
NXP USA Inc. - KMPC8313EZQAFFB Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300c3
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	333MHz
Co-Processors/DSP	Security; SEC 2.2
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography
Package / Case	516-BBGA Exposed Pad
Supplier Device Package	516-TEPBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8313ezqaffb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Serial Interfaces

The following interfaces are supported in the MPC8313E: dual UART, dual I²C, and an SPI interface.

1.3 Security Engine

The security engine is optimized to handle all the algorithms associated with IPSec, IEEE Std 802.11i®, and iSCSI. The security engine contains one crypto-channel, a controller, and a set of crypto execution units (EUs). The execution units are as follows:

- Data encryption standard execution unit (DEU), supporting DES and 3DES
- Advanced encryption standard unit (AESU), supporting AES
- Message digest execution unit (MDEU), supporting MD5, SHA1, SHA-224, SHA-256, and HMAC with any algorithm
- One crypto-channel supporting multi-command descriptor chains

1.4 DDR Memory Controller

The MPC8313E DDR1/DDR2 memory controller includes the following features:

- Single 16- or 32-bit interface supporting both DDR1 and DDR2 SDRAM
- Support for up to 333 MHz
- Support for two physical banks (chip selects), each bank independently addressable
- 64-Mbit to 2-Gbit (for DDR1) and to 4-Gbit (for DDR2) devices with x8/x16/x32 data ports (no direct x4 support)
- Support for one 16-bit device or two 8-bit devices on a 16-bit bus, or one 32-bit device or two 16-bit devices on a 32-bit bus
- Support for up to 16 simultaneous open pages
- Supports auto refresh
- On-the-fly power management using CKE
- 1.8-/2.5-V SSTL2 compatible I/O

1.5 PCI Controller

The MPC8313E PCI controller includes the following features:

- PCI specification revision 2.3 compatible
- Single 32-bit data PCI interface operates at up to 66 MHz
- PCI 3.3-V compatible (not 5-V compatible)
- Support for host and agent modes
- On-chip arbitration, supporting three external masters on PCI
- Selectable hardware-enforced coherency

1.10 Serial Peripheral Interface (SPI)

The serial peripheral interface (SPI) allows the MPC8313E to exchange data between other PowerQUICC family chips, Ethernet PHYs for configuration, and peripheral devices such as EEPROMs, real-time clocks, A/D converters, and ISDN devices.

The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface (receive, transmit, clock, and slave select). The SPI block consists of transmitter and receiver sections, an independent baud-rate generator, and a control unit.

1.11 DMA Controller, Dual I²C, DUART, Local Bus Controller, and Timers

The MPC8313E provides an integrated four-channel DMA controller with the following features:

- Allows chaining (both extended and direct) through local memory-mapped chain descriptors (accessible by local masters)
- Supports misaligned transfers

There are two I²C controllers. These synchronous, multi-master buses can be connected to additional devices for expansion and system development.

The DUART supports full-duplex operation and is compatible with the PC16450 and PC16550 programming models. The 16-byte FIFOs are supported for both the transmitter and the receiver.

The MPC8313E local bus controller (LBC) port allows connections with a wide variety of external DSPs and ASICs. Three separate state machines share the same external pins and can be programmed separately to access different types of devices. The general-purpose chip select machine (GPCM) controls accesses to asynchronous devices using a simple handshake protocol. The three user programmable machines (UPMs) can be programmed to interface to synchronous devices or custom ASIC interfaces. Each chip select can be configured so that the associated chip interface can be controlled by the GPCM or UPM controller. The FCM provides a glueless interface to parallel-bus NAND Flash E2PROM devices. The FCM contains three basic configuration register groups—BR*n*, OR*n*, and FMR. Both may exist in the same system. The local bus can operate at up to 66 MHz.

The MPC8313E system timers include the following features: periodic interrupt timer, real time clock, software watchdog timer, and two general-purpose timer blocks.

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8313E. The MPC8313E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

Interface	Parameter	GV _{DD} (1.8 V)	GV _{DD} (2.5 V)	NV _{DD} (3.3 V)	LV _{DDA} / LV _{DDB} (3.3 V)	LV _{DDA} / LV _{DDB} (2.5 V)	LV _{DD} (3.3 V)	Unit	Comments
USBDR controller load = 20 pF	60 MHz		_		0.078		—	W	
Other I/O	_	—		0.015	_		—	W	_

Table 5. MPC8313E Typical I/O Power Dissipation (continued)

This table shows the estimated core power dissipation of the MPC8313E while transitioning into the D3 warm low-power state.

Table 6. MPC8313E Low-Power Modes Power	Dissipation ¹
---	--------------------------

333-MHz Core, 167-MHz CSB ²	Rev. 1.0 ³	Rev. 2.x or Later ³	Unit
D3 warm	400	425	mW

Note:

- 1. All interfaces are enabled. For further power savings, disable the clocks to unused blocks.
- The interfaces are run at the following frequencies: DDR: 333 MHz, eLBC 83 MHz, PCI 33 MHz, eTSEC1 and TSEC2: 167 MHz, SEC: 167 MHz, USB: 167 MHz. See the SCCR register for more information.
- 3. This is maximum power in D3 Warm based on a voltage of 1.05 V and a junction temperature of 105°C.

4 Clock Input Timing

This section provides the clock input DC and AC electrical characteristics for the MPC8313E.

4.1 DC Electrical Characteristics

This table provides the system clock input (SYS_CLK_IN/PCI_SYNC_IN) DC timing specifications for the MPC8313E.

Parameter	Condition	Symbol	Min	Мах	Unit
Input high voltage	_	V _{IH}	2.4	NV _{DD} + 0.3	V
Input low voltage	_	V _{IL}	-0.3	0.4	V
SYS_CLK_IN input current	$0 \ V \ \leq V_{IN} \leq NV_{DD}$	I _{IN}	—	±10	μΑ
PCI_SYNC_IN input current	$\begin{array}{c} 0 \ V \leq V_{IN} \leq 0.5 \ V \\ or \\ NV_{DD} - 0.5 \ V \leq V_{IN} \leq NV_{DD} \end{array}$	I _{IN}	_	±10	μΑ
PCI_SYNC_IN input current	$0.5~\text{V} \leq \text{V}_{\text{IN}} \leq \text{NV}_{\text{DD}} - 0.5~\text{V}$	I _{IN}	—	±50	μΑ

Table 7. SYS_CLK_IN DC Electrical Characteristics

Table 14. DDR SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 2.5 V (continued)

Parameter/Condition	Symbol	Min	Мах	Unit	Note
Output leakage current	I _{OZ}	-9.9	-9.9	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{OH}	-16.2	—	mA	—
Output low current (V _{OUT} = 0.35 V)	I _{OL}	16.2	_	mA	_

Note:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

MV_{REF} is expected to be equal to 0.5 × GV_{DD}, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, $0 V \le V_{OUT} \le GV_{DD}$.

This table provides the DDR capacitance when $GV_{DD}(typ) = 2.5$ V.

Table 15. DDR SDRAM Capacitance for GV_{DD}(typ) = 2.5 V

Parameter/Condition	Symbol	Min	Мах	Unit	Note
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 2.5 V \pm 0.125 V$, f = 1 MHz, $T_A = 25^{\circ}C$, $V_{OUT} = GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

This table provides the current draw characteristics for MV_{REF}.

Table 16. Current Draw Characteristics for MV_{REF}

Parameter/Condition	Symbol	Min	Мах	Unit	Note
Current draw for MV _{REF}	I _{MVREF}	—	500	μΑ	1

Note:

1. The voltage regulator for MV_{REF} must be able to supply up to 500 μA current.

6.2 DDR and DDR2 SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR and DDR2 SDRAM Input AC Timing Specifications

This table provides the input AC timing specifications for the DDR2 SDRAM when $GV_{DD}(typ) = 1.8 V$.

Table 17. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface

At recommended operating conditions with GV_{DD} of 1.8 ± 5%.

Parameter	Symbol	Min Max		Unit	Note
AC input low voltage	V _{IL}	_	MV _{REF} – 0.25	V	—
AC input high voltage	V _{IH}	MV _{REF} + 0.25	_	V	—

This table provides the input AC timing specifications for the DDR SDRAM when $GV_{DD}(typ) = 2.5 \text{ V}$.

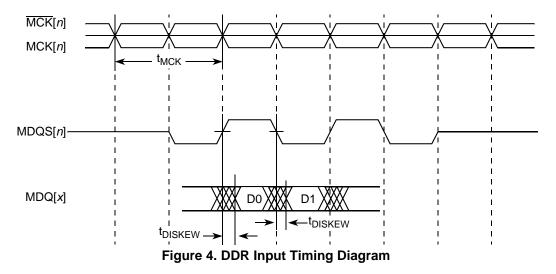
Table 18. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface

At recommended operating conditions with GV_{DD} of 2.5 ± 5%.

Parameter	Symbol	Min	Min Max		Note
AC input low voltage	V _{IL}	—	MV _{REF} – 0.31	V	_
AC input high voltage	V _{IH}	MV _{REF} + 0.31	—	V	—

This table provides the input AC timing specifications for the DDR2 SDRAM interface.

Table 19. DDR and DDR2 SDRAM Input AC Timing Specifications


At recommended operating conditions. with GV_{DD} of 2.5 ± 5%.

Parameter	Symbol	Min	Мах	Unit	Note
Controller skew for MDQS—MDQ	t _{CISKEW}	_	—	ps	1, 2
333 MHz		-750	750		—
266 MHz	_	-750	750	_	—

Notes:

- 1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[*n*] and any corresponding bit that is captured with MDQS[*n*]. This should be subtracted from the total timing budget.
- The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the following equation: t_{DISKEW} = ± (T/4 – abs(t_{CISKEW})) where T is the clock period and abs(t_{CISKEW}) is the absolute value of t_{CISKEW}.

This figure illustrates the DDR input timing diagram showing the t_{DISKEW} timing parameter.

This figure shows the MII transmit AC timing diagram.

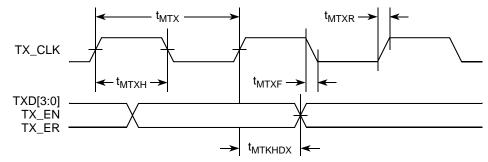


Figure 8. MII Transmit AC Timing Diagram

8.2.1.2 MII Receive AC Timing Specifications

This table provides the MII receive AC timing specifications.

Table 27. MII Receive AC Timing Specifications

At recommended operating conditions with $\text{LV}_{\text{DDA}}/\text{LV}_{\text{DDB}}/\text{NV}_{\text{DD}}$ of 3.3 V \pm 0.3 V.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	_	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise V _{IL} (min) to V _{IH} (max)	t _{MRXR}	1.0	—	4.0	ns
RX_CLK clock fall time $V_{IH}(max)$ to $V_{IL}(min)$	t _{MRXF}	1.0		4.0	ns

Note:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 2. The frequency of RX_CLK should not exceed the TX_CLK by more than 300 ppm

This figure provides the AC test load for TSEC.

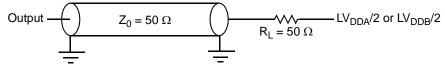


Figure 9. TSEC AC Test Load

Table 35. SGMII Receive AC Timing Specifications (continued)

At recommended operating conditions with XCOREV_{DD} = 1.0 V \pm 5%.

Parameter	Symbol	Min	Тур	Max	Unit	Note
Total jitter tolerance	JT	0.65	_	—	UI p-p	1
Bit error ratio	BER		_	10 ⁻¹²		
Unit interval	UI	799.92	800	800.08	ps	2
AC coupling capacitor	C _{TX}	5	_	200	nF	3

Notes:

1. Measured at receiver.

2. Each UI is 800 ps ± 100 ppm.

3. The external AC coupling capacitor is required. It is recommended to be placed near the device transmitter outputs.

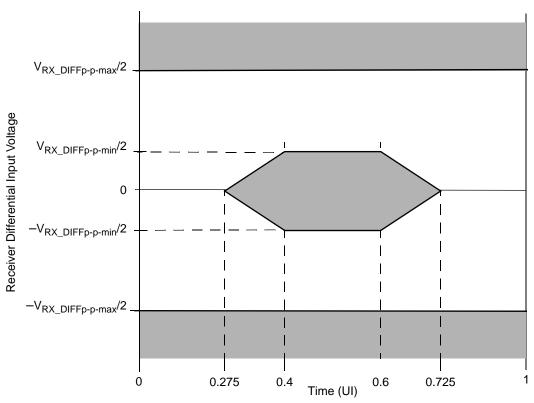


Figure 17. SGMII Receiver Input Compliance Mask

9.2.4 AC Requirements for SerDes Reference Clocks

The clock driver selected should provide a high quality reference clock with low-phase noise and cycle-to-cycle jitter. Phase noise less than 100 kHz can be tracked by the PLL and data recovery loops and is less of a problem. Phase noise above 15 MHz is filtered by the PLL. The most problematic phase noise occurs in the 1–15 MHz range. The source impedance of the clock driver should be 50 Ω to match the transmission line and reduce reflections which are a source of noise to the system.

This table describes some AC parameters for SGMII protocol.

Table 39. SerDes Reference Clock Common AC Parameters

At recommended operating conditions with XV_{DD_SRDS1} or XV_{DD_SRDS2} = 1.0 V ± 5%.

Parameter	Symbol	Min	Max	Unit	Note
Rising edge rate	Rise edge rate	1.0	4.0	V/ns	2, 3
Falling edge rate	Fall edge rate	1.0	4.0	V/ns	2, 3
Differential input high voltage	V _{IH}	+200	—	mV	2
Differential input low voltage	V _{IL}	_	-200	mV	2
Rising edge rate (SDn_REF_CLK) to falling edge rate (SDn_REF_CLK) matching	Rise-fall matching	_	20	%	1, 4

Notes:

- 1. Measurement taken from single-ended waveform.
- 2. Measurement taken from differential waveform.
- 3. Measured from –200 to +200 mV on the differential waveform (derived from SD*n*_REF_CLK minus SD*n*_REF_CLK). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 31.
- 4. Matching applies to rising edge rate for SDn_REF_CLK and falling edge rate for SDn_REF_CLK. It is measured using a 200 mV window centered on the median cross point, where SDn_REF_CLK rising meets SDn_REF_CLK falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The rise edge rate of SDn_REF_CLK should be compared to the fall edge rate of SDn_REF_CLK, the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 32.

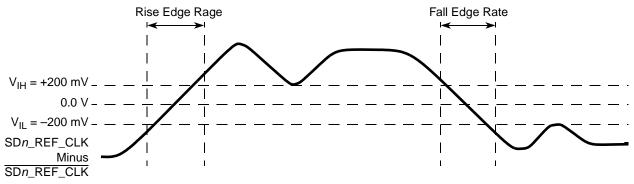
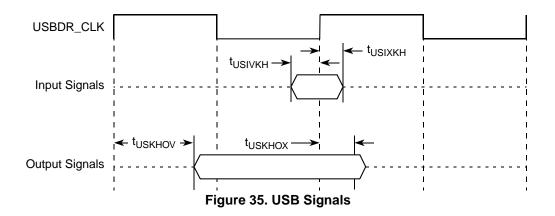



Figure 31. Differential Measurement Points for Rise and Fall Time

10.2 On-Chip USB PHY

This section describes the DC and AC electrical specifications for the on-chip USB PHY of the MPC8313E. See Chapter 7 in the USB Specifications Rev. 2, for more information.

This table provides the USB clock input (USB_CLK_IN) DC timing specifications.

Parameter	Symbol	Min	Мах	Unit
Input high voltage	V _{IH}	2.7	NV _{DD} + 0.3	V
Input low voltage	V _{IL}	-0.3	0.4	V

This table provides the USB clock input (USB_CLK_IN) AC timing specifications.

Table 43. USB	CLK_IN	AC Timing	Specifications
---------------	--------	-----------	----------------

Parameter/Condition	Conditions	Symbol	Min	Тур	Max	Unit
Frequency range	_	f _{USB_CLK_IN}	—	24	48	MHz
Clock frequency tolerance	_	^t CLK_TOL	-0.005	0	0.005	%
Reference clock duty cycle	Measured at 1.6 V	t _{CLK_DUTY}	40	50	60	%
Total input jitter/time interval error	Peak-to-peak value measured with a second order high-pass filter of 500 kHz bandwidth	t _{CLK_PJ}	—		200	ps

Table 47. JTAG AC Timing Specifications (Independent of SYS_CLK_IN)¹ (continued)

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Мах	Unit	Note
JTAG external clock to output high impedance: Boundary-scan data TDO	t _{JTKLDZ} t _{JTKLOZ}	2 2	19 9	ns	5, 6

Notes:

- All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 34). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
- 2. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK} .
- 5. Non-JTAG signal output timing with respect to t_{TCLK}.
- 6. Guaranteed by design and characterization.

This figure provides the AC test load for TDO and the boundary-scan outputs.

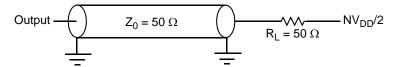


Figure 41. AC Test Load for the JTAG Interface

This figure provides the JTAG clock input timing diagram.

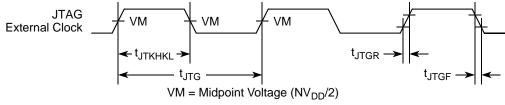
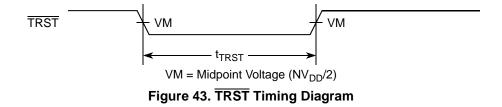



Figure 42. JTAG Clock Input Timing Diagram

This figure provides the TRST timing diagram.

This figure provides the boundary-scan timing diagram.

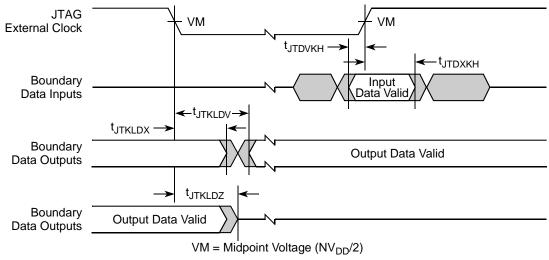
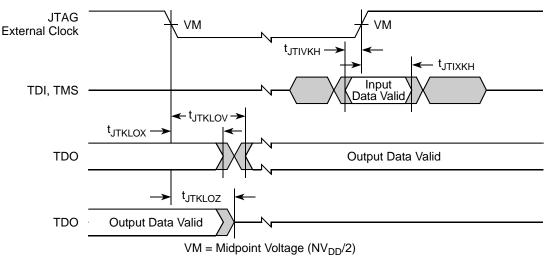



Figure 44. Boundary-Scan Timing Diagram

This figure provides the test access port timing diagram.

Figure 45. Test Access Port Timing Diagram

Table 49. I²C AC Electrical Specifications (continued)

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 48).

Parameter	Symbol ¹	Min	Max	Unit
Data hold time: CBUS compatible masters I ² C bus devices	t _{i2DXKL}	$\overline{0^2}$	 0.9 ³	μs
Fall time of both SDA and SCL signals ⁵	t _{I2CF}	—	300	ns
Setup time for STOP condition	t _{I2PVKH}	0.6	_	μs
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	_	μs
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times NV_{DD}$	—	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times NV_{DD}$	_	V

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the bigh (H) state or hold time. Also, t_{12PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
 </sub>
- The MPC8313E provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t_{12DVKH} has only to be met if the device does not stretch the LOW period (t_{12CL}) of the SCL signal.
- 4. C_B = capacitance of one bus line in pF.
- 5. The MPC8313E does not follow the l^2C -BUS Specifications, Version 2.1, regarding the t_{I2CF} AC parameter.

This figure provides the AC test load for the I^2C .

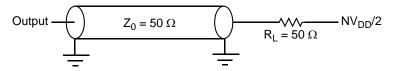


Figure 46. I²C AC Test Load

17 IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins.

17.1 IPIC DC Electrical Characteristics

This table provides the DC electrical characteristics for the external interrupt pins.

Table 58. IPIC DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	_	2.1	NV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}		_	±5	μA
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

17.2 IPIC AC Timing Specifications

This table provides the IPIC input and output AC timing specifications.

Table 59. IPIC Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PIWID}	20	ns

Note:

1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLK_IN. Timings are measured at the pin.

IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any
external synchronous logic. IPIC inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation when
working in edge triggered mode.

18 SPI

This section describes the DC and AC electrical specifications for the SPI of the MPC8313E.

18.1 SPI DC Electrical Characteristics

This table provides the DC electrical characteristics for the MPC8313E SPI.

Table 60. SPI DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -6.0 mA	2.4	_	V
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Signal	Package Pin Number	Pin Type	Power Supply	Note
MEMC_MDQ29	A20	I/O	GV _{DD}	
MEMC_MDQ30	C22	I/O	GV _{DD}	_
MEMC_MDQ31	B22	I/O	GV _{DD}	
MEMC_MDM0	B7	0	GV _{DD}	_
MEMC_MDM1	E6	0	GV _{DD}	_
MEMC_MDM2	E18	0	GV _{DD}	_
MEMC_MDM3	E20	0	GV _{DD}	_
MEMC_MDQS0	A7	I/O	GV _{DD}	_
MEMC_MDQS1	E7	I/O	GV _{DD}	_
MEMC_MDQS2	B19	I/O	GV _{DD}	_
MEMC_MDQS3	A23	I/O	GV _{DD}	_
MEMC_MBA0	D15	0	GV _{DD}	_
MEMC_MBA1	A18	0	GV _{DD}	_
MEMC_MBA2	A15	0	GV _{DD}	_
MEMC_MA0	E12	0	GV _{DD}	_
MEMC_MA1	D11	0	GV _{DD}	_
MEMC_MA2	B11	0	GV _{DD}	_
MEMC_MA3	A11	0	GV _{DD}	_
MEMC_MA4	A12	0	GV _{DD}	_
MEMC_MA5	E13	0	GV _{DD}	_
MEMC_MA6	C12	0	GV _{DD}	_
MEMC_MA7	E14	0	GV _{DD}	_
MEMC_MA8	B15	0	GV _{DD}	_
MEMC_MA9	C17	0	GV _{DD}	_
MEMC_MA10	C13	0	GV _{DD}	_
MEMC_MA11	A16	0	GV _{DD}	_
MEMC_MA12	C15	0	GV _{DD}	
MEMC_MA13	C16	0	GV _{DD}	
MEMC_MA14	E15	0	GV _{DD}	
MEMC_MWE	B18	0	GV _{DD}	
MEMC_MRAS	C11	0	GV _{DD}	
MEMC_MCAS	B10	0	GV _{DD}	_

Table 62. MPC8313E TEPBGAII Pinout Listing (continued)

Table 62. MPC8313E TEPBGAII Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Note	
LA14/TSEC_1588_TRIG1	L24	0	LV _{DD}	8	
LA15/TSEC_1588_ALARM2	K26	0	LV _{DD}	8	
	DUART				
UART_SOUT1/MSRCID0	N2	0	NV_{DD}	_	
UART_SIN1/MSRCID1	M5	I/O	O NV _{DD} -		
UART_CTS1/GPIO8/MSRCID2	M1	I/O NV _{DE}			
UART_RTS1/GPIO9/MSRCID3	K1	I/O	NV _{DD}	_	
UART_SOUT2/MSRCID4/TSEC_1588_CLK	M3	0	NV _{DD}	8	
UART_SIN2/MDVAL/TSEC_1588_GCLK	L1	I/O	NV _{DD}	8	
UART_CTS2/TSEC_1588_PP1	L5	I/O	NV _{DD}	8	
UART_RTS2/TSEC_1588_PP2	L3	I/O	NV _{DD}	8	
	I ² C interface				
IIC1_SDA/CKSTOP_OUT/TSEC_1588_TRIG1	J4	I/O	NV _{DD}	2, 8	
IIC1_SCL/CKSTOP_IN/TSEC_1588_ALARM2	J2	I/O	NV _{DD}	2, 8	
IIC2_SDA/PMC_PWR_OK/GPIO10	J3	J3 I/O NV		2	
IIC2_SCL/GPIO11	H5	I/O	NV _{DD}	2	
	Interrupts				
MCP_OUT	G5	0	NV_{DD}	2	
IRQ0/MCP_IN	K5	I	NV _{DD}	_	
ĪRQ1	K4	I	NV _{DD}	_	
ĪRQ2	K2	I	NV _{DD}	_	
IRQ3/CKSTOP_OUT	К3	I/O	NV _{DD}	_	
IRQ4/CKSTOP_IN/GPIO12	J1	I/O	NV _{DD}	_	
	Configuration				
CFG_CLKIN_DIV	D5	I	NV_{DD}	_	
EXT_PWR_CTRL	J5	0	NV _{DD}	_	
CFG_LBIU_MUX_EN	R24	Ι	NV _{DD}	_	
	JTAG				
тск	E1 I		NV_{DD}	_	
TDI	E2	Ι	I NV _{DD}		
TDO	E3	0	NV _{DD}	3	

This table summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal NV_{DD}, 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI Signals (Not Including PCI Output Clocks)	PCI Output Clocks (Including PCI_SYNC_OUT)	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	42 Target	20 Target	Z ₀	Ω
R _P	42 Target	25 Target	42 Target	20 Target	Z ₀	Ω
Differential	NA	NA	NA	NA	Z _{DIFF}	Ω

 Table 71. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, T_J = 105 °C.

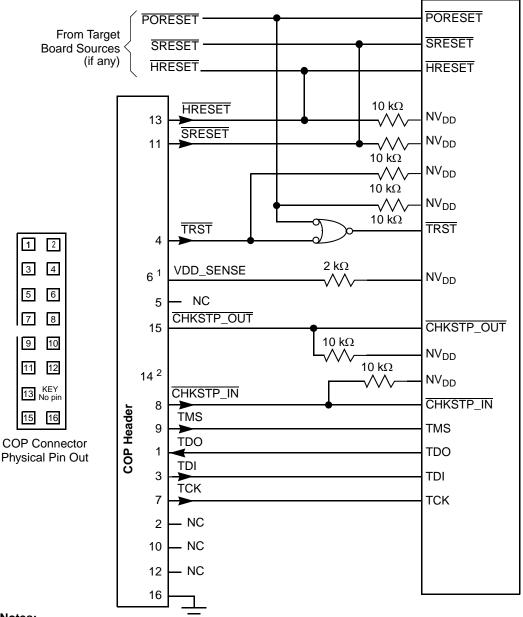
22.7 Configuration Pin Muxing

The MPC8313E provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins while HRESET is asserted, is latched when PORESET deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

22.8 Pull-Up Resistor Requirements

The MPC8313E requires high resistance pull-up resistors (10 k Ω is recommended) on open drain type pins including I²C, and IPIC (integrated programmable interrupt controller).


Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 61. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions because most have asynchronous behavior and spurious assertion, which give unpredictable results.

Refer to the PCI 2.2 Specification, for all pull-ups required for PCI.

22.9 JTAG Configuration Signals

Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in IEEE 1149.1, but is provided on any Freescale devices that are built on Power Architecture technology. The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, systems generally assert TRST during power-on reset. Because the JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying TRST to PORESET is not practical.

Notes:

 Some systems require power to be fed from the application board into the debugger repeater card via the COP header. In this case the resistor value for VDD_SENSE should be around 20 Ω.
 Key location; pin 14 is not physically present on the COP header.

Figure 61. JTAG Interface Connection

23 Ordering Information

Ordering information for the parts fully covered by this specification document is provided in Section 23.1, "Part Numbers Fully Addressed by this Document."

24 Revision History

This table summarizes a revision history for this document.

Rev. Number	Date	Substantive Change(s)	
4	11/2011	 In Table 2, added following notes: Note 3: Min temperature is specified with T_A; Max temperature is specified with T_J Note 4: All Power rails must be connected and power applied to the MPC8313 even if the IP interfaces are not used. Note 5: All I/O pins should be interfaced with peripherals operating at same voltage level. Note 6: This voltage is the input to the filter discussed in Section 22.2, "PLL Power Supply Filtering," and not necessarily the voltage at the AVDD pin, which may be reduced from VDD by the filter Decoupled PCI_CLK and SYS_CLK_IN rise and fall times in Table 8. Relaxed maximum rise/fall time of SYS_CLK_IN to 4ns. Added a note in Table 27 stating "The frequency of RX_CLK should not exceed the TX_CLK by more than 300 ppm." In Table 30: Changed max value of t_{skrg1} in "Data to clock input skew (at receiver)" row from 2.8 to 2.6. Added note 7, stating that, "The frequency of RX_CLK should not exceed the GTX_CLK125 by more than 300 ppm." In Table 30: Changed max value of t_{skrg1} in "Data to clock input skew (at receiver)" row from 2.8 to 2.6. Added note 7, stating that, "The frequency of RX_CLK should not exceed the GTX_CLK125 by more than 300 ppm." In Table 30: Changed max value of table 2 should be interfaced with peripheral operating at same voltage level" in Section 8.1.1, "TSEC DC Electrical Characteristics." TSEC1_MDC and TSEC_MDIO are powered at 3.3V by NVDD. Replaced LVDDA/LVDDB with NVDD and removed instances of 2.5V at several places in Section 8.5, "Ethernet Management Interface Electrical Characteristics." In Table 43, changed min/max values of t_{CLK_TOL} from 0.05 to 0.005. In Table 43, changed min/max values of the MPC8313E TEPBGAII," replaced "5.5 Sn/0.5 Cu/4 Ag" with "Sn/3.5 Ag." Added Note 12: "In MII mode, GTX_CLK should be pulled down by 300 Ω to V_{SS}" to TSEC1_GTX_C	
3	01/2009	• Table 72, in column aa, changed to AG = 400 MHz.	
2.2	12/2008	Made cross-references active for sections, figures, and tables.	
2.1	12/2008	Added Figure 2, after Table 2 and renumbered the following figures.	

Table 73. Document Revision History

Rev. Number	Date	Substantive Change(s)	
2	10/2008	 Added Note "The information in this document is accurate for revision 1.0, and 2.x and later. See Section 24.1, "Part Numbers Fully Addressed by this Document," before Section 1, "Overview." Added part Numbering details for all the silicon revisions in Table 74. Changed V_{IH} from 2.7 V to 2.4 V in Table 7. Added a column for maximum power dissipation in low power mode for Rev 2.x or later silicon in Table 6. Added a column for Power Nos for Rev 2.x or later silicon and added a row for 400 MHz in Table 4. Added a column for Power Nos for Rev 2.x or later silicon and added a row for 400 MHz in Table 4. Added Table 21 for DDR AC Specs on Rev 2.x or later silicon. Added EfWE, LFCLE, LFALE, LOE, LFRE, LFWP, LGTA, LUPWAIT, and LFRB in Table 63. In Table 39, added note 2: "This parameter is dependent on the csb_clk speed. (The MIIMCFG[Mgmt Clock Select] field determines the clock frequency of the Mgmt Clock EC_MDC.)" Removed mentions of SGMII (SGMII has separate specs) from Section 8.1, "Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical Characteristics." Corrected Section 8.1, "Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1000 Mbps)—MII/RGMII/SGMII/RTBI Electrical Characteristics," to state that RGMII/RTBI Interfaces only operate at 2.5 V, not 3.3 V. Added ZQ package to ordering information In Table 74 and Section 19.1, "Package Parameters for the MPC8313E TEPBGAII" (applicable to both silicon rev. 1.0 and 2.1) Removed footnotes 5 and 6 from Table 1 (left over when the PCI undershoot/overshoot voltages and maximum AC waveforms were removed from Section 2.1.2, "Power Supply Voltage Specification"). Removed SD_PLL_TPD (T2) and SD_PLL_TPA_ANA (R4) from Table 63. Added Section 8.3, "SGMII Interface Electrical Characteristics." Removed Section 8.5.3 SGMII DC Electrical Characteristics. Removed "HRESET negation to S	

Table 73. Document Revision History (continued)

-

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MPC8313EEC Rev. 4 11/2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QorlQ is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. RapidIO is a registered trademark of the RapidIO Trade Association. IEEE 1588 and 1149.1 are registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE.

© 2007–2011 Freescale Semiconductor, Inc.

