

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Obsolete
Core Processor	PowerPC e300c3
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	267MHz
Co-Processors/DSP	-
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	516-BBGA Exposed Pad
Supplier Device Package	516-TEPBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8313cvraddb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Full and half-duplex Ethernet support (1000 Mbps supports only full-duplex):
 - IEEE 802.3 full-duplex flow control (automatic PAUSE frame generation or software-programmed PAUSE frame generation and recognition)
 - Programmable maximum frame length supports jumbo frames (up to 9.6 Kbytes) and IEEE 802.1 virtual local area network (VLAN) tags and priority
 - VLAN insertion and deletion
 - Per-frame VLAN control word or default VLAN for each eTSEC
 - Extracted VLAN control word passed to software separately
 - Retransmission following a collision
 - CRC generation and verification of inbound/outbound packets
 - Programmable Ethernet preamble insertion and extraction of up to 7 bytes
 - MAC address recognition:
 - Exact match on primary and virtual 48-bit unicast addresses
 - VRRP and HSRP support for seamless router fail-over
 - Up to 16 exact-match MAC addresses supported
 - Broadcast address (accept/reject)
 - Hash table match on up to 512 multicast addresses
 - Promiscuous mode
- Buffer descriptors backward compatible with MPC8260 and MPC860T 10/100 Ethernet programming models
- RMON statistics support
- 10-Kbyte internal transmit and 2-Kbyte receive FIFOs
- MII management interface for control and status

1.8 Programmable Interrupt Controller (PIC)

The programmable interrupt controller (PIC) implements the necessary functions to provide a flexible solution for general-purpose interrupt control. The PIC programming model supports 5 external and 34 internal discrete interrupt sources. Interrupts can also be redirected to an external interrupt controller.

1.9 Power Management Controller (PMC)

The MPC8313E power management controller includes the following features:

- Provides power management when the device is used in both host and agent modes
- Supports PCI power management 1.2 D0, D1, D2, D3hot, and D3cold states
- On-chip split power supply controlled through external power switch for minimum standby power
- Support for PME generation in PCI agent mode, PME detection in PCI host mode
- Supports wake-up from Ethernet (Magic Packet), USB, GPIO, and PCI (PME input as host)

Characteristic	Symbol	Recommended Value ¹	Unit	Current Requirement
Core supply voltage	V _{DD}	1.0 V ± 50 mV	V	469 mA
Internal core logic constant power	V _{DDC}	1.0 V ± 50 mV	V	377 mA
SerDes internal digital power	XCOREV _{DD}	1.0	V	170 mA
SerDes internal digital ground	XCOREV _{SS}	0.0	V	—
SerDes I/O digital power	XPADV _{DD}	1.0	V	10 mA
SerDes I/O digital ground	XPADV _{SS}	0.0	V	_
SerDes analog power for PLL	SDAV _{DD}	1.0 V ± 50 mV	V	10 mA
SerDes analog ground for PLL	SDAV _{SS}	0.0	V	—
Dedicated 3.3 V analog power for USB PLL	USB_PLL_PWR3	3.3 V ± 300 mV	V	2–3 mA
Dedicated 1.0 V analog power for USB PLL	USB_PLL_PWR1	1.0 V ± 50 mV	V	2–3 mA
Dedicated analog ground for USB PLL	USB_PLL_GND	0.0	V	—
Dedicated USB power for USB bias circuit	USB_VDDA_BIAS	3.3 V ± 300 mV	V	4–5 mA
Dedicated USB ground for USB bias circuit	USB_VSSA_BIAS	0.0	V	—
Dedicated power for USB transceiver	USB_VDDA	3.3 V ± 300 mV	V	75 mA
Dedicated ground for USB transceiver	USB_VSSA	0.0	V	
Analog power for e300 core APLL	AV _{DD1} ⁶	1.0 V ± 50 mV	V	2–3 mA
Analog power for system APLL	AV _{DD2} ⁶	1.0 V ± 50 mV	V	2–3 mA
DDR1 DRAM I/O voltage (333 MHz, 32-bit operation)	GV _{DD}	2.5 V ± 125 mV	V	131 mA
DDR2 DRAM I/O voltage (333 MHz, 32-bit operation)	GV _{DD}	1.8 V ± 80 mV	V	140 mA
Differential reference voltage for DDR controller	MV _{REF}	$\begin{array}{c} \mbox{1/2 DDR supply} \\ \mbox{(0.49 \times GV_{DD} to} \\ \mbox{0.51 \times GV_{DD})} \end{array}$	V	_
Standard I/O voltage	NV _{DD}	$3.3 \text{ V} \pm 300 \text{ mV}^2$	V	74 mA
eTSEC2 I/O supply	LV _{DDA}	2.5 V ± 125 mV/ 3.3 V ± 300 mV	V	22 mA
eTSEC1/USB DR I/O supply	LV _{DDB}	2.5 V ± 125 mV/ 3.3 V ± 300 mV	V	44 mA
Supply for eLBC IOs	LV _{DD}	3.3 V ± 300 mV	V	16 mA
Analog and digital ground	V _{SS}	0.0	V	_
Junction temperature range	T _A /T _J ³	0 to 105	°C	

Table 2. Recommended Operating Conditions

3 Power Characteristics

The estimated typical power dissipation, not including I/O supply power, for this family of MPC8313E devices is shown in this table. Table 5 shows the estimated typical I/O power dissipation.

Core Frequency (MHz)	CSB Frequency (MHz)	Typical ²	Maximum for Rev. 1.0 Silicon ³	Maximum for Rev. 2.x or Later Silicon ³	Unit
333	167	820	1020	1200	mW
400	133	820	1020	1200	mW

Table 4. MPC8313E Power Dissipation¹

Note:

 The values do not include I/O supply power or AV_{DD}, but do include core, USB PLL, and a portion of SerDes digital power (not including XCOREV_{DD}, XPADV_{DD}, or SDAV_{DD}, which all have dedicated power supplies for the SerDes PHY).

2. Typical power is based on a voltage of V_{DD} = 1.05 V and an artificial smoker test running at room temperature.

3. Maximum power is based on a voltage of V_{DD} = 1.05 V, a junction temperature of T_J = 105°C, and an artificial smoker test.

This table describes a typical scenario where blocks with the stated percentage of utilization and impedances consume the amount of power described.

Interface	Parameter	GV _{DD} (1.8 V)	GV _{DD} (2.5 V)	NV _{DD} (3.3 V)	LV _{DDA} / LV _{DDB} (3.3 V)	LV _{DDA} / LV _{DDB} (2.5 V)	LV _{DD} (3.3 V)	Unit	Comments
DDR 1, 60% utilization, 50% read/write	333 MHz, 32 bits	—	0.355	—	_	—	—	W	
$\begin{array}{l} R_{s} = 22 \; \Omega \\ R_{t} = 50 \; \Omega \\ \text{single pair of clock} \\ \text{capacitive load: data} = 8 \; pF, \\ \text{control address} = 8 \; pF, \\ \text{clock} = 8 \; pF \end{array}$	266 MHz, 32 bits	_	0.323	_	_	_	_	W	_
DDR 2, 60% utilization, 50% read/write	333 MHz, 32 bits	0.266	—	—		—	—	W	_
$\begin{array}{l} R_{s} = 22 \ \Omega \\ R_{t} = 75 \ \Omega \\ \text{single pair of clock} \\ \text{capacitive load: data} = 8 \ pF, \\ \text{control address} = 8 \ pF, \\ \text{clock} = 8 \ pF \end{array}$	266 MHz, 32 bits	0.246	_	_	_	_	_	W	_
PCI I/O load = 50 pF	33 MHz	—	_	0.120		—	—	W	_
	66 MHz		—	0.249		—	—	W	_
Local bus I/O load = 20 pF	66 MHz					—	0.056	W	_
	50 MHz	_	—	—	_	—	0.040	W	_
TSEC I/O load = 20 pF	MII, 25 MHz	—	_	—	0.008	_	—	W	Multiple by number of
	RGMII, 125 MHz	—	—	—	0.078	0.044	—	W	interface used

Table 5. MPC8313E Typical I/O Power Dissipation

4.2 AC Electrical Characteristics

The primary clock source for the MPC8313E can be one of two inputs, SYS_CLK_IN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. This table provides the system clock input (SYS_CLK_IN/PCI_CLK) AC timing specifications for the MPC8313E.

Parameter/Condition	Symbol	Min	Тур	Мах	Unit	Note
SYS_CLK_IN/PCI_CLK frequency	fsys_clk_in	24	_	66.67	MHz	1
SYS_CLK_IN/PCI_CLK cycle time	^t SYS_CLK_IN	15	_	_	ns	—
SYS_CLK_IN rise and fall time	t _{KH} , t _{KL}	0.6	0.8	4	ns	2
PCI_CLK rise and fall time	t _{PCH} , t _{PCL}	0.6	0.8	1.2	ns	2
SYS_CLK_IN/PCI_CLK duty cycle	t _{KHK} /t _{SYS_CLK_IN}	40	_	60	%	3
SYS_CLK_IN/PCI_CLK jitter	_	_	_	±150	ps	4, 5

Table 8. SYS_CLK_IN AC Timing Specifications

Notes:

1. Caution: The system, core, security block must not exceed their respective maximum or minimum operating frequencies.

2. Rise and fall times for SYS_CLK_IN/PCI_CLK are measured at 0.4 and 2.4 V.

3. Timing is guaranteed by design and characterization.

4. This represents the total input jitter-short term and long term-and is guaranteed by design.

5. The SYS_CLK_IN/PCI_CLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track SYS_CLK_IN drivers with the specified jitter.

5 **RESET** Initialization

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8313E.

5.1 **RESET DC Electrical Characteristics**

This table provides the DC electrical characteristics for the RESET pins.

Table 9. RESET Pins DC Electrical Characteristic
--

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.1	NV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0~V \leq V_{IN} \leq NV_{DD}$	—	±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

This figure provides the AC test load for the DDR bus.

Figure 7. DDR AC Test Load

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface.

7.1 DUART DC Electrical Characteristics

This table provides the DC electrical characteristics for the DUART interface.

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2.0	NV _{DD} + 0.3	V
Low-level input voltage NV _{DD}	V _{IL}	-0.3	0.8	V
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	$NV_{DD} - 0.2$	—	V
Low-level output voltage, I _{OL} = 100 μA	V _{OL}	—	0.2	V
Input current (0 V \leq V _{IN} \leq NV _{DD})	I _{IN}	—	±5	μA

7.2 DUART AC Electrical Specifications

This table provides the AC timing parameters for the DUART interface.

Table 23. DUART AC Timing Specifications

Parameter	Value	Unit	Note
Minimum baud rate	256	baud	
Maximum baud rate	> 1,000,000	baud	1
Oversample rate	16	_	2

Notes:

1. Actual attainable baud rate is limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all the media independent interface (MII), reduced gigabit media independent interface (RGMII), serial gigabit media independent interface (SGMII), and reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management data clock (MDC). The RGMII and RTBI interfaces are defined for 2.5 V, while the MII interface can be operated at 3.3 V. The RMII and SGMII interfaces can be operated at either 3.3 or 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for *Gigabit Ethernet Physical Layer Device Specification Version 1.2a* (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.5, "Ethernet Management Interface Electrical Characteristics."

8.1.1 **TSEC DC Electrical Characteristics**

All RGMII, RMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 24 and Table 25. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

NOTE

eTSEC should be interfaced with peripheral operating at same voltage level.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage 3.3 V	LV _{DDA} /LV _{DDB}		_	2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	LV_{DDA} or $LV_{DDB} = Min$	2.40	LV _{DDA} + 0.3 or LV _{DDB} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	LV_{DDA} or LV_{DDB} = Min	V _{SS}	0.50	V
Input high voltage	V _{IH}	_	_	2.0	LV _{DDA} + 0.3 or LV _{DDB} + 0.3	V
Input low voltage	V _{IL}	_	—	-0.3	0.90	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DDA} \text{ or } LV_{DDB}$		—	40	μA
Input low current	۱ _{IL}	١	/ _{IN} ¹ = VSS	-600	—	μA

Table 24. MII DC Electrical Characteristics

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

Table 25. RGMII/RTBI DC Electrical Characteristics

Parameters	Symbol	Conditions	Min	Max	Unit
Supply voltage 2.5 V	LV_{DDA}/LV_{DDB}	_	2.37	2.63	V

8.3.2 AC Requirements for SGMII SD REF CLK and SD REF CLK

This table lists the SGMII SerDes reference clock AC requirements. Note that SD_REF_CLK and SD REF CLK are not intended to be used with, and should not be clocked by, a spread spectrum clock source.

Symbol	Parameter Description	Min	Тур	Мах	Unit
t _{REF}	REFCLK cycle time	—	8	—	ns
t _{REFCJ}	REFCLK cycle-to-cycle jitter. Difference in the period of any two adjacent REFCLK cycles	_	—	100	ps
t _{REFPJ}	Phase jitter. Deviation in edge location with respect to mean edge location	-50	_	50	ps

Table 31. SD_REF_CLK and SD_REF_CLK AC Requirements

8.3.3 SGMII Transmitter and Receiver DC Electrical Characteristics

Table 32 and Table 33 describe the SGMII SerDes transmitter and receiver AC-coupled DC electrical characteristics. Transmitter DC characteristics are measured at the transmitter outputs (SD TX[n] and SD_TX[*n*]) as depicted in Figure 16.

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	XCOREV _{DD}	0.95	1.0	1.05	V	
Output high voltage	V _{OH}	—	—	XCOREV _{DD-Typ} /2 + V _{OD} _{-max} /2	mV	1
Output low voltage	V _{OL}	XCOREV _{DD-Typ} /2 - V _{OD} _{-max} /2	—	—	mV	1
Output ringing	V _{RING}	—	_	10	%	
Output differential voltage ^{2, 3}	V _{OD}	323	500	725	mV	Equalization setting: 1.0x
Output offset voltage	V _{OS}	425	500	575	mV	1, 4
Output impedance (single-ended)	R _O	40	—	60	Ω	
Mismatch in a pair	ΔR _O	—	—	10	%	
Change in V _{OD} between 0 and 1	$\Delta V_{OD} $	—	—	25	mV	
Change in V _{OS} between 0 and 1	ΔV _{OS}	—	—	25	mV	
Output current on short to GND	I _{SA} , I _{SB}	_	_	40	mA	

Table 32. SGMII DC Transmitter Electrical Characteristics

Notes:

- 1. This will not align to DC-coupled SGMII. XCOREV_{DD-Typ} = 1.0 V. 2. $|V_{OD}| = |V_{TXn} V_{\overline{TXn}}|$. $|V_{OD}|$ is also referred as output differential peak voltage. $V_{TX-DIFFp-p} = 2^*|V_{OD}|$.
- 3. The $|V_{OD}|$ value shown in the Typ column is based on the condition of $XCOREV_{DD-Typ} = 1.0$ V, no common mode offset variation (V_{OS} = 500 mV), SerDes transmitter is terminated with 100- Ω differential load between TX[*n*] and TX[*n*].
- 4. V_{OS} is also referred to as output common mode voltage.

of the differential pair must have a single-ended swing less than 800 mV and greater than 200 mV. This requirement is the same for both external DC-coupled or AC-coupled connection.

- For external DC-coupled connection, as described in Section 9.2.1, "SerDes Reference Clock Receiver Characteristics," the maximum average current requirements sets the requirement for average voltage (common mode voltage) to be between 100 and 400 mV. Figure 24 shows the SerDes reference clock input requirement for the DC-coupled connection scheme.
- For external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Since the external AC-coupling capacitor blocks the DC level, the clock driver and the SerDes reference clock receiver operate in different command mode voltages. The SerDes reference clock receiver in this connection scheme has its common mode voltage set to $XCOREV_{SS}$. Each signal wire of the differential inputs is allowed to swing below and above the command mode voltage ($XCOREV_{SS}$). Figure 25 shows the SerDes reference clock input requirement for AC-coupled connection scheme.
- Single-ended mode
 - The reference clock can also be single-ended. The SD_REF_CLK input amplitude (single-ended swing) must be between 400 and 800 mV peak-to-peak (from V_{min} to V_{max}) with SD_REF_CLK either left unconnected or tied to ground.
 - The SD_REF_CLK input average voltage must be between 200 and 400 mV. Figure 26 shows the SerDes reference clock input requirement for the single-ended signaling mode.
 - To meet the input amplitude requirement, the reference clock inputs might need to be DC or AC coupled externally. For the best noise performance, the reference of the clock could be DC or AC coupled into the unused phase (SD_REF_CLK) through the same source impedance as the clock input (SD_REF_CLK) in use.

Figure 24. Differential Reference Clock Input DC Requirements (External DC-Coupled)

9.2.4 AC Requirements for SerDes Reference Clocks

The clock driver selected should provide a high quality reference clock with low-phase noise and cycle-to-cycle jitter. Phase noise less than 100 kHz can be tracked by the PLL and data recovery loops and is less of a problem. Phase noise above 15 MHz is filtered by the PLL. The most problematic phase noise occurs in the 1–15 MHz range. The source impedance of the clock driver should be 50 Ω to match the transmission line and reduce reflections which are a source of noise to the system.

This table describes some AC parameters for SGMII protocol.

Table 39. SerDes Reference Clock Common AC Parameters

At recommended operating conditions with XV_{DD_SRDS1} or XV_{DD_SRDS2} = 1.0 V ± 5%.

Parameter	Symbol	Min	Max	Unit	Note
Rising edge rate	Rise edge rate	1.0	4.0	V/ns	2, 3
Falling edge rate	Fall edge rate	1.0	4.0	V/ns	2, 3
Differential input high voltage	V _{IH}	+200	—	mV	2
Differential input low voltage	V _{IL}	_	-200	mV	2
Rising edge rate (SDn_REF_CLK) to falling edge rate (SDn_REF_CLK) matching	Rise-fall matching	_	20	%	1, 4

Notes:

- 1. Measurement taken from single-ended waveform.
- 2. Measurement taken from differential waveform.
- 3. Measured from –200 to +200 mV on the differential waveform (derived from SD*n*_REF_CLK minus SD*n*_REF_CLK). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 31.
- 4. Matching applies to rising edge rate for SDn_REF_CLK and falling edge rate for SDn_REF_CLK. It is measured using a 200 mV window centered on the median cross point, where SDn_REF_CLK rising meets SDn_REF_CLK falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The rise edge rate of SDn_REF_CLK should be compared to the fall edge rate of SDn_REF_CLK, the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 32.

Figure 31. Differential Measurement Points for Rise and Fall Time

Figure 32. Single-Ended Measurement Points for Rise and Fall Time Matching

The other detailed AC requirements of the SerDes reference clocks is defined by each interface protocol based on application usage. Refer to the following section for detailed information:

• Section 8.3.2, "AC Requirements for SGMII SD_REF_CLK and SD_REF_CLK"

9.2.4.1 Spread Spectrum Clock

SD_REF_CLK/SD_REF_CLK are not intended to be used with, and should not be clocked by, a spread spectrum clock source.

9.3 SerDes Transmitter and Receiver Reference Circuits

This figure shows the reference circuits for the SerDes data lane's transmitter and receiver.

Figure 33. SerDes Transmitter and Receiver Reference Circuits

The SerDes data lane's DC and AC specifications are defined in the interface protocol section listed below (SGMII) based on the application usage:

• Section 8.3, "SGMII Interface Electrical Characteristics"

Please note that a external AC-coupling capacitor is required for the above serial transmission protocol with the capacitor value defined in the specifications of the protocol section.

12 JTAG

This section describes the DC and AC electrical specifications for the IEEE Std 1149.1TM (JTAG) interface.

12.1 JTAG DC Electrical Characteristics

This table provides the DC electrical characteristics for the IEEE Std 1149.1 (JTAG) interface.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	_	2.1	NV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	-0.3	0.8	V
Input current	I _{IN}	_	_	±5	μΑ
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Table 46. JTAG Interface DC Electrical Characteristics

12.2 JTAG AC Timing Specifications

This section describes the AC electrical specifications for the IEEE Std 1149.1 (JTAG) interface. This table provides the JTAG AC timing specifications as defined in Figure 41 through Figure 45.

Table 47. JTAG AC Timing Specifications (Independent of SYS_CLK_IN)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Мах	Unit	Note
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	
JTAG external clock cycle time	t _{JTG}	30	—	ns	
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15	—	ns	
JTAG external clock rise and fall times	t _{JTGR} & t _{JTGF}	0	2	ns	
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4		ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns	4
Valid times: Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	2 2	11 11	ns	5
Output hold times: Boundary-scan data TDO	t _{JTKLDX} t _{JTKLOX}	2 2		ns	5

This figure shows the AC timing diagram for the I^2C bus.

Figure 47. I²C Bus AC Timing Diagram

14 PCI

This section describes the DC and AC electrical specifications for the PCI bus.

14.1 PCI DC Electrical Characteristics

This table provides the DC electrical characteristics for the PCI interface.

Table 50. PCI DC Electrical Characteristics¹

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	$0.5 imes NV_{DD}$	NV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	$V_{OUT} \le V_{OL}$ (max)	-0.5	$0.3\times \text{NV}_{\text{DD}}$	V
High-level output voltage	V _{OH}	$NV_{DD} = min, I_{OH} = -100 \ \mu A$	$0.9 imes NV_{DD}$	-	V
Low-level output voltage	V _{OL}	NV_{DD} = min, I_{OL} = 100 μ A	_	$0.1 imes NV_{DD}$	V
Input current	I _{IN}	$0~V \leq V_{IN} \leq NV_{DD}$	_	±5	μΑ

Note:

1. Note that the symbol V_{IN} , in this case, represents the NV_{IN} symbol referenced in Table 1 and Table 2.

14.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus. Note that the PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the MPC8313E is configured as a host or agent device.

This table shows the PCI AC timing specifications at 66 MHz.

Table 51. PCI AC Timing Specifications at 66 MHz

Parameter	Symbol ¹	Min	Max	Unit	Note
Clock to output valid	^t PCKHOV	—	6.0	ns	2
Output hold from clock	t _{PCKHOX}	1	—	ns	2

Table 62. MPC8313E TEPBGAII Pi	inout Listing (continued)
--------------------------------	---------------------------

Signal	Package Pin Number	Pin Type	Power Supply	Note
MEMC_MCS0	D10	0	GV _{DD}	_
MEMC_MCS1	A10	0	GV _{DD}	_
MEMC_MCKE	B14	0	GV _{DD}	3
MEMC_MCK	A13	0	GV _{DD}	_
MEMC_MCK	A14	0	GV _{DD}	_
MEMC_MODT0	B23	0	GV _{DD}	_
MEMC_MODT1	C23	0	GV _{DD}	_
Local Bus	Controller Interface			
LAD0	K25	I/O	LV _{DD}	11
LAD1	K24	I/O	LV _{DD}	11
LAD2	K23	I/O	LV _{DD}	11
LAD3	K22	I/O	LV _{DD}	11
LAD4	J25	I/O	LV _{DD}	11
LAD5	J24	I/O	LV _{DD}	11
LAD6	J23	I/O	LV _{DD}	11
LAD7	J22	I/O	LV _{DD}	11
LAD8	H24	I/O	LV _{DD}	11
LAD9	F26	I/O	LV _{DD}	11
LAD10	G24	I/O	LV _{DD}	11
LAD11	F25	I/O	LV _{DD}	11
LAD12	E25	I/O	LV _{DD}	11
LAD13	F24	I/O	LV _{DD}	11
LAD14	G22	I/O	LV _{DD}	11
LAD15	F23	I/O	LV _{DD}	11
LA16	AC25	0	LV _{DD}	11
LA17	AC26	0	LV _{DD}	11
LA18	AB22	0	LV _{DD}	11
LA19	AB23	0	LV _{DD}	11
LA20	AB24	0	LV _{DD}	11
LA21	AB25	0	LV _{DD}	11
LA22	AB26	0	LV _{DD}	11
LA23	E22	0	LV _{DD}	11

Table 62. MPC8313E TEPBGAII Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Note				
LA14/TSEC_1588_TRIG1	L24	0	LV _{DD}	8				
LA15/TSEC_1588_ALARM2	K26	0	LV _{DD}	8				
	DUART		·					
UART_SOUT1/MSRCID0	N2	0	NV _{DD}	—				
UART_SIN1/MSRCID1	M5	I/O	NV _{DD}	—				
UART_CTS1/GPIO8/MSRCID2	M1	I/O	NV _{DD}	—				
UART_RTS1/GPIO9/MSRCID3	K1	I/O	NV _{DD}	—				
UART_SOUT2/MSRCID4/TSEC_1588_CLK	M3	0	NV _{DD}	8				
UART_SIN2/MDVAL/TSEC_1588_GCLK	L1	I/O	NV _{DD}	8				
UART_CTS2/TSEC_1588_PP1	L5	I/O	NV _{DD}	8				
UART_RTS2/TSEC_1588_PP2	L3	I/O	NV _{DD}	8				
I ² C interface								
IIC1_SDA/CKSTOP_OUT/TSEC_1588_TRIG1	J4	I/O	NV _{DD}	2, 8				
IIC1_SCL/CKSTOP_IN/TSEC_1588_ALARM2	J2	I/O	NV _{DD}	2, 8				
IIC2_SDA/PMC_PWR_OK/GPIO10	J3	I/O	NV _{DD}	2				
IIC2_SCL/GPIO11	H5	I/O	NV _{DD}	2				
	Interrupts							
MCP_OUT	G5	0	NV _{DD}	2				
IRQ0/MCP_IN	K5	I	NV _{DD}	—				
IRQ1	K4	I	NV _{DD}	—				
IRQ2	K2	I	NV _{DD}	—				
IRQ3/CKSTOP_OUT	К3	I/O	NV _{DD}	—				
IRQ4/CKSTOP_IN/GPIO12	J1	I/O	NV _{DD}	—				
C	onfiguration							
CFG_CLKIN_DIV	D5	I	NV _{DD}	—				
EXT_PWR_CTRL	J5	0	NV _{DD}	—				
CFG_LBIU_MUX_EN	R24	I	NV _{DD}	—				
JTAG								
ТСК	E1	I	NV _{DD}	_				
TDI	E2	I	NV _{DD}	4				
TDO	E3	0	NV _{DD}	3				

Table 62. MPC8313E T	FEPBGAll Pinout	Listing (continued)
----------------------	------------------------	---------------------

Signal	Package Pin Number	Pin Type	Power Supply	Note			
TSEC1_TXD1/TSEC_1588_PP2	AD6	0	LV _{DDB}				
TSEC1_TXD0/USBDR_STP/TSEC_1588_PP3	AD5	0	LV _{DDB}	_			
TSEC1_TX_EN/TSEC_1588_ALARM1	AB7	0	LV _{DDB}	_			
TSEC1_TX_ER/TSEC_1588_ALARM2	AB8	0	LV _{DDB}				
TSEC1_GTX_CLK125	AE1	I	LV _{DDB}				
TSEC1_MDC/LB_POR_CFG_BOOT_ECC_DIS	AF6	0	NV _{DD}	9, 11			
TSEC1_MDIO	AB9	I/O	NV _{DD}	_			
	ETSEC2						
TSEC2_COL/GTM1_TIN4/GTM2_TIN3/GPIO15	AB4	I/O	LV _{DDA}	_			
TSEC2_CRS/GTM1_TGATE4/GTM2_TGATE3/GPIO16	AB3	I/O	LV _{DDA}				
TSEC2_GTX_CLK/GTM1_TOUT4/GTM2_TOUT3/GPIO17	AC1	I/O	LV _{DDA}	12			
TSEC2_RX_CLK/GTM1_TIN2/GTM2_TIN1/GPIO18	AC2	I/O	LV _{DDA}				
TSCE2_RX_DV/GTM1_TGATE2/GTM2_TGATE1/GPIO19	AA3	I/O	LV _{DDA}				
TSEC2_RXD3/GPIO20	Y5	I/O	LV _{DDA}				
TSEC2_RXD2/GPIO21	AA4	I/O	LV _{DDA}				
TSEC2_RXD1/GPIO22	AB2	I/O	LV _{DDA}				
TSEC2_RXD0/GPIO23	AA5	I/O	LV _{DDA}	_			
TSEC2_RX_ER/GTM1_TOUT2/GTM2_TOUT1/GPIO24	AA2	I/O	LV _{DDA}	_			
TSEC2_TX_CLK/GPIO25	AB1	I/O	LV _{DDA}				
TSEC2_TXD3/CFG_RESET_SOURCE0	W3	I/O	LV _{DDA}				
TSEC2_TXD2/CFG_RESET_SOURCE1	Y1	I/O	LV _{DDA}	_			
TSEC2_TXD1/CFG_RESET_SOURCE2	W5	I/O	LV _{DDA}				
TSEC2_TXD0/CFG_RESET_SOURCE3	Y3	I/O	LV _{DDA}				
TSEC2_TX_EN/GPIO26	AA1	I/O	LV _{DDA}				
TSEC2_TX_ER/GPIO27	W1	I/O	LV _{DDA}				
SGMII PHY							
ТХА	U3	0		_			
TXA	V3	0		_			
RXA	U1	Ι					
RXA	V1	Ι					
ТХВ	P4	0					
ТХВ	N4	0		—			

Signal	Package Pin Number	Pin Type	Power Supply	Note
V _{SS}	B1,B2,B8,B9,B16,B17,C1, C2,C3,C4,C5,C24,C25, C26,D3,D4,D12,D13,D20, D21,F8,F11,F13,F16,F17, F21,G2,G25,H2,H6,H21, H25,L4,L6,L11,L12,L13, L14,L15,L16,L21,L23,M4, M11,M12,M13,M14,M15, M16,M23,N6,N11,N12, N13,N14,N15,N16, N21,N23,P11,P12,P13, P14,P15,P16,P23,P25, R11,R12,R13,R14,R15, R16,R25,T6,T11,T12,T13, T14,T15,T16,T21,T25,U5, U6,U21,W4,W23,Y4,Y23, AA8,AA11,AA13,AA16, AA17,AA21,AC4,AC5, AC12,AC13,AC20,AC21, AD1,AE2,AE8,AE9,AE16, AE17,AF2			
XCOREV _{DD}	T1,U2,V2	Core power for SerDes transceivers (1.0 V)	_	_
XCOREV _{SS}	P2,R2,T3	—		
XPADV _{DD}	P5,U4	Pad power for SerDes transceivers (1.0 V)		
XPADV _{SS}	P3,V4		—	

Table 62. MPC8313E TEPBGAII Pinout Listing (continued)

Notes:

- 1. This pin is an open drain signal. A weak pull-up resistor (1 k Ω) should be placed on this pin to NV_{DD}.
- 2. This pin is an open drain signal. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to NV_{DD} .
- 3. This output is actively driven during reset rather than being three-stated during reset.
- 4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.
- 6. This pin must always be tied to V_{SS}.
- 7. Internal thermally sensitive resistor, resistor value varies linearly with temperature. Useful for determining the junction temperature.
- 8. 1588 signals are available on these pins only in MPC8313 Rev 2.x or later.
- 9. LB_POR_CFG_BOOT_ECC_DIS is available only in MPC8313 Rev 2.x or later.
- 10. This pin has an internal pull-up.
- 11. This pin has an internal pull-down.
- 12. In MII mode, GTX_CLK should be pulled down by 300Ω to V_{SS}.

(edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_B + (R_{\theta JB} \times P_D)$$

where:

 T_J = junction temperature (°C) T_B = board temperature at the package perimeter (°C) $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W) per JESD51–8 P_D = power dissipation in the package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

21.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

where:

 T_I = junction temperature (°C)

 $T_I = T_T + (\Psi_{IT} \times P_D)$

 T_T = thermocouple temperature on top of package (°C)

 Ψ_{JT} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

21.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

In some application environments, a heat sink is required to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction to case thermal resistance and a case to ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W) $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W) $R_{\theta CA}$ = case-to- ambient thermal resistance (°C/W)

Heat sink Vendors include the following list:	
Aavid Thermalloy 80 Commercial St. Concord, NH 03301 Internet: www.aavidthermalloy.com	603-224-9988
Alpha Novatech 473 Sapena Ct. #12 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-749-7601
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	818-842-7277
Millennium Electronics (MEI) Loroco Sites 671 East Brokaw Road San Jose, CA 95112 Internet: www.mei-thermal.com	408-436-8770
Tyco Electronics Chip Coolers [™] P.O. Box 3668 Harrisburg, PA 17105 Internet: www.chipcoolers.com	800-522-6752
Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com	603-635-2800
Interface material vendors include the following:	
Chomerics, Inc. 77 Dragon Ct. Woburn, MA 01801 Internet: www.chomerics.com	781-935-4850
Dow-Corning Corporation Corporate Center	800-248-2481
PO BOX 994	
Midland, MI 48686-0994 Internet: www.dowcorning.com	
Shin-Etsu MicroSi, Inc. 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com	888-642-7674
The Bergquist Company 18930 West 78th St. Chanhassen, MN 55317 Internet: www.bergquistcompany.com	800-347-4572

Table 73	. Document	Revision	History	(continued)
----------	------------	----------	---------	-------------

Rev. Number	Date	Substantive Change(s)
1	3/2008	 In Table 63, added LBC_PM_REF_10 & LSRCID3 as muxed with USBDR_PCTL1 In Table 63, added LSRCID2 as muxed with USBDR_PCTL0 In Table 63, added LSRCID0 as muxed with USBDR_PWRFAULT In Table 63, added LSRCID0 as muxed with USBDR_DRIVE_VBUS In Table 63, moved T1, U2,& V2 from V_{DD} to XCOREVDD. In Table 63, moved P2, R2, & T3 from V_{SS} to XCOREVSS. In Table 63, moved P3, & V4 from V_{DD} to XPADVDD. In Table 63, neved "Double with pad" for AV_{DD1} and AV_{DD2} and moved AV_{DD1} and AV_{DD2} to Power and Ground Supplies section In Table 63, added muxing in pinout to show new options for selecting IEEE 1588 functionality. Added footnote 8 In Table 63, updated muxing in pinout to show new LBC ECC boot enable control muxed with eTSEC1_MDC Added pin type information for power supplies. Removed N1 and N3 from Vss section of Table 63. Added Therm0 and Therm1 (N1 and N3, respectively). Added note 7 to state: "Internal thermally sensitive resistor value varies linearly with temperature. Useful for determining the junction temperature." In Table 65 corrected maximum frequency of Local Bus Frequency from "33–66" to 66 MHz In Table 65 corrected maximum frequency of PCI from "24–66" to 66 MHz Added "which is determined by RCWLR[COREPLL]," to the note in Section 20.2, "Core PLL Configuration" about the VCO divider.
0	6/2007	 Added "(VCOD)" next to VCO divider column in Table 68. Added footnote stating that core_clk frequency must not exceed its maximum, so 2.5:1 and 3:1 <i>core_clk:csb_clk</i> ratios are invalid for certain <i>csb_clk</i> values. In Table 69, notes were confusing. Added note 3 for VCO column, note 4 for CSB (<i>csb_clk</i>) column, note 5 for USB ref column, and note 6 to replace "Note 1". Clarified note 4 to explain erratum eTSEC40. In Table 69, updated note 6 to specify USB reference clock frequencies limited to 24 and 48 for rev. 2 silicon. Replaced Table 71 "Thermal Resistance for TEPBGAII with Heat Sink in Open Flow". Removed last row of Table 19. Removed last row of Table 19. Removed 200 MHz rows from Table 21 and Table 5. Changed VIH minimum spec from 2.0 to 2.1 for clock, PIC, JTAG, SPI, and reset pins in Table 9, Table 47, Table 54, Table 59, and Table 61. Added Figure 4 showing the DDR input timing diagram. In Table 19, removed "MDM" from the "MDQS-MDQ/MECC/MDM" text under the Parameter column for the tCISKEW parameter. MDM is an output signal and should be removed from the input AC timing spec table (tCISKEW). Added "and power" to rows 2 and 3 in Table 10 Added the sentence "Once both the power supplies" and PORESET to Section 2.2, "Power Sequencing," and Figure 3. In Figure 35, corrected "USB0_CLK/USB1_CLK/DR_CLK" with "USBDR_CLK" In Table 42, clarified that AC specs are for ULPI only.
0	6/2007	Initial release.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MPC8313EEC Rev. 4 11/2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QorlQ is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. RapidIO is a registered trademark of the RapidIO Trade Association. IEEE 1588 and 1149.1 are registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE.

© 2007–2011 Freescale Semiconductor, Inc.

