet Physical 
Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC 
are specified in Section 8.5, “Ethernet Management Interface Electrical Characteristics.”

8.1.1 TSEC DC Electrical Characteristics
All RGMII, RMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in 
Table 24 and Table 25. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as 
defined by JEDEC EIA/JESD8-5.

NOTE
eTSEC should be interfaced with peripheral operating at same voltage level.

Table 24. MII DC Electrical Characteristics

Parameter Symbol Conditions Min Max Unit

Supply voltage 3.3 V LVDDA/LVDDB — 2.97 3.63 V

Output high voltage VOH IOH = –4.0 mA LVDDA or LVDDB = Min 2.40 LVDDA + 0.3
or

LVDDB + 0.3

V

Output low voltage VOL IOL = 4.0 mA LVDDA or LVDDB = Min VSS 0.50 V

Input high voltage VIH — — 2.0 LVDDA + 0.3
or

LVDDB + 0.3

V

Input low voltage VIL — — –0.3 0.90 V

Input high current IIH VIN
1 = LVDDA or LVDDB — 40 A

Input low current IIL VIN
1 = VSS –600 — A

Note:
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.

Table 25. RGMII/RTBI DC Electrical Characteristics

Parameters Symbol Conditions Min Max Unit

Supply voltage 2.5 V LVDDA/LVDDB — 2.37 2.63 V
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8.2.2 RGMII and RTBI AC Timing Specifications

This table presents the RGMII and RTBI AC timing specifications.

Table 30. RGMII and RTBI AC Timing Specifications
At recommended operating conditions with LVDDA/LVDDB of 2.5 V ± 5%.

Parameter/Condition Symbol1 Min Typ Max Unit

Data to clock output skew (at transmitter) tSKRGT –0.5 — 0.5 ns

Data to clock input skew (at receiver) 2 tSKRGT 1.0 — 2.6 ns

Clock cycle duration 3 tRGT 7.2 8.0 8.8 ns

Duty cycle for 1000Base-T 4, 5 tRGTH/tRGT 45 50 55 %

Duty cycle for 10BASE-T and 100BASE-TX 3, 5 tRGTH/tRGT 40 50 60 %

Rise time (20%–80%) tRGTR — — 0.75 ns

Fall time (20%–80%) tRGTF — — 0.75 ns

GTX_CLK125 reference clock period tG12 6 — 8.0 — ns

GTX_CLK125 reference clock duty cycle tG125H/tG125 47 — 53 %

Note:  
1. Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent 

RGMII and RTBI timing. For example, the subscript of tRGT represents the RTBI (T) receive (RX) clock. Note also that the 
notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews, 
the subscript is skew (SK) followed by the clock that is being skewed (RGT).

2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns is 
added to the associated clock signal.

3. For 10 and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as 

long as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed 
transitioned between.

5. Duty cycle reference is LVDDA/2 or LVDDB/2.
6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.
7. The frequency of RX_CLK should not exceed the GTX_CLK125 by more than 300 ppm
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This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.

Figure 14. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 SGMII Interface Electrical Characteristics
Each SGMII port features a 4-wire AC-coupled serial link from the dedicated SerDes interface of 
MPC8313E as shown in Figure 15, where CTX is the external (on board) AC-coupled capacitor. Each 
output pin of the SerDes transmitter differential pair features a 50-output impedance. Each input of the 
SerDes receiver differential pair features 50- on-die termination to XCOREVSS. The reference circuit 
of the SerDes transmitter and receiver is shown in Figure 33.

When an eTSEC port is configured to operate in SGMII mode, the parallel interface’s output signals of 
this eTSEC port can be left floating. The input signals should be terminated based on the guidelines 
described in Section 22.5, “Connection Recommendations,” as long as such termination does not violate 
the desired POR configuration requirement on these pins, if applicable.

When operating in SGMII mode, the TSEC_GTX_CLK125 clock is not required for this port. Instead, the 
SerDes reference clock is required on SD_REF_CLK and SD_REF_CLK pins.

8.3.1 DC Requirements for SGMII SD_REF_CLK and SD_REF_CLK
The characteristics and DC requirements of the separate SerDes reference clock are described in Section 9, 
“High-Speed Serial Interfaces (HSSI).”
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8.3.2 AC Requirements for SGMII SD_REF_CLK and SD_REF_CLK

This table lists the SGMII SerDes reference clock AC requirements. Note that SD_REF_CLK and 
SD_REF_CLK are not intended to be used with, and should not be clocked by, a spread spectrum clock 
source.

8.3.3 SGMII Transmitter and Receiver DC Electrical Characteristics
Table 32 and Table 33 describe the SGMII SerDes transmitter and receiver AC-coupled DC electrical 
characteristics. Transmitter DC characteristics are measured at the transmitter outputs (SD_TX[n] and 
SD_TX[n]) as depicted in Figure 16.

Table 31. SD_REF_CLK and SD_REF_CLK AC Requirements

Symbol Parameter Description Min Typ Max Unit

tREF REFCLK cycle time — 8 — ns

tREFCJ REFCLK cycle-to-cycle jitter. Difference in the period of any two 
adjacent REFCLK cycles

— — 100 ps

tREFPJ Phase jitter. Deviation in edge location with respect to mean 
edge location

–50 — 50 ps

Table 32. SGMII DC Transmitter Electrical Characteristics

Parameter Symbol Min Typ Max Unit Note

Supply voltage XCOREVDD 0.95 1.0 1.05 V

Output high voltage VOH — — XCOREVDD-Typ/2 
+ |VOD|-max/2

mV 1

Output low voltage VOL XCOREVDD-Typ/2 
– |VOD|-max/2

— — mV 1

Output ringing VRING — — 10 %

Output differential voltage2, 3 |VOD| 323 500 725 mV Equalization 
setting: 1.0x

Output offset voltage VOS 425 500 575 mV 1, 4

Output impedance 
(single-ended)

RO 40 — 60 

Mismatch in a pair RO — — 10 %

Change in VOD between 0 and 1 |VOD| — — 25 mV

Change in VOS between 0 and 1 VOS — — 25 mV

Output current on short to GND ISA, ISB — — 40 mA

Notes:
1. This will not align to DC-coupled SGMII. XCOREVDD-Typ = 1.0 V.
2. |VOD| = |VTXn – VTXn|. |VOD| is also referred as output differential peak voltage. VTX-DIFFp-p = 2*|VOD|.
3. The |VOD| value shown in the Typ column is based on the condition of XCOREVDD-Typ = 1.0 V, no common mode offset 

variation (VOS = 500 mV), SerDes transmitter is terminated with 100- differential load between TX[n] and TX[n].
4.  VOS is also referred to as output common mode voltage.
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Figure 15. 4-Wire AC-Coupled SGMII Serial Link Connection Example

Figure 16. SGMII Transmitter DC Measurement Circuit

Table 33. SGMII DC Receiver Electrical Characteristics

Parameter Symbol Min Typ Max Unit Note

Supply voltage XCOREVDD 0.95 1.0 1.05 V

DC Input voltage range N/A 1

Input differential voltage VRX_DIFFp-p 100 — 1200 mV 2

Loss of signal threshold VLOS 30 — 100 mV

Input AC common mode voltage VCM_ACp-p — — 100 mV 3

Receiver differential input impedance ZRX_DIFF 80 100 120 

Receiver common mode input impedance ZRX_CM 20 — 35 
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of the differential pair must have a single-ended swing less than 800 mV and greater than 
200 mV. This requirement is the same for both external DC-coupled or AC-coupled 
connection.

— For external DC-coupled connection, as described in Section 9.2.1, “SerDes Reference Clock 
Receiver Characteristics,” the maximum average current requirements sets the requirement for 
average voltage (common mode voltage) to be between 100 and 400 mV. Figure 24 shows the 
SerDes reference clock input requirement for the DC-coupled connection scheme.

— For external AC-coupled connection, there is no common mode voltage requirement for the 
clock driver. Since the external AC-coupling capacitor blocks the DC level, the clock driver 
and the SerDes reference clock receiver operate in different command mode voltages. The 
SerDes reference clock receiver in this connection scheme has its common mode voltage set to 
XCOREVSS. Each signal wire of the differential inputs is allowed to swing below and above 
the command mode voltage (XCOREVSS). Figure 25 shows the SerDes reference clock input 
requirement for AC-coupled connection scheme.

• Single-ended mode

— The reference clock can also be single-ended. The SD_REF_CLK input amplitude 
(single-ended swing) must be between 400 and 800 mV peak-to-peak (from Vmin to Vmax) with 
SD_REF_CLK either left unconnected or tied to ground. 

— The SD_REF_CLK input average voltage must be between 200 and 400 mV. Figure 26 shows 
the SerDes reference clock input requirement for the single-ended signaling mode.

— To meet the input amplitude requirement, the reference clock inputs might need to be DC or 
AC coupled externally. For the best noise performance, the reference of the clock could be DC 
or AC coupled into the unused phase (SD_REF_CLK) through the same source impedance as 
the clock input (SD_REF_CLK) in use.

Figure 24. Differential Reference Clock Input DC Requirements (External DC-Coupled)

SD_REF_CLK

SD_REF_CLK

Vmax < 800 mV

Vmin > 0 V

100 mV < Vcm < 400 mV

200 mV < Input Amplitude or Differential Peak < 800 mV
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This figure shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It 
assumes that the DC levels of the clock driver chip is compatible with MPC8313E SerDes reference clock 
input’s DC requirement.

Figure 27. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for LVDS type clock driver. 
Since LVDS clock driver’s common mode voltage is higher than the MPC8313E SerDes reference clock 
input’s allowed range (100 to 400 mV), the AC-coupled connection scheme must be used. It assumes the 
LVDS output driver features a 50-termination resistor. It also assumes that the LVDS transmitter 
establishes its own common mode level without relying on the receiver or other external component.

Figure 28. AC-Coupled Differential Connection with LVDS Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for LVPECL type clock driver. 
Since LVPECL driver’s DC levels (both common mode voltages and output swing) are incompatible with 
the MPC8313E SerDes reference clock input’s DC requirement, AC coupling has to be used. Figure 29 
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assumes that the LVPECL clock driver’s output impedance is 50 R1 is used to DC-bias the LVPECL 
outputs prior to AC coupling. Its value could be ranged from 140to 240 depending on the clock driver 
vendor’s requirement. R2 is used together with the SerDes reference clock receiver’s 50- termination 
resistor to attenuate the LVPECL output’s differential peak level such that it meets the MPC8313E 
SerDes3 reference clock’s differential input amplitude requirement (between 200 and 800 mV differential 
peak). For example, if the LVPECL output’s differential peak is 900 mV and the desired SerDes reference 
clock input amplitude is selected as 600 mV, the attenuation factor is 0.67, which requires R2 = 25 
Consult with the clock driver chip manufacturer to verify whether this connection scheme is compatible 
with a particular clock driver chip.

Figure 29. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for a single-ended clock driver. 
It assumes the DC levels of the clock driver are compatible with the MPC8313E SerDes reference clock 
input’s DC requirement.

Figure 30. Single-Ended Connection (Reference Only)
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11 Enhanced Local Bus
This section describes the DC and AC electrical specifications for the local bus interface.

11.1 Local Bus DC Electrical Characteristics
This table provides the DC electrical characteristics for the local bus interface.

11.2 Local Bus AC Electrical Specifications
This table describes the general timing parameters of the local bus interface.

Table 44. Local Bus DC Electrical Characteristics at 3.3 V

Parameter Symbol Min Max Unit

High-level input voltage for Rev 1.0 VIH 2.0 LVDD + 0.3 V

High-level input voltage for Rev 2.x or later VIH 2.1 LVDD + 0.3 V

Low-level input voltage VIL –0.3 0.8 V

Input current, (VIN
1 = 0 V or VIN = LVDD) IIN —  ±5 A

High-level output voltage, (LVDD = min, IOH = –2 mA) VOH LVDD – 0.2 — V

Low-level output voltage, (LVDD = min, IOH = 2 mA) VOL — 0.2 V

Note:  The parameters stated in above table are valid for all revisions unless explicitly mentioned.

Table 45. Local Bus General Timing Parameters

Parameter Symbol1 Min Max Unit Note

Local bus cycle time tLBK 15 — ns 2

Input setup to local bus clock tLBIVKH 7 — ns 3, 4

Input hold from local bus clock tLBIXKH 1.0 — ns 3, 4

LALE output fall to LAD output transition (LATCH hold time) tLBOTOT1 1.5 — ns 5

LALE output fall to LAD output transition (LATCH hold time) tLBOTOT2 3 — ns 6

LALE output fall to LAD output transition (LATCH hold time) tLBOTOT3 2.5 — ns 7

LALE output rise to LCLK negative edge tLALEHOV — 3.0 ns

LALE output fall to LCLK negative edge tLALETOT1 –1.5 — ns 5

LALE output fall to LCLK negative edge tLALETOT2 –5.0 — ns 6

LALE output fall to LCLK negative edge tLALETOT3 –4.5 — ns 7

Local bus clock to output valid tLBKHOV — 3 ns 3

Local bus clock to output high impedance for LAD tLBKHOZ — 4 ns 8
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This figure shows the PCI input AC timing conditions.

Figure 49. PCI Input AC Timing Measurement Conditions

This figure shows the PCI output AC timing conditions.

Figure 50. PCI Output AC Timing Measurement Condition

15 Timers
This section describes the DC and AC electrical specifications for the timers.

15.1 Timers DC Electrical Characteristics
This table provides the DC electrical characteristics for the MPC8313E timers pins, including TIN, TOUT, 
TGATE, and RTC_CLK.

Table 53. Timers DC Electrical Characteristics

Characteristic Symbol Condition Min Max Unit

Output high voltage VOH IOH = –8.0 mA 2.4 — V

Output low voltage VOL  IOL = 8.0 mA — 0.5 V

Output low voltage VOL IOL = 3.2 mA — 0.4 V

Input high voltage VIH — 2.1 NVDD + 0.3 V

Input low voltage VIL — –0.3 0.8 V

Input current IIN 0 V VIN NVDD — ±5 A

tPCIVKH

CLK

Input

tPCIXKH

CLK

Output Delay

tPCKHOV

High-Impedance

tPCKHOZ

Output

tPCKHOX



MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4

78 Freescale Semiconductor
 

The primary clock source for the MPC8313E can be one of two inputs, SYS_CLK_IN or PCI_CLK, 
depending on whether the device is configured in PCI host or PCI agent mode. When the device is 
configured as a PCI host device, SYS_CLK_IN is its primary input clock. SYS_CLK_IN feeds the PCI 
clock divider (2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The 
CFG_CLKIN_DIV configuration input selects whether SYS_CLK_IN or SYS_CLK_IN/2 is driven out 
on the PCI_SYNC_OUT signal. The OCCR[PCICOEn] parameters select whether the PCI_SYNC_OUT 
is driven out on the PCI_CLK_OUTn signals.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to 
synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, 
with equal delay to all PCI agent devices in the system, to allow the device to function. When the device 
is configured as a PCI agent device, PCI_CLK is the primary input clock. When the device is configured 
as a PCI agent device the SYS_CLK_IN signal should be tied to VSS.

As shown in Figure 57, the primary clock input (frequency) is multiplied up by the system phase-locked 
loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the 
DDR controller (ddr_clk), and the internal clock for the local bus interface unit (lbc_clk). 

The csb_clk frequency is derived from a complex set of factors that can be simplified into the following 
equation:

csb_clk = {PCI_SYNC_IN × (1 + ~CFG_CLKIN_DIV)} × SPMF

In PCI host mode, PCI_SYNC_IN × (1 + ~CFG_CLKIN_DIV) is the SYS_CLK_IN frequency. 

The csb_clk serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up 
the csb_clk frequency to create the internal clock for the e300 core (core_clk). The system and core PLL 
multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL) 
which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, “Reset, 
Clocking, and Initialization,” in the MPC8313E PowerQUICC II Pro Integrated Processor Family 
Reference Manual, for more information on the clock subsystem.

The internal ddr_clk frequency is determined by the following equation:

ddr_clk = csb_clk × (1 + RCWL[DDRCM])

Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider 
(2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate 
is the same frequency as ddr_clk.

The internal lbc_clk frequency is determined by the following equation:

lbc_clk = csb_clk × (1 + RCWL[LBCM])

Note that lbc_clk is not the external local bus frequency; lbc_clk passes through the a LBC clock divider 
to create the external local bus clock outputs (LCLK[0:1]). The LBC clock divider ratio is controlled by 
LCRR[CLKDIV].

In addition, some of the internal units may be required to be shut off or operate at lower frequency than 
the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory mapped 
register after the device comes out of reset. Table 63 specifies which units have a configurable clock 
frequency.
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As described in Section 20, “Clocking,” the LBCM, DDRCM, and SPMF parameters in the reset 
configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the 
primary clock input (SYS_CLK_IN or PCI_SYNC_IN) and the internal coherent system bus clock 
(csb_clk). This table shows the expected frequency values for the CSB frequency for select csb_clk to 
SYS_CLK_IN/PCI_SYNC_IN ratios. 

0100  4

0101  5

0110  6

0111–1111 Reserved

Note:  
1. If RCWL[DDRCM] and RCWL[LBCM] are both cleared, the system 

PLL VCO frequency = (CSB frequency) × (System PLL VCO Divider).
2. If either RCWL[DDRCM] or RCWL[LBCM] are set, the system PLL 

VCO frequency = 2 × (CSB frequency) × (System PLL VCO Divider). 
3. The VCO divider needs to be set properly so that the System PLL 

VCO frequency is in the range of 450–750 MHz

Table 66. CSB Frequency Options 

CFG_CLKIN_DIV
at Reset1

1 CFG_CLKIN_DIV select the ratio between SYS_CLK_IN and PCI_SYNC_OUT.

SPMF
csb_clk :Input 
Clock Ratio2

2 SYS_CLK_IN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

Input Clock Frequency (MHz)2

24 25 33.33 66.67

csb_clk Frequency (MHz)

High 0010 2:1 133

High 0011 3:1 100

High 0100 4:1 100 133

High 0101 5:1 120 125 167

High 0110 6:1 144 150

Low 0010 2:1 133

Low 0011 3:1 100

Low 0100 4:11 100 133

Low 0101 5:1 120 125 167

Low 0110 6:1 144 150

Table 65. System PLL Multiplication Factors (continued)

RCWL[SPMF]
System PLL 

Multiplication Factor
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20.3 Example Clock Frequency Combinations
This table shows several possible frequency combinations that can be selected based on the indicated input 
reference frequencies, with RCWLR[LBCM] = 0 and RCWLR[DDRCM] =1, such that the LBC operates 
with a frequency equal to the frequency of csb_clk and the DDR controller operates at twice the frequency 
of csb_clk.

21 Thermal
This section describes the thermal specifications of the MPC8313E. 

21.1 Thermal Characteristics
This table provides the package thermal characteristics for the 516, 27  27 mm TEPBGAII.

Table 68. System Clock Frequencies

LBC(lbc_clk) e300 Core(core_clk)

SYS_
CLK_IN/
PCI_CLK

SPMF1 VCOD2 VCO3 CSB
(csb_clk)4

DDR
(ddr_clk)

/2 /4 /8
USB 
ref5

1 1.5 2 2.5 3

25.0 6 2 600.0 150.0 300.0 — 37.5 18.8 Note6 150.0 225 300 375 —

25.0 5 2 500.0 125.0 250.0 62.5 31.25 15.6 Note 6 125.0 188 250 313 375

33.3 5 2 666.0 166.5 333.0 — 41.63 20.8 Note 6 166.5 250 333 — —

33.3 4 2 532.8 133.2 266.4 66.6 33.3 16.7 Note 6 133.2 200 266 333 400

48.0 3 2 576.0 144.0 288.0 — 36 18.0 48.0 144.0 216 288 360 —

66.7 2 2 533.4 133.3 266.7 66.7 33.34 16.7 Note 6 133.3 200 267 333 400

Note:  
1. System PLL multiplication factor.
2. System PLL VCO divider.
3. When considering operating frequencies, the valid core VCO operating range of 400–800 MHz must not be violated.
4. Due to erratum eTSEC40, csb_clk frequencies of less than 133 MHz do not support gigabit Ethernet data rates. The core 

frequency must be 333 MHz for gigabit Ethernet operation. This erratum will be fixed in revision 2 silicon.
5. Frequency of USB PLL input reference.
6. USB reference clock must be supplied from a separate source as it must be 24 or 48 MHz, the USB reference must be 

supplied from a separate external source using USB_CLK_IN.

Table 69. Package Thermal Characteristics for TEPBGAII

Characteristic Board Type Symbol TEPBGA II Unit Note

Junction-to-ambient natural convection Single layer board (1s) RJA 25 °C/W 1, 2

Junction-to-ambient natural convection Four layer board (2s2p) RJA 18 °C/W 1, 2, 3

Junction-to-ambient (@200 ft/min) Single layer board (1s) RJMA 20 °C/W 1, 3

Junction-to-ambient (@200 ft/min) Four layer board (2s2p) RJMA 15 °C/W 1, 3

Junction-to-board — RJB 10 °C/W 4
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21.2 Thermal Management Information
For the following sections, PD = (VDD  IDD) + PI/O, where PI/O is the power dissipation of the I/O drivers. 

21.2.1 Estimation of Junction Temperature with Junction-to-Ambient 
Thermal Resistance

An estimation of the chip junction temperature, TJ, can be obtained from the equation:

TJ = TA + (RJA  PD)

where:
TJ = junction temperature (C)
TA = ambient temperature for the package (C)
RJA = junction-to-ambient thermal resistance (C/W)
PD = power dissipation in the package (W) 

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy 
estimation of thermal performance. As a general statement, the value obtained on a single layer board is 
appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal 
planes is usually appropriate if the board has low power dissipation and the components are well separated. 
Test cases have demonstrated that errors of a factor of two (in the quantity TJ – TA) are possible.

21.2.2 Estimation of Junction Temperature with Junction-to-Board 
Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal 
resistance. The thermal performance of any component is strongly dependent on the power dissipation of 
surrounding components. In addition, the ambient temperature varies widely within the application. For 
many natural convection and especially closed box applications, the board temperature at the perimeter 

Junction-to-case — RJC 8 °C/W 5

Junction-to-package top Natural convection JT 7 °C/W 6

Note:  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) 

temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
3. Per JEDEC JESD51-6 with the board horizontal.
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on 

the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 

1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature 

per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

Table 69. Package Thermal Characteristics for TEPBGAII (continued)

Characteristic Board Type Symbol TEPBGA II Unit Note
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(edge) of the package is approximately the same as the local air temperature near the device. Specifying 
the local ambient conditions explicitly as the board temperature provides a more precise description of the 
local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

TJ = TB + (RJB  PD)
where:

TJ = junction temperature (C)
TB = board temperature at the package perimeter (C)
RJB = junction-to-board thermal resistance (C/W) per JESD51–8
PD = power dissipation in the package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction 
temperature can be made. The application board should be similar to the thermal test condition: the 
component is soldered to a board with internal planes.

21.2.3 Experimental Determination of Junction Temperature
To determine the junction temperature of the device in the application after prototypes are available, the 
thermal characterization parameter (JT) can be used to determine the junction temperature with a 
measurement of the temperature at the top center of the package case using the following equation:

TJ = TT + (JT  PD)
where:

TJ = junction temperature (C)
TT = thermocouple temperature on top of package (C)
JT = thermal characterization parameter (C/W)
PD = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T 
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so 
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the 
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire 
is placed flat against the package case to avoid measurement errors caused by cooling effects of the 
thermocouple wire.

21.2.4 Heat Sinks and Junction-to-Case Thermal Resistance
In some application environments, a heat sink is required to provide the necessary thermal management of 
the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction to case 
thermal resistance and a case to ambient thermal resistance:

RJA = RJC + RCA

where:
RJA = junction-to-ambient thermal resistance (C/W)
RJC = junction-to-case thermal resistance (C/W)
RCA = case-to- ambient thermal resistance (C/W)
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21.3 Heat Sink Attachment
When attaching heat sinks to these devices, an interface material is required. The best method is to use 
thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the 
board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would 
lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint 
lifetime of the package. Recommended maximum force on the top of the package is 10 lb (4.5 kg) force.   
If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or plastic 
surfaces and its performance verified under the application requirements.

21.3.1 Experimental Determination of the Junction Temperature with a 
Heat Sink

When heat sink is used, the junction temperature is determined from a thermocouple inserted at the 
interface between the case of the package and the interface material. A clearance slot or hole is normally 
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in 
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the 
experimental difficulties with this technique, many engineers measure the heat sink temperature and then 
back calculate the case temperature using a separate measurement of the thermal resistance of the 
interface. From this case temperature, the junction temperature is determined from the junction to case 
thermal resistance. 

TJ = TC + (RJC x PD)

where:
TJ = junction temperature (C)
TC = case temperature of the package
RJC = junction-to-case thermal resistance
PD = power dissipation

22 System Design Information
This section provides electrical and thermal design recommendations for successful application of the 
MPC8313E SYS_CLK_IN

22.1 System Clocking
The MPC8313E includes three PLLs.

1. The platform PLL (AVDD2) generates the platform clock from the externally supplied 
SYS_CLK_IN input in PCI host mode or SYS_CLK_IN/PCI_SYNC_IN in PCI agent mode. The 
frequency ratio between the platform and SYS_CLK_IN is selected using the platform PLL ratio 
configuration bits as described in Section 20.1, “System PLL Configuration.”

2. The e300 core PLL (AVDD1) generates the core clock as a slave to the platform clock. The 
frequency ratio between the e300 core clock and the platform clock is selected using the e300 
PLL ratio configuration bits as described in Section 20.2, “Core PLL Configuration.”

3. There is a PLL for the SerDes block.
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22.2 PLL Power Supply Filtering
Each of the PLLs listed above is provided with power through independent power supply pins (AVDD1, 
AVDD2, and SDAVDD, respectively). The AVDD level should always be equivalent to VDD, and preferably 
these voltages are derived directly from VDD through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to 
provide independent filter circuits as illustrated in Figure 58, one to each of the five AVDD pins. By 
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the 
other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It should be built with surface mount capacitors with minimum effective series inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize 
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD 
pin, which is on the periphery of package, without the inductance of vias.

This figure shows the PLL power supply filter circuits.

Figure 58. PLL Power Supply Filter Circuit

The SDAVDD signal provides power for the analog portions of the SerDes PLL. To ensure stability of the 
internal clock, the power supplied to the PLL is filtered using a circuit like the one shown in Figure 59. 
For maximum effectiveness, the filter circuit should be placed as closely as possible to the SDAVDD ball 
to ensure it filters out as much noise as possible. The ground connection should be near the SDAVDD ball. 
The 0.003-µF capacitor is closest to the ball, followed by the two 2.2-µF capacitors, and finally the 1- 
resistor to the board supply plane. The capacitors are connected from traces from SDAVDD to the ground 
plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All traces should be 
kept short, wide, and direct.

Figure 59. SerDes PLL Power Supply Filter Circuit

Note the following:

• SDAVDD should be a filtered version of XCOREVDD.

 VDD AVDD1 and AVDD2
10 

 2.2 µF 2.2 µF

Low ESL Surface Mount Capacitors

Note:
1. An 0805 sized capacitor is recommended for system initial bring-up.

XCOREVDD SDAVDD

SDAVSS

 2.2 µF1 0.003 µF

1.0

 2.2 µF1
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Figure 61. JTAG Interface Connection

23 Ordering Information
Ordering information for the parts fully covered by this specification document is provided in 
Section 23.1, “Part Numbers Fully Addressed by this Document.”

HRESET HRESET

From Target
Board Sources

HRESET
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SRESET

SRESET SRESET

NC
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Notes:

2. Key location; pin 14 is not physically present on the COP header.

NVDD

NVDD

10 k
NVDD

TRST

10 k
NVDD

10 k

10 k

CHKSTP_OUT
CHKSTP_OUT

3
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9

5

1

6
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11

7

16

12

8

4

KEY
No pin

COP Connector
Physical Pin Out

1 2

NC

PORESETPORESET

 1. Some systems require power to be fed from the application board into the debugger repeater card 
    via the COP header. In this case the resistor value for VDD_SENSE should be around 20 .

NC
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