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This figure shows the undershoot and overshoot voltages at the interfaces of the MPC8313E.

Figure 2. Overshoot/Undershoot Voltage for GVDD/NVDD/LVDD

2.1.3 Output Driver Characteristics

This table provides information on the characteristics of the output driver strengths. 

Note:  
1. GVDD, NVDD, AVDD, and VDD must track each other and must vary in the same direction—either in the positive or negative direction.
2. Some GPIO pins may operate from a 2.5-V supply when configured for other functions.
3. Min temperature is specified with TA; Max temperature is specified with TJ.
4. All Power rails must be connected and power applied to the MPC8313 even if the IP interfaces are not used.
5. All I/O pins should be interfaced with peripherals operating at same voltage level.
6. This voltage is the input to the filter discussed in Section 22.2, “PLL Power Supply Filtering” and not necessarily the voltage at the 

AVDD pin, which may be reduced from VDD by the filter.

Table 3. Output Drive Capability

Driver Type Output Impedance () Supply Voltage

Local bus interface utilities signals 42 NVDD = 3.3 V

PCI signals 25

DDR signal 18 GVDD = 2.5 V

Table 2. Recommended Operating Conditions (continued)

Characteristic Symbol Recommended Value1 Unit
Current 

Requirement

VSS
VSS – 0.3 V

VSS – 0.7 V
Not to Exceed 10%

G/L/NVDD + 20%

G/L/NVDD

G/L/NVDD + 5%

of tinterface
1

1. Note that tinterface refers to the clock period associated with the bus clock

VIH

VIL

Note:

 interface.
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3 Power Characteristics
The estimated typical power dissipation, not including I/O supply power, for this family of MPC8313E 
devices is shown in this table. Table 5 shows the estimated typical I/O power dissipation.

This table describes a typical scenario where blocks with the stated percentage of utilization and 
impedances consume the amount of power described.

1

Table 4.  MPC8313E Power Dissipation1 

Core Frequency
(MHz)

CSB Frequency
(MHz)

Typical2
Maximum for

Rev. 1.0 Silicon3
Maximum for

Rev. 2.x or Later Silicon3 Unit

333 167 820 1020 1200 mW

400 133 820 1020 1200 mW

Note:  
1. The values do not include I/O supply power or AVDD, but do include core, USB PLL, and a portion of SerDes digital power 

(not including XCOREVDD, XPADVDD, or SDAVDD, which all have dedicated power supplies for the SerDes PHY).
2. Typical power is based on a voltage of VDD = 1.05 V and an artificial smoker test running at room temperature.
3. Maximum power is based on a voltage of VDD = 1.05 V, a junction temperature of TJ = 105C, and an artificial smoker test.

Table 5.  MPC8313E Typical I/O Power Dissipation

Interface Parameter
GVDD
(1.8 V)

GVDD
(2.5 V)

NVDD
(3.3 V)

LVDDA/
LVDDB
(3.3 V)

LVDDA/
LVDDB
(2.5 V)

LVDD
(3.3 V)

Unit Comments

DDR 1, 60% utilization,
50% read/write
Rs = 22 
Rt = 50 
single pair of clock 
capacitive load: data = 8 pF, 
control address = 8 pF, 
clock = 8 pF

333 MHz, 
32 bits

— 0.355 — — — — W —

266 MHz, 
32 bits

— 0.323 — — — — W —

DDR 2, 60% utilization, 
50% read/write 
Rs = 22 
Rt = 75 
single pair of clock
capacitive load: data = 8 pF, 
control address = 8 pF, 
clock = 8 pF

333 MHz, 
32 bits

0.266 — — — — — W —

266 MHz, 
32 bits

0.246 — — — — — W —

PCI I/O load = 50 pF 33 MHz — — 0.120 — — — W —

66 MHz — — 0.249 — — — W —

Local bus I/O load = 20 pF 66 MHz — — — — — 0.056 W —

50 MHz — — — — — 0.040 W —

TSEC I/O load = 20 pF MII, 
25 MHz

— — — 0.008 — — W Multiple by 
number of 

interface usedRGMII, 
125 MHz

— — — 0.078 0.044 — W
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This table provides the input AC timing specifications for the DDR SDRAM when GVDD(typ) = 2.5 V.

This table provides the input AC timing specifications for the DDR2 SDRAM interface. 

This figure illustrates the DDR input timing diagram showing the tDISKEW timing parameter.

Figure 4. DDR Input Timing Diagram

Table 18. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface
At recommended operating conditions with GVDD of 2.5 ± 5%.

Parameter Symbol Min Max Unit Note

AC input low voltage VIL — MVREF – 0.31 V —

AC input high voltage VIH MVREF + 0.31 — V —

Table 19. DDR and DDR2 SDRAM Input AC Timing Specifications
At recommended operating conditions. with GVDD of 2.5 ± 5%.

Parameter Symbol Min Max Unit Note

Controller skew for MDQS—MDQ tCISKEW — — ps 1, 2

333 MHz — –750 750 — —

266 MHz — –750 750 — —

Notes:
1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that 

is captured with MDQS[n]. This should be subtracted from the total timing budget.
2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW. This can be 

determined by the following equation: tDISKEW = ± (T/4 – abs(tCISKEW)) where T is the clock period and abs(tCISKEW) is the 
absolute value of tCISKEW. 

MCK[n]

MCK[n]
tMCK

MDQ[x]

MDQS[n]

D1D0

tDISKEW
tDISKEW
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8.3.2 AC Requirements for SGMII SD_REF_CLK and SD_REF_CLK

This table lists the SGMII SerDes reference clock AC requirements. Note that SD_REF_CLK and 
SD_REF_CLK are not intended to be used with, and should not be clocked by, a spread spectrum clock 
source.

8.3.3 SGMII Transmitter and Receiver DC Electrical Characteristics
Table 32 and Table 33 describe the SGMII SerDes transmitter and receiver AC-coupled DC electrical 
characteristics. Transmitter DC characteristics are measured at the transmitter outputs (SD_TX[n] and 
SD_TX[n]) as depicted in Figure 16.

Table 31. SD_REF_CLK and SD_REF_CLK AC Requirements

Symbol Parameter Description Min Typ Max Unit

tREF REFCLK cycle time — 8 — ns

tREFCJ REFCLK cycle-to-cycle jitter. Difference in the period of any two 
adjacent REFCLK cycles

— — 100 ps

tREFPJ Phase jitter. Deviation in edge location with respect to mean 
edge location

–50 — 50 ps

Table 32. SGMII DC Transmitter Electrical Characteristics

Parameter Symbol Min Typ Max Unit Note

Supply voltage XCOREVDD 0.95 1.0 1.05 V

Output high voltage VOH — — XCOREVDD-Typ/2 
+ |VOD|-max/2

mV 1

Output low voltage VOL XCOREVDD-Typ/2 
– |VOD|-max/2

— — mV 1

Output ringing VRING — — 10 %

Output differential voltage2, 3 |VOD| 323 500 725 mV Equalization 
setting: 1.0x

Output offset voltage VOS 425 500 575 mV 1, 4

Output impedance 
(single-ended)

RO 40 — 60 

Mismatch in a pair RO — — 10 %

Change in VOD between 0 and 1 |VOD| — — 25 mV

Change in VOS between 0 and 1 VOS — — 25 mV

Output current on short to GND ISA, ISB — — 40 mA

Notes:
1. This will not align to DC-coupled SGMII. XCOREVDD-Typ = 1.0 V.
2. |VOD| = |VTXn – VTXn|. |VOD| is also referred as output differential peak voltage. VTX-DIFFp-p = 2*|VOD|.
3. The |VOD| value shown in the Typ column is based on the condition of XCOREVDD-Typ = 1.0 V, no common mode offset 

variation (VOS = 500 mV), SerDes transmitter is terminated with 100- differential load between TX[n] and TX[n].
4.  VOS is also referred to as output common mode voltage.
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8.3.4 SGMII AC Timing Specifications
This section describes the SGMII transmit and receive AC timing specifications. Transmitter and receiver 
characteristics are measured at the transmitter outputs (TX[n] and TX[n]) or at the receiver inputs (RX[n] 
and RX[n]) as depicted in Figure 18, respectively.

8.3.4.1 SGMII Transmit AC Timing Specifications

This table provides the SGMII transmit AC timing targets. A source synchronous clock is not provided.

8.3.4.2 SGMII Receive AC Timing Specifications

This table provides the SGMII receive AC timing specifications. Source synchronous clocking is not 
supported. Clock is recovered from the data. Figure 17 shows the SGMII receiver input compliance mask 
eye diagram.

Common mode input voltage VCM — Vxcorevss — V 4

Notes:
1. Input must be externally AC-coupled.
2. VRX_DIFFp-p is also referred to as peak to peak input differential voltage
3. VCM_ACp-p is also referred to as peak to peak AC common mode voltage.
4. On-chip termination to XCOREVSS. 

Table 34. SGMII Transmit AC Timing Specifications
At recommended operating conditions with XCOREVDD = 1.0 V ± 5%.

Parameter Symbol Min Typ Max Unit Note

Deterministic jitter JD — — 0.17 UI p-p

Total jitter JT — — 0.35 UI p-p

Unit interval UI 799.92 800 800.08 ps 1

VOD fall time (80%–20%) tfall 50 — 120 ps

VOD rise time (20%–80%) trise 50 — 120 ps

Note:
1. Each UI is 800 ps ± 100 ppm.

Table 35. SGMII Receive AC Timing Specifications
At recommended operating conditions with XCOREVDD = 1.0 V ± 5%.

Parameter Symbol Min Typ Max Unit Note

Deterministic jitter tolerance JD 0.37 — — UI p-p 1

Combined deterministic and random jitter tolerance JDR 0.55 — — UI p-p 1

Sinusoidal jitter tolerance JSIN 0.1 — — UI p-p 1

Table 33. SGMII DC Receiver Electrical Characteristics (continued)

Parameter Symbol Min Typ Max Unit Note
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The common mode voltage is equal to one half of the sum of the voltages between each conductor 
of a balanced interchange circuit and ground. In this example, for SerDes output, Vcm_out = 
(VTXn + VTXn)/2 = (A + B)/2, which is the arithmetic mean of the two complimentary output 
voltages within a differential pair. In a system, the common mode voltage may often differ from 
one component’s output to the other’s input. Sometimes, it may be even different between the 
receiver input and driver output circuits within the same component. It’s also referred as the DC 
offset in some occasion.

Figure 22. Differential Voltage Definitions for Transmitter or Receiver

To illustrate these definitions using real values, consider the case of a CML (current mode logic) 
transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing 
that goes between 2.5 and 2.0 V. Using these values, the peak-to-peak voltage swing of each signal (TD or 
TD) is 500 mV p-p, which is referred as the single-ended swing for each signal. In this example, since the 
differential signaling environment is fully symmetrical, the transmitter output’s differential swing (VOD) 
has the same amplitude as each signal’s single-ended swing. The differential output signal ranges between 
500 and –500 mV, in other words, VOD is 500 mV in one phase and –500 mV in the other phase. The peak 
differential voltage (VDIFFp) is 500 mV. The peak-to-peak differential voltage (VDIFFp-p) is 1000 mV p-p.

9.2 SerDes Reference Clocks
The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by 
the corresponding SerDes lanes. The SerDes reference clocks input is SD_REF_CLK and SD_REF_CLK 
for SGMII interface.

The following sections describe the SerDes reference clock requirements and some application 
information.

9.2.1 SerDes Reference Clock Receiver Characteristics

Figure 23 shows a receiver reference diagram of the SerDes reference clocks.

• The supply voltage requirements for XCOREVDD are specified in Table 1 and Table 2.

• SerDes reference clock receiver reference circuit structure:

A Volts

B Volts
TXn or RXn

TXn or RXn

Vcm = (A + B)/2

Differential Swing, VID or VOD = A – B
Differential Peak Voltage, VDIFFp = |A – B|

Differential Peak-Peak Voltage, VDIFFpp = 2*VDIFFp (not shown)
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9.2.4 AC Requirements for SerDes Reference Clocks
The clock driver selected should provide a high quality reference clock with low-phase noise and 
cycle-to-cycle jitter. Phase noise less than 100 kHz can be tracked by the PLL and data recovery loops and 
is less of a problem. Phase noise above 15 MHz is filtered by the PLL. The most problematic phase noise 
occurs in the 1–15 MHz range. The source impedance of the clock driver should be 50  to match the 
transmission line and reduce reflections which are a source of noise to the system.

This table describes some AC parameters for SGMII protocol. 

Figure 31. Differential Measurement Points for Rise and Fall Time

Table 39. SerDes Reference Clock Common AC Parameters
At recommended operating conditions with XVDD_SRDS1 or XVDD_SRDS2 = 1.0 V ± 5%.

Parameter Symbol Min Max Unit Note

Rising edge rate Rise edge rate 1.0 4.0 V/ns 2, 3

Falling edge rate Fall edge rate 1.0 4.0 V/ns 2, 3

Differential input high voltage VIH +200 — mV 2

Differential input low voltage VIL — –200 mV 2

Rising edge rate (SDn_REF_CLK) to falling edge rate 
(SDn_REF_CLK) matching

Rise-fall matching — 20 % 1, 4

Notes:
1. Measurement taken from single-ended waveform.
2. Measurement taken from differential waveform.
3. Measured from –200 to +200 mV on the differential waveform (derived from SDn_REF_CLK minus SDn_REF_CLK). The 

signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is 
centered on the differential zero crossing. See Figure 31.

4. Matching applies to rising edge rate for SDn_REF_CLK and falling edge rate for SDn_REF_CLK. It is measured using a 
200 mV window centered on the median cross point, where SDn_REF_CLK rising meets SDn_REF_CLK falling. The median 
cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The rise edge 
rate of SDn_REF_CLK should be compared to the fall edge rate of SDn_REF_CLK, the maximum allowed difference should 
not exceed 20% of the slowest edge rate. See Figure 32.

VIH = +200 mV

VIL = –200 mV

0.0 V

SDn_REF_CLK
Minus

SDn_REF_CLK

Fall Edge RateRise Edge Rage



MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4

50 Freescale Semiconductor
 

Figure 39. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 

Figure 40. Local Bus Signals, LALE with Respect to LCLK

LCLK

UPM Mode Input Signal:
LUPWAIT

tLBIXKH
tLBIVKH

tLBIVKH

tLBIXKH

tLBKHOZ

T1

T3

UPM Mode Output Signals:
LCS[0:3]/LBS[0:1]/LGPL[0:5]

GPCM Mode Output Signals:
LCS[0:3]/LWE

tLBKHOV

tLBKHOV

tLBKHOZ

T2

T4

Input Signals:
LAD[0:15]

tLBIXKH
tLBIVKH

tLBIXKH
tLBIVKH

tLBKHOV

tLBIXKH

tLBKHOV

tLBKHOZ

tLALEHOV

tLBOTOT
tLALETOT

LCLK[n]

Input Signals:

Input Signal:

Output Signals:

Output Signals:

LALE

LAD[0:15]

LGTA

LBCTL/LBCKE/LOE

LAD[0:15]
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This figure shows the AC timing diagram for the I2C bus.

Figure 47. I2C Bus AC Timing Diagram

14 PCI
This section describes the DC and AC electrical specifications for the PCI bus. 

14.1 PCI DC Electrical Characteristics
This table provides the DC electrical characteristics for the PCI interface.

14.2 PCI AC Electrical Specifications
This section describes the general AC timing parameters of the PCI bus. Note that the PCI_CLK or 
PCI_SYNC_IN signal is used as the PCI input clock depending on whether the MPC8313E is configured 
as a host or agent device. 

This table shows the PCI AC timing specifications at 66 MHz. 
.

Table 50. PCI DC Electrical Characteristics1

Parameter Symbol Test Condition Min Max Unit

High-level input voltage VIH VOUT VOH (min) or 0.5  NVDD NVDD + 0.3 V

Low-level input voltage VIL VOUT  VOL (max) –0.5 0.3  NVDD V

High-level output voltage VOH NVDD = min, IOH = –100 A 0.9  NVDD — V

Low-level output voltage VOL NVDD = min, IOL = 100 A — 0.1  NVDD V

Input current IIN 0 V VIN NVDD — ±5 A

Note:
1. Note that the symbol VIN, in this case, represents the NVIN symbol referenced in Table 1 and Table 2.

Table 51. PCI AC Timing Specifications at 66 MHz

Parameter Symbol1 Min Max Unit Note

Clock to output valid tPCKHOV — 6.0 ns 2

Output hold from clock tPCKHOX 1 — ns 2

SrS

SDA

SCL

tI2CF

tI2SXKL

tI2CL

tI2CH
tI2DXKL

tI2DVKH

tI2SXKL

tI2SVKH

tI2KHKL

tI2PVKH

tI2CR

tI2CF

P S
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15.2 Timers AC Timing Specifications
This table provides the Timers input and output AC timing specifications. 

This figure provides the AC test load for the Timers.

Figure 51. Timers AC Test Load

16 GPIO
This section describes the DC and AC electrical specifications for the GPIO.

16.1 GPIO DC Electrical Characteristics
This table provides the DC electrical characteristics for the GPIO when the GPIO pins are operating from 
a 3.3-V supply.

Table 54. Timers Input AC Timing Specifications1

Characteristic Symbol2 Min Unit

Timers inputs—minimum pulse width tTIWID 20 ns

Notes:
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLK_IN. 

Timings are measured at the pin.
2. Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use by any 

external synchronous logic. Timers inputs are required to be valid for at least tTIWID ns to ensure proper operation

Table 55. GPIO (When Operating at 3.3 V) DC Electrical Characteristics

Characteristic Symbol Condition Min Max Unit

Output high voltage VOH IOH = –8.0 mA 2.4 — V

Output low voltage VOL  IOL = 8.0 mA — 0.5 V

Output low voltage VOL IOL = 3.2 mA — 0.4 V

Input high voltage VIH — 2.0 NVDD + 0.3 V

Input low voltage VIL — –0.3 0.8 V

Input current IIN 0 V  VIN  NVDD — ±5 A

Note:  
1. This specification only applies to GPIO pins that are operating from a 3.3-V supply. See Table 62 for the power supply listed 

for the individual GPIO signal.

Output Z0 = 50  NVDD/2
RL = 50 
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This table provides the DC electrical characteristics for the GPIO when the GPIO pins are operating from 
a 2.5-V supply.

16.2 GPIO AC Timing Specifications
This table provides the GPIO input and output AC timing specifications. 

This figure provides the AC test load for the GPIO.

Figure 52. GPIO AC Test Load

Table 56. GPIO (When Operating at 2.5 V) DC Electrical Characteristics1

Parameters Symbol Conditions Min Max Unit

Supply voltage 2.5 V NVDD — 2.37 2.63 V

Output high voltage VOH IOH = –1.0 mA NVDD = min 2.00 NVDD + 0.3 V

Output low voltage VOL IOL = 1.0 mA NVDD = min VSS– 0.3 0.40 V

Input high voltage VIH — NVDD = min 1.7 NVDD + 0.3 V

Input low voltage VIL — NVDD = min –0.3 0.70 V

Input high current IIH VIN = NVDD — 10 A

Input low current IIL VIN = VSS –15 — A

Note:  
1. This specification only applies to GPIO pins that are operating from a 2.5-V supply. See Table 62 for the power supply listed 

for the individual GPIO signal

Table 57. GPIO Input AC Timing Specifications1

Characteristic Symbol2 Min Unit

GPIO inputs—minimum pulse width tPIWID 20 ns

Notes:
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLKIN. Timings 

are measured at the pin.
2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any 

external synchronous logic. GPIO inputs are required to be valid for at least tPIWID ns to ensure proper operation.

Output Z0 = 50  NVDD/2
RL = 50 
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18.2 SPI AC Timing Specifications
This table and provide the SPI input and output AC timing specifications. 

This figure provides the AC test load for the SPI.

Figure 53. SPI AC Test Load

Figure 54 and Figure 55 represent the AC timing from Table 61. Note that although the specifications 
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge 
is the active edge.

Input high voltage VIH — 2.1 NVDD + 0.3 V

Input low voltage VIL — –0.3 0.8 V

Input current IIN 0 V  VIN  NVDD — ±5 A

Table 61. SPI AC Timing Specifications1

Characteristic Symbol2 Min Max Unit

SPI outputs—master mode (internal clock) delay tNIKHOV 0.5 6 ns

SPI outputs—slave mode (external clock) delay tNEKHOV 2 8 ns

SPI inputs—master mode (internal clock) input setup time tNIIVKH 6 — ns

SPI inputs—master mode (internal clock) input hold time tNIIXKH 0 — ns

SPI inputs—slave mode (external clock) input setup time tNEIVKH 4 — ns

SPI inputs—slave mode (external clock) input hold time tNEIXKH 2 — ns

Note:  
1. Output specifications are measured from the 50% level of the rising edge of SYS_CLK_IN to the 50% level of the signal. Timings 

are measured at the pin.
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs 

and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOV symbolizes the NMSI outputs 
internal timing (NI) for the time tSPI memory clock reference (K) goes from the high state (H) until outputs (O) are valid (V). 

Table 60. SPI DC Electrical Characteristics (continued)

Characteristic Symbol Condition Min Max Unit

Output Z0 = 50  NVDD/2
RL = 50 
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TMS E4 I NVDD 4

TRST E5 I NVDD 4

TEST

TEST_MODE F4 I NVDD 6

DEBUG

QUIESCE F5 O NVDD —

System Control

HRESET F2 I/O NVDD 1

PORESET F3 I NVDD —

SRESET F1 I NVDD —

Clocks

SYS_CR_CLK_IN U26 I NVDD —

SYS_CR_CLK_OUT U25 O NVDD —

SYS_CLK_IN U23 I NVDD —

USB_CR_CLK_IN T26 I NVDD —

USB_CR_CLK_OUT R26 O NVDD —

USB_CLK_IN T22 I NVDD —

PCI_SYNC_OUT U24 O NVDD 3

RTC_PIT_CLOCK R22 I NVDD —

PCI_SYNC_IN T24 I NVDD —

MISC

THERM0 N1 I NVDD 7

THERM1 N3 I NVDD 7

PCI

PCI_INTA AF7 O NVDD —

PCI_RESET_OUT AB11 O NVDD —

PCI_AD0 AB20 I/O NVDD —

PCI_AD1 AF23 I/O NVDD —

PCI_AD2 AF22 I/O NVDD —

PCI_AD3 AB19 I/O NVDD —

PCI_AD4 AE22 I/O NVDD —

PCI_AD5 AF21 I/O NVDD —

Table 62. MPC8313E TEPBGAII Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Note
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PCI_AD6 AD19 I/O NVDD —

PCI_AD7 AD20 I/O NVDD —

PCI_AD8 AC18 I/O NVDD —

PCI_AD9 AD18 I/O NVDD —

PCI_AD10 AB18 I/O NVDD —

PCI_AD11 AE19 I/O NVDD —

PCI_AD12 AB17 I/O NVDD —

PCI_AD13 AE18 I/O NVDD —

PCI_AD14 AD17 I/O NVDD —

PCI_AD15 AF19 I/O NVDD —

PCI_AD16 AB14 I/O NVDD —

PCI_AD17 AF15 I/O NVDD —

PCI_AD18 AD14 I/O NVDD —

PCI_AD19 AE14 I/O NVDD —

PCI_AD20 AF12 I/O NVDD —

PCI_AD21 AE11 I/O NVDD —

PCI_AD22 AD12 I/O NVDD —

PCI_AD23 AB13 I/O NVDD —

PCI_AD24 AF9 I/O NVDD —

PCI_AD25 AD11 I/O NVDD —

PCI_AD26 AE10 I/O NVDD —

PCI_AD27 AB12 I/O NVDD —

PCI_AD28 AD10 I/O NVDD —

PCI_AD29 AC10 I/O NVDD —

PCI_AD30 AF10 I/O NVDD —

PCI_AD31 AF8 I/O NVDD —

PCI_C/BE0 AC19 I/O NVDD —

PCI_C/BE1 AB15 I/O NVDD —

PCI_C/BE2 AF14 I/O NVDD —

PCI_C/BE3 AF11 I/O NVDD —

PCI_PAR AD16 I/O NVDD —

PCI_FRAME AF16 I/O NVDD 5

Table 62. MPC8313E TEPBGAII Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Note
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The primary clock source for the MPC8313E can be one of two inputs, SYS_CLK_IN or PCI_CLK, 
depending on whether the device is configured in PCI host or PCI agent mode. When the device is 
configured as a PCI host device, SYS_CLK_IN is its primary input clock. SYS_CLK_IN feeds the PCI 
clock divider (2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The 
CFG_CLKIN_DIV configuration input selects whether SYS_CLK_IN or SYS_CLK_IN/2 is driven out 
on the PCI_SYNC_OUT signal. The OCCR[PCICOEn] parameters select whether the PCI_SYNC_OUT 
is driven out on the PCI_CLK_OUTn signals.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to 
synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, 
with equal delay to all PCI agent devices in the system, to allow the device to function. When the device 
is configured as a PCI agent device, PCI_CLK is the primary input clock. When the device is configured 
as a PCI agent device the SYS_CLK_IN signal should be tied to VSS.

As shown in Figure 57, the primary clock input (frequency) is multiplied up by the system phase-locked 
loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the 
DDR controller (ddr_clk), and the internal clock for the local bus interface unit (lbc_clk). 

The csb_clk frequency is derived from a complex set of factors that can be simplified into the following 
equation:

csb_clk = {PCI_SYNC_IN × (1 + ~CFG_CLKIN_DIV)} × SPMF

In PCI host mode, PCI_SYNC_IN × (1 + ~CFG_CLKIN_DIV) is the SYS_CLK_IN frequency. 

The csb_clk serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up 
the csb_clk frequency to create the internal clock for the e300 core (core_clk). The system and core PLL 
multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL) 
which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, “Reset, 
Clocking, and Initialization,” in the MPC8313E PowerQUICC II Pro Integrated Processor Family 
Reference Manual, for more information on the clock subsystem.

The internal ddr_clk frequency is determined by the following equation:

ddr_clk = csb_clk × (1 + RCWL[DDRCM])

Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider 
(2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate 
is the same frequency as ddr_clk.

The internal lbc_clk frequency is determined by the following equation:

lbc_clk = csb_clk × (1 + RCWL[LBCM])

Note that lbc_clk is not the external local bus frequency; lbc_clk passes through the a LBC clock divider 
to create the external local bus clock outputs (LCLK[0:1]). The LBC clock divider ratio is controlled by 
LCRR[CLKDIV].

In addition, some of the internal units may be required to be shut off or operate at lower frequency than 
the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory mapped 
register after the device comes out of reset. Table 63 specifies which units have a configurable clock 
frequency.



MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4

80 Freescale Semiconductor
 

As described in Section 20, “Clocking,” the LBCM, DDRCM, and SPMF parameters in the reset 
configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the 
primary clock input (SYS_CLK_IN or PCI_SYNC_IN) and the internal coherent system bus clock 
(csb_clk). This table shows the expected frequency values for the CSB frequency for select csb_clk to 
SYS_CLK_IN/PCI_SYNC_IN ratios. 

0100  4

0101  5

0110  6

0111–1111 Reserved

Note:  
1. If RCWL[DDRCM] and RCWL[LBCM] are both cleared, the system 

PLL VCO frequency = (CSB frequency) × (System PLL VCO Divider).
2. If either RCWL[DDRCM] or RCWL[LBCM] are set, the system PLL 

VCO frequency = 2 × (CSB frequency) × (System PLL VCO Divider). 
3. The VCO divider needs to be set properly so that the System PLL 

VCO frequency is in the range of 450–750 MHz

Table 66. CSB Frequency Options 

CFG_CLKIN_DIV
at Reset1

1 CFG_CLKIN_DIV select the ratio between SYS_CLK_IN and PCI_SYNC_OUT.

SPMF
csb_clk :Input 
Clock Ratio2

2 SYS_CLK_IN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

Input Clock Frequency (MHz)2

24 25 33.33 66.67

csb_clk Frequency (MHz)

High 0010 2:1 133

High 0011 3:1 100

High 0100 4:1 100 133

High 0101 5:1 120 125 167

High 0110 6:1 144 150

Low 0010 2:1 133

Low 0011 3:1 100

Low 0100 4:11 100 133

Low 0101 5:1 120 125 167

Low 0110 6:1 144 150

Table 65. System PLL Multiplication Factors (continued)

RCWL[SPMF]
System PLL 

Multiplication Factor
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20.3 Example Clock Frequency Combinations
This table shows several possible frequency combinations that can be selected based on the indicated input 
reference frequencies, with RCWLR[LBCM] = 0 and RCWLR[DDRCM] =1, such that the LBC operates 
with a frequency equal to the frequency of csb_clk and the DDR controller operates at twice the frequency 
of csb_clk.

21 Thermal
This section describes the thermal specifications of the MPC8313E. 

21.1 Thermal Characteristics
This table provides the package thermal characteristics for the 516, 27  27 mm TEPBGAII.

Table 68. System Clock Frequencies

LBC(lbc_clk) e300 Core(core_clk)

SYS_
CLK_IN/
PCI_CLK

SPMF1 VCOD2 VCO3 CSB
(csb_clk)4

DDR
(ddr_clk)

/2 /4 /8
USB 
ref5

1 1.5 2 2.5 3

25.0 6 2 600.0 150.0 300.0 — 37.5 18.8 Note6 150.0 225 300 375 —

25.0 5 2 500.0 125.0 250.0 62.5 31.25 15.6 Note 6 125.0 188 250 313 375

33.3 5 2 666.0 166.5 333.0 — 41.63 20.8 Note 6 166.5 250 333 — —

33.3 4 2 532.8 133.2 266.4 66.6 33.3 16.7 Note 6 133.2 200 266 333 400

48.0 3 2 576.0 144.0 288.0 — 36 18.0 48.0 144.0 216 288 360 —

66.7 2 2 533.4 133.3 266.7 66.7 33.34 16.7 Note 6 133.3 200 267 333 400

Note:  
1. System PLL multiplication factor.
2. System PLL VCO divider.
3. When considering operating frequencies, the valid core VCO operating range of 400–800 MHz must not be violated.
4. Due to erratum eTSEC40, csb_clk frequencies of less than 133 MHz do not support gigabit Ethernet data rates. The core 

frequency must be 333 MHz for gigabit Ethernet operation. This erratum will be fixed in revision 2 silicon.
5. Frequency of USB PLL input reference.
6. USB reference clock must be supplied from a separate source as it must be 24 or 48 MHz, the USB reference must be 

supplied from a separate external source using USB_CLK_IN.

Table 69. Package Thermal Characteristics for TEPBGAII

Characteristic Board Type Symbol TEPBGA II Unit Note

Junction-to-ambient natural convection Single layer board (1s) RJA 25 °C/W 1, 2

Junction-to-ambient natural convection Four layer board (2s2p) RJA 18 °C/W 1, 2, 3

Junction-to-ambient (@200 ft/min) Single layer board (1s) RJMA 20 °C/W 1, 3

Junction-to-ambient (@200 ft/min) Four layer board (2s2p) RJMA 15 °C/W 1, 3

Junction-to-board — RJB 10 °C/W 4
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21.2 Thermal Management Information
For the following sections, PD = (VDD  IDD) + PI/O, where PI/O is the power dissipation of the I/O drivers. 

21.2.1 Estimation of Junction Temperature with Junction-to-Ambient 
Thermal Resistance

An estimation of the chip junction temperature, TJ, can be obtained from the equation:

TJ = TA + (RJA  PD)

where:
TJ = junction temperature (C)
TA = ambient temperature for the package (C)
RJA = junction-to-ambient thermal resistance (C/W)
PD = power dissipation in the package (W) 

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy 
estimation of thermal performance. As a general statement, the value obtained on a single layer board is 
appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal 
planes is usually appropriate if the board has low power dissipation and the components are well separated. 
Test cases have demonstrated that errors of a factor of two (in the quantity TJ – TA) are possible.

21.2.2 Estimation of Junction Temperature with Junction-to-Board 
Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal 
resistance. The thermal performance of any component is strongly dependent on the power dissipation of 
surrounding components. In addition, the ambient temperature varies widely within the application. For 
many natural convection and especially closed box applications, the board temperature at the perimeter 

Junction-to-case — RJC 8 °C/W 5

Junction-to-package top Natural convection JT 7 °C/W 6

Note:  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) 

temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
3. Per JEDEC JESD51-6 with the board horizontal.
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on 

the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 

1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature 

per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

Table 69. Package Thermal Characteristics for TEPBGAII (continued)

Characteristic Board Type Symbol TEPBGA II Unit Note
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RJC is device related and cannot be influenced by the user. The user controls the thermal environment to 
change the case-to-ambient thermal resistance, RCA. For instance, the user can change the size of the heat 
sink, the airflow around the device, the interface material, the mounting arrangement on the printed-circuit 
board, or change the thermal dissipation on the printed-circuit board surrounding the device. 

To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been 
simulated with a few commercially available heat sinks. The heat sink choice is determined by the 
application environment (temperature, airflow, adjacent component power dissipation) and the physical 
space available. Because there is not a standard application environment, a standard heat sink is not 
required.

Accurate thermal design requires thermal modeling of the application environment using computational 
fluid dynamics software which can model both the conduction cooling and the convection cooling of the 
air moving through the application. Simplified thermal models of the packages can be assembled using the 
junction-to-case and junction-to-board thermal resistances listed in Table 70. More detailed thermal 
models can be made available on request.

Table 70. Thermal Resistance for TEPBGAII with Heat Sink in Open Flow

Heat Sink Assuming Thermal Grease Airflow
Thermal Resistance 

(C/W)

Wakefield 53  53  2.5 mm pin fin Natural convection 13.0

0.5 m/s 10.6

1 m/s 9.7

2 m/s 9.2

4 m/s 8.9

Aavid 35   31  23 mm pin fin Natural convection 14.4

0.5 m/s 11.3

1 m/s 10.5

2 m/s 9.9

4 m/s 9.4

Aavid 30  30  9.4 mm pin fin Natural convection 16.5

0.5 m/s 13.5

1 m/s 12.1

2 m/s 10.9

4 m/s 10.0

Aavid 43  41  16.5 mm pin fin Natural convection 14.5

0.5 m/s 11.7

1 m/s 10.5

2 m/s 9.7

4 m/s 9.2
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• Output signals on the SerDes interface are fed from the XPADVDD power plane. Input signals and 
sensitive transceiver analog circuits are on the XCOREVDD supply.

• Power: XPADVDD consumes less than 300 mW; XCOREVDD + SDAVDD consumes less than 
750 mW.

22.3 Decoupling Recommendations
Due to large address and data buses, and high operating frequencies, the device can generate transient 
power surges and high frequency noise in its power supply, especially while driving large capacitive loads. 
This noise must be prevented from reaching other components in the MPC8313E system, and the 
MPC8313E itself requires a clean, tightly regulated source of power. Therefore, it is recommended that 
the system designer place at least one decoupling capacitor at each VDD, NVDD, GVDD, LVDD, LVDDA, 
and LVDDB pin of the device. These decoupling capacitors should receive their power from separate VDD, 
NVDD, GVDD, LVDD, LVDDA, LVDDB, and VSS power planes in the PCB, utilizing short traces to 
minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. 
Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology) 
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, 
feeding the VDD, NVDD, GVDD, LVDD, LVDDA, and LVDDB planes, to enable quick recharging of the 
smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating 
to ensure the quick response time necessary. They should also be connected to the power and ground 
planes through two vias to minimize inductance. Suggested bulk capacitors—100 to 330 µF (AVX TPS 
tantalum or Sanyo OSCON). However, customers should work directly with their power regulator vendor 
for best values and types of bulk capacitors.

22.4 SerDes Block Power Supply Decoupling Recommendations
The SerDes block requires a clean, tightly regulated source of power (XCOREVDD and XPADVDD) to 
ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling 
scheme is outlined below.

Only SMT capacitors should be used to minimize inductance. Connections from all capacitors to power 
and ground should be done with multiple vias to further reduce inductance.

• First, the board should have at least 10  10-nF SMT ceramic chip capacitors as close as possible 
to the supply balls of the device. Where the board has blind vias, these capacitors should be placed 
directly below the chip supply and ground connections. Where the board does not have blind vias, 
these capacitors should be placed in a ring around the device as close to the supply and ground 
connections as possible.

• Second, there should be a 1-µF ceramic chip capacitor from each SerDes supply (XCOREVDD and 
XPADVDD) to the board ground plane on each side of the device. This should be done for all 
SerDes supplies.


