

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XFI

Product Status	Active
Core Processor	PowerPC e300c3
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	267MHz
Co-Processors/DSP	Security; SEC 2.2
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	Cryptography
Package / Case	516-BBGA Exposed Pad
Supplier Device Package	516-TEPBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8313ecvraddc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Full and half-duplex Ethernet support (1000 Mbps supports only full-duplex):
 - IEEE 802.3 full-duplex flow control (automatic PAUSE frame generation or software-programmed PAUSE frame generation and recognition)
 - Programmable maximum frame length supports jumbo frames (up to 9.6 Kbytes) and IEEE 802.1 virtual local area network (VLAN) tags and priority
 - VLAN insertion and deletion
 - Per-frame VLAN control word or default VLAN for each eTSEC
 - Extracted VLAN control word passed to software separately
 - Retransmission following a collision
 - CRC generation and verification of inbound/outbound packets
 - Programmable Ethernet preamble insertion and extraction of up to 7 bytes
 - MAC address recognition:
 - Exact match on primary and virtual 48-bit unicast addresses
 - VRRP and HSRP support for seamless router fail-over
 - Up to 16 exact-match MAC addresses supported
 - Broadcast address (accept/reject)
 - Hash table match on up to 512 multicast addresses
 - Promiscuous mode
- Buffer descriptors backward compatible with MPC8260 and MPC860T 10/100 Ethernet programming models
- RMON statistics support
- 10-Kbyte internal transmit and 2-Kbyte receive FIFOs
- MII management interface for control and status

1.8 Programmable Interrupt Controller (PIC)

The programmable interrupt controller (PIC) implements the necessary functions to provide a flexible solution for general-purpose interrupt control. The PIC programming model supports 5 external and 34 internal discrete interrupt sources. Interrupts can also be redirected to an external interrupt controller.

1.9 Power Management Controller (PMC)

The MPC8313E power management controller includes the following features:

- Provides power management when the device is used in both host and agent modes
- Supports PCI power management 1.2 D0, D1, D2, D3hot, and D3cold states
- On-chip split power supply controlled through external power switch for minimum standby power
- Support for PME generation in PCI agent mode, PME detection in PCI host mode
- Supports wake-up from Ethernet (Magic Packet), USB, GPIO, and PCI (PME input as host)

Characteristic	Symbol	Recommended Value ¹	Unit	Current Requirement
Core supply voltage	V _{DD}	1.0 V ± 50 mV	V	469 mA
Internal core logic constant power	V _{DDC}	1.0 V ± 50 mV	V	377 mA
SerDes internal digital power	XCOREV _{DD}	1.0	V	170 mA
SerDes internal digital ground	XCOREV _{SS}	0.0	V	—
SerDes I/O digital power	XPADV _{DD}	1.0	V	10 mA
SerDes I/O digital ground	XPADV _{SS}	0.0	V	_
SerDes analog power for PLL	SDAV _{DD}	1.0 V ± 50 mV	V	10 mA
SerDes analog ground for PLL	SDAV _{SS}	0.0	V	—
Dedicated 3.3 V analog power for USB PLL	USB_PLL_PWR3	3.3 V ± 300 mV	V	2–3 mA
Dedicated 1.0 V analog power for USB PLL	USB_PLL_PWR1	1.0 V ± 50 mV	V	2–3 mA
Dedicated analog ground for USB PLL	USB_PLL_GND	0.0	V	—
Dedicated USB power for USB bias circuit	USB_VDDA_BIAS	3.3 V ± 300 mV	V	4–5 mA
Dedicated USB ground for USB bias circuit	USB_VSSA_BIAS	0.0	V	—
Dedicated power for USB transceiver	USB_VDDA	3.3 V ± 300 mV	V	75 mA
Dedicated ground for USB transceiver	USB_VSSA	0.0	V	
Analog power for e300 core APLL	AV _{DD1} ⁶	1.0 V ± 50 mV	V	2–3 mA
Analog power for system APLL	AV _{DD2} ⁶	1.0 V ± 50 mV	V	2–3 mA
DDR1 DRAM I/O voltage (333 MHz, 32-bit operation)	GV _{DD}	2.5 V ± 125 mV	V	131 mA
DDR2 DRAM I/O voltage (333 MHz, 32-bit operation)	GV _{DD}	1.8 V ± 80 mV	V	140 mA
Differential reference voltage for DDR controller	MV _{REF}	$\begin{array}{c} \mbox{1/2 DDR supply} \\ \mbox{(0.49 \times GV_{DD} to} \\ \mbox{0.51 \times GV_{DD})} \end{array}$	V	_
Standard I/O voltage	NV _{DD}	$3.3 \text{ V} \pm 300 \text{ mV}^2$	V	74 mA
eTSEC2 I/O supply	LV _{DDA}	2.5 V ± 125 mV/ 3.3 V ± 300 mV	V	22 mA
eTSEC1/USB DR I/O supply	LV _{DDB}	2.5 V ± 125 mV/ 3.3 V ± 300 mV	V	44 mA
Supply for eLBC IOs	LV _{DD}	3.3 V ± 300 mV	V	16 mA
Analog and digital ground	V _{SS}	0.0	V	_
Junction temperature range	T _A /T _J ³	0 to 105	°C	

Table 2. Recommended Operating Conditions

Table 2. Recommended Operating Conditions (continued)

|--|

Note:

- 1. GV_{DD}, NV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.
- 2. Some GPIO pins may operate from a 2.5-V supply when configured for other functions.
- 3. Min temperature is specified with T_A ; Max temperature is specified with T_J
- 4. All Power rails must be connected and power applied to the MPC8313 even if the IP interfaces are not used.
- 5. All I/O pins should be interfaced with peripherals operating at same voltage level.
- This voltage is the input to the filter discussed in Section 22.2, "PLL Power Supply Filtering" and not necessarily the voltage at the AVDD pin, which may be reduced from VDD by the filter.

This figure shows the undershoot and overshoot voltages at the interfaces of the MPC8313E.

Figure 2. Overshoot/Undershoot Voltage for GV_{DD}/NV_{DD}/LV_{DD}

2.1.3 Output Driver Characteristics

This table provides information on the characteristics of the output driver strengths.

Table 3. Output Drive Capability

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	42	NV _{DD} = 3.3 V
PCI signals	25	
DDR signal	18	GV _{DD} = 2.5 V

4.2 AC Electrical Characteristics

The primary clock source for the MPC8313E can be one of two inputs, SYS_CLK_IN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. This table provides the system clock input (SYS_CLK_IN/PCI_CLK) AC timing specifications for the MPC8313E.

Parameter/Condition	Symbol	Min	Тур	Мах	Unit	Note
SYS_CLK_IN/PCI_CLK frequency	fsys_clk_in	24	_	66.67	MHz	1
SYS_CLK_IN/PCI_CLK cycle time	^t SYS_CLK_IN	15	_	_	ns	—
SYS_CLK_IN rise and fall time	t _{KH} , t _{KL}	0.6	0.8	4	ns	2
PCI_CLK rise and fall time	t _{PCH} , t _{PCL}	0.6	0.8	1.2	ns	2
SYS_CLK_IN/PCI_CLK duty cycle	t _{KHK} /t _{SYS_CLK_IN}	40	_	60	%	3
SYS_CLK_IN/PCI_CLK jitter	_	_	_	±150	ps	4, 5

Table 8. SYS_CLK_IN AC Timing Specifications

Notes:

1. Caution: The system, core, security block must not exceed their respective maximum or minimum operating frequencies.

2. Rise and fall times for SYS_CLK_IN/PCI_CLK are measured at 0.4 and 2.4 V.

3. Timing is guaranteed by design and characterization.

4. This represents the total input jitter-short term and long term-and is guaranteed by design.

5. The SYS_CLK_IN/PCI_CLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track SYS_CLK_IN drivers with the specified jitter.

5 **RESET** Initialization

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8313E.

5.1 **RESET DC Electrical Characteristics**

This table provides the DC electrical characteristics for the RESET pins.

Table 9. RESET Pins DC Electrical Characteristic
--

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.1	NV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	$0~V \leq V_{IN} \leq NV_{DD}$	—	±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

5.2 **RESET AC Electrical Characteristics**

This table provides the reset initialization AC timing specifications.

Parameter/Condition	Min	Мах	Unit	Note
Required assertion time of HRESET or SRESET (input) to activate reset flow	32	_	t _{PCI_SYNC_IN}	1
Required assertion time of PORESET with stable clock and power applied to SYS_CLK_IN when the device is in PCI host mode	32		tsys_clk_in	2
Required assertion time of PORESET with stable clock and power applied to PCI_SYNC_IN when the device is in PCI agent mode	32	_	t _{PCI_SYNC_IN}	1
HRESET assertion (output)	512	_	t _{PCI_SYNC_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:3] and CFG_CLK_IN_DIV) with respect to negation of PORESET when the device is in PCI host mode	4	_	t _{SYS_CLK_IN}	2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the device is in PCI agent mode	4	_	^t PCI_SYNC_IN	1
Input hold time for POR configuration signals with respect to negation of HRESET	0	_	ns	_
Time for the device to turn off POR configuration signal drivers with respect to the assertion of $\overrightarrow{\text{HRESET}}$	_	4	ns	3
Time for the device to turn on POR configuration signal drivers with respect to the negation of $\overline{\text{HRESET}}$	1	-	t _{PCI_SYNC_IN}	1, 3

Notes:

1. t_{PCI_SYNC_IN} is the clock period of the input clock applied to PCI_SYNC_IN. When the device is In PCI host mode the

primary clock is applied to the SYS_CLK_IN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. 2. t_{SYS_CLK_IN} is the clock period of the input clock applied to SYS_CLK_IN. It is only valid when the device is in PCI host mode.

POR configuration signals consists of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.

This table provides the PLL lock times.

Table 11. PLL Lock Times

Parameter/Condition	Min	Мах	Unit	Note
PLL lock times	_	100	μs	

6 DDR and DDR2 SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface. Note that DDR SDRAM is $GV_{DD}(typ) = 2.5 \text{ V}$ and DDR2 SDRAM is $GV_{DD}(typ) = 1.8 \text{ V}$.

6.2.2 DDR and DDR2 SDRAM Output AC Timing Specifications

Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications for Rev. 1.0 Silicon

Parameter	Symbol ¹	Min	Мах	Unit	Note
MCK[<i>n</i>] cycle time, MCK[<i>n</i>]/MCK[<i>n</i>] crossing	t _{MCK}	6	10	ns	2
ADDR/CMD output setup with respect to MCK 333 MHz 266 MHz	^t DDKHAS	2.1 2.5	_	ns	3
ADDR/CMD output hold with respect to MCK 333 MHz 266 MHz	^t ddkhax	2.4 3.15		ns	3
MCS[<i>n</i>] output setup with respect to MCK 333 MHz 266 MHz	t _{DDKHCS}	2.4 3.15		ns	3
MCS[<i>n</i>] output hold with respect to MCK 333 MHz 266 MHz	^t DDKHCX	2.4 3.15	_	ns	3
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4
MDQ//MDM output setup with respect to MDQS 333 MHz 266 MHz	^t DDKHDS, ^t DDKLDS	800 900	—	ps	5
MDQ//MDM output hold with respect to MDQS 333 MHz 266 MHz	^t DDKHDX, ^t DDKLDX	900 1100		ps	5
MDQS preamble start	t _{DDKHMP}	$-0.5\times t_{\text{MCK}}-0.6$	$-0.5 imes t_{MCK}$ + 0.6	ns	6
MDQS epilogue end	t _{DDKHME}	-0.6	0.6	ns	6

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
 </sub>
- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
- 3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ//MDM/MDQS.
- 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8313E PowerQUICC II Pro Integrated Processor Family Reference Manual, for a description and understanding of the timing modifications enabled by use of these bits.
- Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.
- 6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that t_{DDKHMP} follows the symbol conventions described in note 1.

Parameter	Symbol ¹	Min	Max	Unit	Note
MCK[<i>n</i>] cycle time, MCK[<i>n</i>]/MCK[<i>n</i>] crossing	t _{MCK}	6	10	ns	2
ADDR/CMD output setup with respect to MCK 333 MHz 266 MHz	t _{DDKHAS}	2.1 2.5	_	ns	3
ADDR/CMD output hold with respect to MCK 333 MHz 266 MHz	t _{DDKHAX}	2.0 2.7	_	ns	3
MCS[<i>n</i>] output setup with respect to MCK 333 MHz 266 MHz	t _{DDKHCS}	2.1 3.15	_	ns	3
MCS[<i>n</i>] output hold with respect to MCK 333 MHz 266 MHz	t _{DDKHCX}	2.0 2.7	_	ns	3
MCK to MDQS Skew	t _{DDKHMH}	-0.6	0.6	ns	4
MDQ//MDM output setup with respect to MDQS 333 MHz 266 MHz	^t DDKHDS, ^t DDKLDS	800 900		ps	5
MDQ//MDM output hold with respect to MDQS 333 MHz 266 MHz	^t DDKHDX, ^t DDKLDX	750 1000		ps	5
MDQS preamble start	t _{DDKHMP}	$-0.5\times t_{MCK}-0.6$	$-0.5 \times t_{\text{MCK}} + 0.6$	ns	6
MDQS epilogue end	t _{DDKHME}	-0.6	0.6	ns	6

Table 21. DDR and DDR2 SDRAM Output AC Timing Specifications for Silicon Rev 2.x or Later

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
 </sub>
- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
- 3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ//MDM/MDQS.
- 4. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8313E PowerQUICC II Pro Integrated Processor Family Reference Manual, for a description and understanding of the timing modifications enabled by use of these bits.
- Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.
- 6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that t_{DDKHMP} follows the symbol conventions described in note 1.

This figure provides the AC test load for the DDR bus.

Figure 7. DDR AC Test Load

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface.

7.1 DUART DC Electrical Characteristics

This table provides the DC electrical characteristics for the DUART interface.

Parameter	Symbol	Min	Max	Unit
High-level input voltage	V _{IH}	2.0	NV _{DD} + 0.3	V
Low-level input voltage NV _{DD}	V _{IL}	-0.3	0.8	V
High-level output voltage, $I_{OH} = -100 \ \mu A$	V _{OH}	$NV_{DD} - 0.2$	—	V
Low-level output voltage, I _{OL} = 100 μA	V _{OL}	—	0.2	V
Input current (0 V \leq V _{IN} \leq NV _{DD})	I _{IN}	—	±5	μA

7.2 DUART AC Electrical Specifications

This table provides the AC timing parameters for the DUART interface.

Table 23. DUART AC Timing Specifications

Parameter	Value	Unit	Note
Minimum baud rate	256	baud	
Maximum baud rate	> 1,000,000	baud	1
Oversample rate	16	_	2

Notes:

1. Actual attainable baud rate is limited by the latency of interrupt processing.

2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII management.

This figure shows the MII transmit AC timing diagram.

Figure 8. MII Transmit AC Timing Diagram

8.2.1.2 MII Receive AC Timing Specifications

This table provides the MII receive AC timing specifications.

Table 27. MII Receive AC Timing Specifications

At recommended operating conditions with $\text{LV}_{\text{DDA}}/\text{LV}_{\text{DDB}}/\text{NV}_{\text{DD}}$ of 3.3 V \pm 0.3 V.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise V _{IL} (min) to V _{IH} (max)	t _{MRXR}	1.0	—	4.0	ns
RX_CLK clock fall time V _{IH} (max) to V _{IL} (min)	t _{MRXF}	1.0	—	4.0	ns

Note:

- 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}
- 2. The frequency of RX_CLK should not exceed the TX_CLK by more than 300 ppm

This figure provides the AC test load for TSEC.

Figure 9. TSEC AC Test Load

- The SD_REF_CLK and SD_REF_CLK are internally AC-coupled differential inputs as shown in Figure 23. Each differential clock input (SD_REF_CLK or SD_REF_CLK) has a 50-Ω termination to XCOREV_{SS} followed by on-chip AC coupling.
- The external reference clock driver must be able to drive this termination.
- The SerDes reference clock input can be either differential or single-ended. Refer to the differential mode and single-ended mode description below for further detailed requirements.
- The maximum average current requirement that also determines the common mode voltage range:
 - When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA (refer to the following bullet for more detail), since the input is AC-coupled on-chip.
 - This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V/50 = 8 mA) while the minimum common mode input level is 0.1 V above XCOREV_{SS}. For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 to 16 mA (0–0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.
 - If the device driving the SD_REF_CLK and $\overline{\text{SD}_{\text{REF}}}$ inputs cannot drive 50 Ω to XCOREV_{SS} DC, or it exceeds the maximum input current limitations, then it must be AC-coupled off-chip.
- The input amplitude requirement. This requirement is described in detail in the following sections.

Figure 23. Receiver of SerDes Reference Clocks

9.2.2 DC Level Requirement for SerDes Reference Clocks

The DC level requirement for the MPC8313E SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs as described below.

- Differential mode
 - The input amplitude of the differential clock must be between 400 and 1600 mV differential peak-to-peak (or between 200 and 800 mV differential peak). In other words, each signal wire

assumes that the LVPECL clock driver's output impedance is 50 Ω . R1 is used to DC-bias the LVPECL outputs prior to AC coupling. Its value could be ranged from 140 to 240 Ω depending on the clock driver vendor's requirement. R2 is used together with the SerDes reference clock receiver's 50- Ω termination resistor to attenuate the LVPECL output's differential peak level such that it meets the MPC8313E SerDes3 reference clock's differential input amplitude requirement (between 200 and 800 mV differential peak). For example, if the LVPECL output's differential peak is 900 mV and the desired SerDes reference clock input amplitude is selected as 600 mV, the attenuation factor is 0.67, which requires R2 = 25 Ω . Consult with the clock driver chip manufacturer to verify whether this connection scheme is compatible with a particular clock driver chip.

Figure 29. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for a single-ended clock driver. It assumes the DC levels of the clock driver are compatible with the MPC8313E SerDes reference clock input's DC requirement.

Figure 30. Single-Ended Connection (Reference Only)

This figure shows the AC timing diagram for the I^2C bus.

Figure 47. I²C Bus AC Timing Diagram

14 PCI

This section describes the DC and AC electrical specifications for the PCI bus.

14.1 PCI DC Electrical Characteristics

This table provides the DC electrical characteristics for the PCI interface.

Table 50. PCI DC Electrical Characteristics¹

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	$0.5 imes NV_{DD}$	NV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	$V_{OUT} \le V_{OL}$ (max)	-0.5	$0.3\times \text{NV}_{\text{DD}}$	V
High-level output voltage	V _{OH}	$NV_{DD} = min, I_{OH} = -100 \ \mu A$	$0.9 imes NV_{DD}$	-	V
Low-level output voltage	V _{OL}	NV_{DD} = min, I_{OL} = 100 μ A	-	$0.1 imes NV_{DD}$	V
Input current	I _{IN}	$0~V \leq V_{IN} \leq NV_{DD}$		±5	μΑ

Note:

1. Note that the symbol V_{IN} , in this case, represents the NV_{IN} symbol referenced in Table 1 and Table 2.

14.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus. Note that the PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the MPC8313E is configured as a host or agent device.

This table shows the PCI AC timing specifications at 66 MHz.

Table 51. PCI AC Timing Specifications at 66 MHz

Parameter	Symbol ¹	Min	Max	Unit	Note
Clock to output valid	^t PCKHOV	—	6.0	ns	2
Output hold from clock	t _{PCKHOX}	1	—	ns	2

			Supply	NOTE
MEMC_MDQ29	A20	I/O	GV _{DD}	
MEMC_MDQ30	C22	I/O	${\rm GV}_{\rm DD}$	
MEMC_MDQ31	B22	I/O	${\rm GV}_{\rm DD}$	
MEMC_MDM0	B7	0	${\rm GV}_{\rm DD}$	
MEMC_MDM1	E6	0	${\rm GV}_{\rm DD}$	
MEMC_MDM2	E18	0	GV_{DD}	
MEMC_MDM3	E20	0	GV_{DD}	
MEMC_MDQS0	A7	I/O	${\rm GV}_{\rm DD}$	
MEMC_MDQS1	E7	I/O	${\rm GV}_{\rm DD}$	
MEMC_MDQS2	B19	I/O	${\rm GV}_{\rm DD}$	
MEMC_MDQS3	A23	I/O	GV _{DD}	
MEMC_MBA0	D15	0	GV_{DD}	
MEMC_MBA1	A18	0	GV _{DD}	
MEMC_MBA2	A15	0	GV _{DD}	_
MEMC_MA0	E12	0	GV _{DD}	_
MEMC_MA1	D11	0	GV _{DD}	_
MEMC_MA2	B11	0	GV _{DD}	_
MEMC_MA3	A11	0	GV _{DD}	_
MEMC_MA4	A12	0	GV _{DD}	_
MEMC_MA5	E13	0	GV _{DD}	_
MEMC_MA6	C12	0	GV _{DD}	_
MEMC_MA7	E14	0	GV _{DD}	_
MEMC_MA8	B15	0	GV _{DD}	_
MEMC_MA9	C17	0	GV _{DD}	_
MEMC_MA10	C13	0	GV _{DD}	_
MEMC_MA11	A16	0	GV _{DD}	_
MEMC_MA12	C15	0	GV _{DD}	
MEMC_MA13	C16	0	GV _{DD}	
MEMC_MA14	E15	0	GV _{DD}	_
MEMC_MWE	B18	0	GV _{DD}	
MEMC_MRAS	C11	0	GV _{DD}	
MEMC_MCAS	B10	0	GV _{DD}	_

Table 62. MPC8313E TEPBGAII Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Note
PCI_AD6	AD19	I/O	NV_{DD}	
PCI_AD7	AD20	I/O	NV_{DD}	_
PCI_AD8	AC18	I/O	NV_{DD}	_
PCI_AD9	AD18	I/O	NV_{DD}	_
PCI_AD10	AB18	I/O	NV_{DD}	_
PCI_AD11	AE19	I/O	NV _{DD}	_
PCI_AD12	AB17	I/O	NV _{DD}	_
PCI_AD13	AE18	I/O	NV _{DD}	_
PCI_AD14	AD17	I/O	NV _{DD}	_
PCI_AD15	AF19	I/O	NV _{DD}	_
PCI_AD16	AB14	I/O	NV_{DD}	_
PCI_AD17	AF15	I/O	NV_{DD}	_
PCI_AD18	AD14	I/O	NV_{DD}	_
PCI_AD19	AE14	I/O	NV_{DD}	_
PCI_AD20	AF12	I/O	NV_{DD}	_
PCI_AD21	AE11	I/O	NV_{DD}	_
PCI_AD22	AD12	I/O	NV_{DD}	_
PCI_AD23	AB13	I/O	NV_{DD}	_
PCI_AD24	AF9	I/O	NV_{DD}	_
PCI_AD25	AD11	I/O	NV_{DD}	_
PCI_AD26	AE10	I/O	NV_{DD}	_
PCI_AD27	AB12	I/O	NV_{DD}	_
PCI_AD28	AD10	I/O	NV_{DD}	_
PCI_AD29	AC10	I/O	NV_{DD}	_
PCI_AD30	AF10	I/O	NV_{DD}	_
PCI_AD31	AF8	I/O	NV_{DD}	_
PCI_C/BE0	AC19	I/O	NV_{DD}	
PCI_C/BE1	AB15	I/O	NV_{DD}	_
PCI_C/BE2	AF14	I/O	NV_{DD}	—
PCI_C/BE3	AF11	I/O	NV_{DD}	—
PCI_PAR	AD16	I/O	NV_{DD}	—
PCI_FRAME	AF16	I/O	NV_{DD}	5

Table 62. MPC8313E TEPBGAII Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Note
PCI_TRDY	AD13	I/O	NV _{DD}	5
PCI_IRDY	AC15	I/O	NV _{DD}	5
PCI_STOP	AF13	I/O	NV _{DD}	5
PCI_DEVSEL	AC14	I/O	NV _{DD}	5
PCI_IDSEL	AF20	I	NV _{DD}	—
PCI_SERR	AE15	I/O	NV_{DD}	5
PCI_PERR	AD15	I/O	NV _{DD}	5
PCI_REQ0	AB10	I/O	NV _{DD}	—
PCI_REQ1/CPCI_HS_ES	AD9	I	NV _{DD}	—
PCI_REQ2	AD8	I	NV _{DD}	—
PCI_GNT0	AC11	I/O	NV _{DD}	—
PCI_GNT1/CPCI_HS_LED	AE7	0	NV _{DD}	—
PCI_GNT2/CPCI_HS_ENUM	AD7	0	NV _{DD}	—
M66EN	AD21	I	NV _{DD}	—
PCI_CLK0	AF17	0	NV _{DD}	—
PCI_CLK1	AB16	0	NV _{DD}	—
PCI_CLK2	AF18	0	NV _{DD}	—
PCI_PME	AD22	I/O	NV _{DD}	5
ETS	EC1/_USBULPI			
TSEC1_COL/USBDR_TXDRXD0	AD2	I/O	LV _{DDB}	—
TSEC1_CRS/USBDR_TXDRXD1	AC3	I/O	LV _{DDB}	—
TSEC1_GTX_CLK/USBDR_TXDRXD2	AF3	I/O	LV _{DDB}	3, 12
TSEC1_RX_CLK/USBDR_TXDRXD3	AE3	I/O	LV _{DDB}	—
TSEC1_RX_DV/USBDR_TXDRXD4	AD3	I/O	LV _{DDB}	—
TSEC1_RXD3/USBDR_TXDRXD5	AC6	I/O	LV _{DDB}	—
TSEC1_RXD2/USBDR_TXDRXD6	AF4	I/O	LV _{DDB}	—
TSEC1_RXD1/USBDR_TXDRXD7	AB6	I/O	LV _{DDB}	—
TSEC1_RXD0/USBDR_NXT/TSEC_1588_TRIG1	AB5	I	LV _{DDB}	—
TSEC1_RX_ER/USBDR_DIR/TSEC_1588_TRIG2	AD4	I	LV _{DDB}	—
TSEC1_TX_CLK/USBDR_CLK/TSEC_1588_CLK	AF5	I	LV _{DDB}	—
TSEC1_TXD3/TSEC_1588_GCLK	AE6	0	LV _{DDB}	—
TSEC1_TXD2/TSEC_1588_PP1	AC7	0	LV _{DDB}	

Table 62. MPC8313E TEPBGAII Pinout Listing (continued)

20 Clocking

This figure shows the internal distribution of clocks within the MPC8313E.

² Multiplication factor L = 2, 3, 4, 5, and 6. Value is decided by RCWLR[SPMF].

22.2 PLL Power Supply Filtering

Each of the PLLs listed above is provided with power through independent power supply pins (AV_{DD1} , AV_{DD2} , and $SDAV_{DD}$, respectively). The AV_{DD} level should always be equivalent to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme such as the following.

There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to provide independent filter circuits as illustrated in Figure 58, one to each of the five AV_{DD} pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz range. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

This figure shows the PLL power supply filter circuits.

Low ESL Surface Mount Capacitors

Figure 58. PLL Power Supply Filter Circuit

The SDAV_{DD} signal provides power for the analog portions of the SerDes PLL. To ensure stability of the internal clock, the power supplied to the PLL is filtered using a circuit like the one shown in Figure 59. For maximum effectiveness, the filter circuit should be placed as closely as possible to the SDAV_{DD} ball to ensure it filters out as much noise as possible. The ground connection should be near the SDAV_{DD} ball. The 0.003- μ F capacitor is closest to the ball, followed by the two 2.2- μ F capacitors, and finally the 1- Ω resistor to the board supply plane. The capacitors are connected from traces from SDAV_{DD} to the ground plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All traces should be kept short, wide, and direct.

1. An 0805 sized capacitor is recommended for system initial bring-up.

Figure 59. SerDes PLL Power Supply Filter Circuit

Note the following:

• SDAV_{DD} should be a filtered version of XCOREV_{DD}.

This table summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal NV_{DD}, 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI Signals (Not Including PCI Output Clocks)	PCI Output Clocks (Including PCI_SYNC_OUT)	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	42 Target	20 Target	Z ₀	Ω
R _P	42 Target	25 Target	42 Target	20 Target	Z ₀	Ω
Differential	NA	NA	NA	NA	Z _{DIFF}	Ω

 Table 71. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, T_J = 105 °C.

22.7 Configuration Pin Muxing

The MPC8313E provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins while HRESET is asserted, is latched when PORESET deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

22.8 Pull-Up Resistor Requirements

The MPC8313E requires high resistance pull-up resistors (10 k Ω is recommended) on open drain type pins including I²C, and IPIC (integrated programmable interrupt controller).

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 61. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions because most have asynchronous behavior and spurious assertion, which give unpredictable results.

Refer to the PCI 2.2 Specification, for all pull-ups required for PCI.

22.9 JTAG Configuration Signals

Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in IEEE 1149.1, but is provided on any Freescale devices that are built on Power Architecture technology. The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, systems generally assert TRST during power-on reset. Because the JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying TRST to PORESET is not practical.

Notes:

 Some systems require power to be fed from the application board into the debugger repeater card via the COP header. In this case the resistor value for VDD_SENSE should be around 20 Ω.
 Key location; pin 14 is not physically present on the COP header.

Figure 61. JTAG Interface Connection

23 Ordering Information

Ordering information for the parts fully covered by this specification document is provided in Section 23.1, "Part Numbers Fully Addressed by this Document."

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MPC8313EEC Rev. 4 11/2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QorlQ is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. RapidIO is a registered trademark of the RapidIO Trade Association. IEEE 1588 and 1149.1 are registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE.

© 2007–2011 Freescale Semiconductor, Inc.

