

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

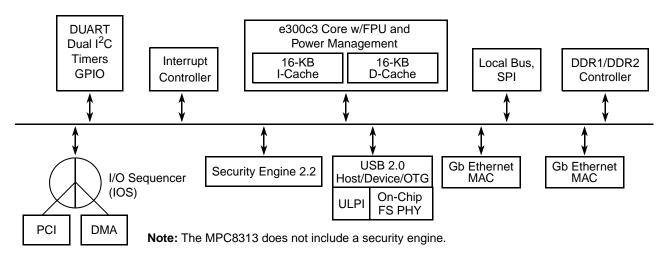
Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	PowerPC e300c3
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	333MHz
Co-Processors/DSP	Security; SEC 2.2
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography
Package / Case	516-BBGA Exposed Pad
Supplier Device Package	516-TEPBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8313evraffb


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Overview

The MPC8313E incorporates the e300c3 core, which includes 16 Kbytes of L1 instruction and data caches and on-chip memory management units (MMUs). The MPC8313E has interfaces to dual enhanced three-speed 10/100/1000 Mbps Ethernet controllers, a DDR1/DDR2 SDRAM memory controller, an enhanced local bus controller, a 32-bit PCI controller, a dedicated security engine, a USB 2.0 dual-role controller and an on-chip high-speed PHY, a programmable interrupt controller, dual I²C controllers, a 4-channel DMA controller, and a general-purpose I/O port. This figure shows a block diagram of the MPC8313E.

Figure 1. MPC8313E Block Diagram

The MPC8313E security engine (SEC 2.2) allows CPU-intensive cryptographic operations to be offloaded from the main CPU core. The security-processing accelerator provides hardware acceleration for the DES, 3DES, AES, SHA-1, and MD-5 algorithms.

1.1 MPC8313E Features

The following features are supported in the MPC8313E:

- Embedded PowerPCTM e300 processor core built on Power ArchitectureTM technology; operates at up to 333 MHz.
- High-performance, low-power, and cost-effective host processor
- DDR1/DDR2 memory controller—one 16-/32-bit interface at up to 333 MHz supporting both DDR1 and DDR2
- 16-Kbyte instruction cache and 16-Kbyte data cache, a floating point unit, and two integer units
- Peripheral interfaces such as 32-bit PCI interface with up to 66-MHz operation, 16-bit enhanced local bus interface with up to 66-MHz operation, and USB 2.0 (high speed) with an on-chip PHY.
- Security engine provides acceleration for control and data plane security protocols
- Power management controller for low-power consumption
- High degree of software compatibility with previous-generation PowerQUICC processor-based designs for backward compatibility and easier software migration

Interface	Parameter	GV _{DD} (1.8 V)	GV _{DD} (2.5 V)	NV _{DD} (3.3 V)	LV _{DDA} / LV _{DDB} (3.3 V)	LV _{DDA} / LV _{DDB} (2.5 V)	LV _{DD} (3.3 V)	Unit	Comments
USBDR controller load = 20 pF	60 MHz		_		0.078		—	W	
Other I/O	_	—		0.015	_		—	W	_

Table 5. MPC8313E Typical I/O Power Dissipation (continued)

This table shows the estimated core power dissipation of the MPC8313E while transitioning into the D3 warm low-power state.

Table 6. MPC8313E Low-Power Modes Power	Dissipation ¹
---	--------------------------

333-MHz Core, 167-MHz CSB ²	Rev. 1.0 ³	Rev. 2.x or Later ³	Unit
D3 warm	400	425	mW

Note:

- 1. All interfaces are enabled. For further power savings, disable the clocks to unused blocks.
- The interfaces are run at the following frequencies: DDR: 333 MHz, eLBC 83 MHz, PCI 33 MHz, eTSEC1 and TSEC2: 167 MHz, SEC: 167 MHz, USB: 167 MHz. See the SCCR register for more information.
- 3. This is maximum power in D3 Warm based on a voltage of 1.05 V and a junction temperature of 105°C.

4 Clock Input Timing

This section provides the clock input DC and AC electrical characteristics for the MPC8313E.

4.1 DC Electrical Characteristics

This table provides the system clock input (SYS_CLK_IN/PCI_SYNC_IN) DC timing specifications for the MPC8313E.

Parameter	Condition	Symbol	Min	Мах	Unit
Input high voltage	_	V _{IH}	2.4	NV _{DD} + 0.3	V
Input low voltage	_	V _{IL}	-0.3	0.4	V
SYS_CLK_IN input current	$0 \ V \ \leq V_{IN} \leq NV_{DD}$	I _{IN}	—	±10	μΑ
PCI_SYNC_IN input current	$\begin{array}{c} 0 \ V \leq V_{IN} \leq 0.5 \ V \\ or \\ NV_{DD} - 0.5 \ V \leq V_{IN} \leq NV_{DD} \end{array}$	I _{IN}	_	±10	μΑ
PCI_SYNC_IN input current	$0.5~\text{V} \leq \text{V}_{\text{IN}} \leq \text{NV}_{\text{DD}} - 0.5~\text{V}$	I _{IN}	—	±50	μΑ

Table 7. SYS_CLK_IN DC Electrical Characteristics

This table provides the input AC timing specifications for the DDR SDRAM when $GV_{DD}(typ) = 2.5 \text{ V}$.

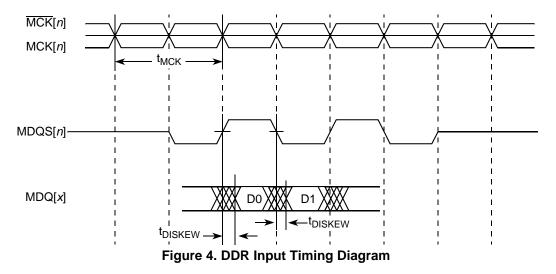
Table 18. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface

At recommended operating conditions with GV_{DD} of 2.5 ± 5%.

Parameter	Symbol	Min	Мах	Unit	Note
AC input low voltage	V _{IL}	—	MV _{REF} – 0.31	V	_
AC input high voltage	V _{IH}	MV _{REF} + 0.31	—	V	—

This table provides the input AC timing specifications for the DDR2 SDRAM interface.

Table 19. DDR and DDR2 SDRAM Input AC Timing Specifications


At recommended operating conditions. with GV_{DD} of 2.5 ± 5%.

Parameter	Symbol	Min	Мах	Unit	Note
Controller skew for MDQS—MDQ	t _{CISKEW}	_	_	ps	1, 2
333 MHz		-750	750		—
266 MHz	_	-750	750	_	—

Notes:

- 1. t_{CISKEW} represents the total amount of skew consumed by the controller between MDQS[*n*] and any corresponding bit that is captured with MDQS[*n*]. This should be subtracted from the total timing budget.
- The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called t_{DISKEW}. This can be determined by the following equation: t_{DISKEW} = ± (T/4 – abs(t_{CISKEW})) where T is the clock period and abs(t_{CISKEW}) is the absolute value of t_{CISKEW}.

This figure illustrates the DDR input timing diagram showing the t_{DISKEW} timing parameter.

8.1 Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all the media independent interface (MII), reduced gigabit media independent interface (RGMII), serial gigabit media independent interface (SGMII), and reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management data clock (MDC). The RGMII and RTBI interfaces are defined for 2.5 V, while the MII interface can be operated at 3.3 V. The RMII and SGMII interfaces can be operated at either 3.3 or 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for *Gigabit Ethernet Physical Layer Device Specification Version 1.2a* (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.5, "Ethernet Management Interface Electrical Characteristics."

8.1.1 **TSEC DC Electrical Characteristics**

All RGMII, RMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 24 and Table 25. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

NOTE

eTSEC should be interfaced with peripheral operating at same voltage level.

Parameter	Symbol	Conditions		Min	Max	Unit
Supply voltage 3.3 V	LV _{DDA} /LV _{DDB}	—		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	LV_{DDA} or $LV_{DDB} = Min$	2.40	LV _{DDA} + 0.3 or LV _{DDB} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	LV_{DDA} or LV_{DDB} = Min	V _{SS}	0.50	V
Input high voltage	V _{IH}	_	_	2.0	LV _{DDA} + 0.3 or LV _{DDB} + 0.3	V
Input low voltage	V _{IL}	_	—	-0.3	0.90	V
Input high current	Ι _{ΙΗ}	$V_{IN}^{1} = LV_{DDA} \text{ or } LV_{DDB}$		—	40	μA
Input low current	۱ _{IL}	V	/ _{IN} ¹ = VSS	-600	—	μΑ

Table 24. MII DC Electrical Characteristics

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

Table 25. RGMII/RTBI DC Electrical Characteristics

Parameters	Symbol	Conditions	Min	Max	Unit
Supply voltage 2.5 V	LV_{DDA}/LV_{DDB}	_	2.37	2.63	V

- The SD_REF_CLK and SD_REF_CLK are internally AC-coupled differential inputs as shown in Figure 23. Each differential clock input (SD_REF_CLK or SD_REF_CLK) has a 50-Ω termination to XCOREV_{SS} followed by on-chip AC coupling.
- The external reference clock driver must be able to drive this termination.
- The SerDes reference clock input can be either differential or single-ended. Refer to the differential mode and single-ended mode description below for further detailed requirements.
- The maximum average current requirement that also determines the common mode voltage range:
 - When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage is not critical as long as it is within the range allowed by the maximum average current of 8 mA (refer to the following bullet for more detail), since the input is AC-coupled on-chip.
 - This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V/50 = 8 mA) while the minimum common mode input level is 0.1 V above XCOREV_{SS}. For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output driven by its current source from 0 to 16 mA (0–0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.
 - If the device driving the SD_REF_CLK and $\overline{\text{SD}_{\text{REF}}}$ inputs cannot drive 50 Ω to XCOREV_{SS} DC, or it exceeds the maximum input current limitations, then it must be AC-coupled off-chip.
- The input amplitude requirement. This requirement is described in detail in the following sections.

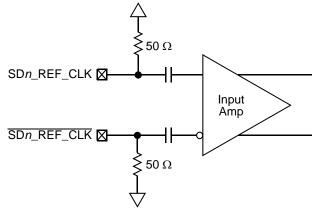


Figure 23. Receiver of SerDes Reference Clocks

9.2.2 DC Level Requirement for SerDes Reference Clocks

The DC level requirement for the MPC8313E SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs as described below.

- Differential mode
 - The input amplitude of the differential clock must be between 400 and 1600 mV differential peak-to-peak (or between 200 and 800 mV differential peak). In other words, each signal wire

This figure shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It assumes that the DC levels of the clock driver chip is compatible with MPC8313E SerDes reference clock input's DC requirement.

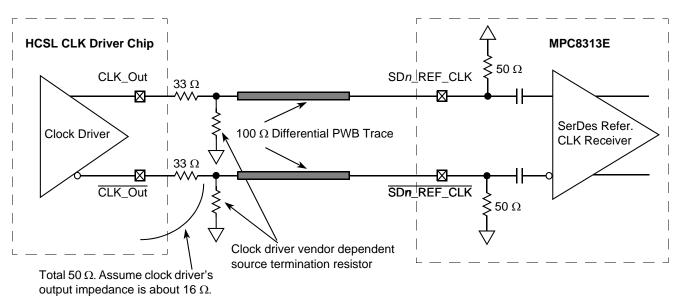


Figure 27. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for LVDS type clock driver. Since LVDS clock driver's common mode voltage is higher than the MPC8313E SerDes reference clock input's allowed range (100 to 400 mV), the AC-coupled connection scheme must be used. It assumes the LVDS output driver features a 50- Ω termination resistor. It also assumes that the LVDS transmitter establishes its own common mode level without relying on the receiver or other external component.

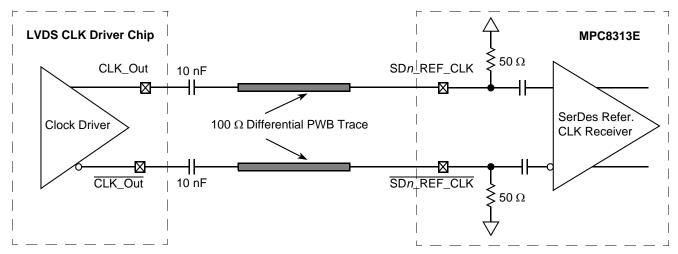


Figure 28. AC-Coupled Differential Connection with LVDS Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for LVPECL type clock driver. Since LVPECL driver's DC levels (both common mode voltages and output swing) are incompatible with the MPC8313E SerDes reference clock input's DC requirement, AC coupling has to be used. Figure 29

Table 49. I²C AC Electrical Specifications (continued)

All values refer to V_{IH} (min) and V_{IL} (max) levels (see Table 48).

Parameter	Symbol ¹	Min	Max	Unit
Data hold time: CBUS compatible masters I ² C bus devices	t _{i2DXKL}	$\overline{0^2}$	 0.9 ³	μs
Fall time of both SDA and SCL signals ⁵	t _{I2CF}	—	300	ns
Setup time for STOP condition	t _{I2PVKH}	0.6	_	μs
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	_	μs
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times NV_{DD}$	—	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times NV_{DD}$	_	V

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the bigh (H) state or hold time. Also, t_{12PVKH} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) went invalid (X) relative to the t_{12C} clock reference (K) going to the stop condition (P) reaching the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
 </sub>
- The MPC8313E provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IHmin} of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t_{12DVKH} has only to be met if the device does not stretch the LOW period (t_{12CL}) of the SCL signal.
- 4. C_B = capacitance of one bus line in pF.
- 5. The MPC8313E does not follow the l^2C -BUS Specifications, Version 2.1, regarding the t_{I2CF} AC parameter.

This figure provides the AC test load for the I^2C .

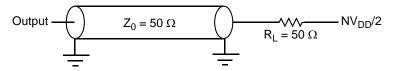


Figure 46. I²C AC Test Load

Parameter	Symbol ¹	Min	Мах	Unit	Note
Clock to output high impedance	t _{PCKHOZ}	—	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	_	ns	2, 4
Input hold from clock	t _{PCIXKH}	0	—	ns	2, 4

Table 51. PCI AC Timing Specifications at 66 MHz (continued)

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

This table shows the PCI AC timing specifications at 33 MHz.

Table 52. PCI AC Timing Specifications at 33 MHz

Parameter	Symbol ¹	Min	Max	Unit	Note
Clock to output valid	^t PCKHOV	—	11	ns	2
Output hold from clock	t _{PCKHOX}	2	_	ns	2
Clock to output high impedance	t _{PCKHOZ}	—	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0		ns	2, 4
Input hold from clock	t _{PCIXKH}	0	_	ns	2, 4

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
</sub>

- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

This figure provides the AC test load for PCI.

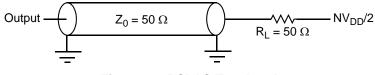


Figure 48. PCI AC Test Load

Signal	Package Pin Number	Pin Type	Power Supply	Note	
LA24	E23	0	LV _{DD}	11	
LA25	D22	0	LV _{DD}	11	
LCS0	D23	0	LV _{DD}	10	
LCS1	J26	0	LV _{DD}	10	
LCS2	F22	0	LV _{DD}	10	
LCS3	D26	0	LV _{DD}	10	
LWE0/LFWE	E24	0	LV _{DD}	10	
LWE1	H26	0	LV _{DD}	10	
LBCTL	L22	0	LV _{DD}	10	
LALE/M1LALE/M2LALE	E26	0	LV _{DD}	11	
LGPL0/LFCLE	AA23	0	LV _{DD}	_	
LGPL1/LFALE	AA24	0	LV _{DD}	_	
LGPL2/LOE/LFRE	AA25	0	LV _{DD}	10	
LGPL3/LFWP	AA26	0	LV _{DD}	_	
LGPL4/LGTA/LUPWAIT/LFRB	Y22	I/O	LV _{DD}	2	
LGPL5	E21	0	LV _{DD}	10	
LCLK0	H22	0	LV _{DD}	11	
LCLK1	G26	0	LV _{DD}	11	
LA0/GPIO0/MSRCID0	AC24	I/O	LV _{DD}	_	
LA1/GPIO1//MSRCID1	Y24	I/O	LV _{DD}	_	
LA2/GPIO2//MSRCID2	Y26	I/O	LV _{DD}	_	
LA3/GPIO3//MSRCID3	W22	I/O	LV _{DD}	_	
LA4/GPIO4//MSRCID4	W24	I/O	LV _{DD}	_	
LA5/GPIO5/MDVAL	W26	I/O	LV _{DD}	_	
LA6/GPIO6	V22	I/O	LV _{DD}	_	
LA7/GPIO7/TSEC_1588_TRIG2	V23	I/O	LV _{DD}	8	
LA8/GPIO13/TSEC_1588_ALARM1	V24	I/O	LV _{DD}	8	
LA9/GPIO14/TSEC_1588_PP3	V25	I/O	LV _{DD}	8	
LA10/TSEC_1588_CLK	V26	0	LV _{DD}	8	
LA11/TSEC_1588_GCLK	U22	0	LV _{DD}	8	
LA12/TSEC_1588_PP1	AD24	0	LV _{DD}	8	
LA13/TSEC_1588_PP2	L25	0	LV _{DD}	8	

Signal	Package Pin Number	Pin Type	Power Supply	Note
TMS	E4	I	NV _{DD}	4
TRST	E5	I	NV _{DD}	4
	TEST		- 1 - 1	
TEST_MODE	F4	I	NV_{DD}	6
	DEBUG		- 1 - 1	
QUIESCE	F5	0	NV _{DD}	_
	System Control		- 1 - 1	
HRESET	F2	I/O	NV _{DD}	1
PORESET	F3	I	NV _{DD}	_
SRESET	F1	I	NV _{DD}	_
	Clocks		- 1 - 1	
SYS_CR_CLK_IN	U26	I	NV _{DD}	_
SYS_CR_CLK_OUT	U25	0	NV _{DD}	_
SYS_CLK_IN	U23	I	NV _{DD}	_
USB_CR_CLK_IN	T26	I	NV _{DD}	_
USB_CR_CLK_OUT	R26	0	NV _{DD}	_
USB_CLK_IN	T22	I	NV _{DD}	_
PCI_SYNC_OUT	U24	0	NV _{DD}	3
RTC_PIT_CLOCK	R22	I	NV _{DD}	_
PCI_SYNC_IN	T24	I	NV _{DD}	_
	MISC			
THERMO	N1		NV _{DD}	7
THERM1	N3		NV _{DD}	7
	PCI			
PCI_INTA	AF7	0	NV _{DD}	_
PCI_RESET_OUT	AB11	0	NV _{DD}	_
PCI_AD0	AB20	I/O	NV _{DD}	_
PCI_AD1	AF23	I/O	NV _{DD}	_
PCI_AD2	AF22	I/O	NV _{DD}	_
PCI_AD3	AB19	I/O	NV _{DD}	_
PCI_AD4	AE22	I/O	NV _{DD}	_
PCI_AD5	AF21	I/O	NV _{DD}	_

Signal	Package Pin Number	Pin Type	Power Supply	Note
PCI_AD6	AD19	I/O	NV _{DD}	_
PCI_AD7	AD20	I/O	NV _{DD}	_
PCI_AD8	AC18	I/O	NV _{DD}	_
PCI_AD9	AD18	I/O	NV _{DD}	_
PCI_AD10	AB18	I/O	NV _{DD}	_
PCI_AD11	AE19	I/O	NV _{DD}	_
PCI_AD12	AB17	I/O	NV _{DD}	_
PCI_AD13	AE18	I/O	NV _{DD}	_
PCI_AD14	AD17	I/O	NV _{DD}	_
PCI_AD15	AF19	I/O	NV _{DD}	_
PCI_AD16	AB14	I/O	NV _{DD}	_
PCI_AD17	AF15	I/O	NV _{DD}	_
PCI_AD18	AD14	I/O	NV _{DD}	_
PCI_AD19	AE14	I/O	NV _{DD}	_
PCI_AD20	AF12	I/O	NV _{DD}	_
PCI_AD21	AE11	I/O	NV _{DD}	_
PCI_AD22	AD12	I/O	NV _{DD}	_
PCI_AD23	AB13	I/O	NV _{DD}	_
PCI_AD24	AF9	I/O	NV _{DD}	_
PCI_AD25	AD11	I/O	NV _{DD}	_
PCI_AD26	AE10	I/O	NV _{DD}	_
PCI_AD27	AB12	I/O	NV _{DD}	_
PCI_AD28	AD10	I/O	NV _{DD}	_
PCI_AD29	AC10	I/O	NV _{DD}	_
PCI_AD30	AF10	I/O	NV _{DD}	
PCI_AD31	AF8	I/O	NV _{DD}	
PCI_C/BE0	AC19	I/O	NV _{DD}	_
PCI_C/BE1	AB15	I/O	NV _{DD}	_
PCI_C/BE2	AF14	I/O	NV _{DD}	_
PCI_C/BE3	AF11	I/O	NV _{DD}	_
PCI_PAR	AD16	I/O	NV _{DD}	_
PCI_FRAME	AF16	I/O	NV_{DD}	5

Signal	Package Pin Number	Pin Type	Power Supply	Note
RXB	R1	I		
RXB	P1	I		_
SD_IMP_CAL_RX	V5	I		200 Ω ± 10% to GND
SD_REF_CLK	T5	I		_
SD_REF_CLK	T4	I		
SD_PLL_TPD	T2	0		
SD_IMP_CAL_TX	N5	I		100 Ω ± 10% to GND
SDAVDD	R5	I/O		—
SD_PLL_TPA_ANA	R4	0		—
SDAVSS	R3	I/O		—
	USB PHY			
USB_DP	P26	I/O		
USB_DM	N26	I/O		_
USB_VBUS	P24	I/O		_
USB_TPA	L26	I/O		—
USB_RBIAS	M24	I/O		—
USB_PLL_PWR3	M26	I/O		—
USB_PLL_GND	N24	I/O		—
USB_PLL_PWR1	N25	I/O		—
USB_VSSA_BIAS	M25	I/O		—
USB_VDDA_BIAS	M22	I/O		—
USB_VSSA	N22	I/O		—
USB_VDDA	P22	I/O		—
	GTM/USB	I		
USBDR_DRIVE_VBUS/GTM1_TIN1/GTM2_TIN2/LSRCID0	AD23	I/O	NV _{DD}	—
USBDR_PWRFAULT/GTM1_TGATE1/GTM2_TGATE2/ LSRCID1	AE23	I/O	NV _{DD}	—
USBDR_PCTL0/GTM1_TOUT1/LSRCID2	AC22	0	NV _{DD}	—
USBDR_PCTL1/LBC_PM_REF_10/LSRCID3	AB21	0	NV_{DD}	—

Unit	Default Frequency	Options
TSEC1	csb_clk	Off, csb_clk, csb_clk/2, csb_clk/3
TSEC2	csb_clk	Off, csb_clk, csb_clk/2, csb_clk/3
Security Core, I ² C, SAP, TPR	csb_clk	Off, csb_clk, csb_clk/2, csb_clk/3
USB DR	csb_clk	Off, csb_clk, csb_clk/2, csb_clk/3
PCI and DMA complex	csb_clk	Off, csb_clk

Table 63. Configurable Clock Units

This table provides the operating frequencies for the MPC8313E TEPBGAII under recommended operating conditions (see Table 2).

Characteristic ¹	Maximum Operating Frequency	Unit
e300 core frequency (core_clk)	333	MHz
Coherent system bus frequency (<i>csb_clk</i>)	167	MHz
DDR1/2 memory bus frequency (MCK) ²	167	MHz
Local bus frequency (LCLKn) ³	66	MHz
PCI input frequency (SYS_CLK_IN or PCI_CLK)	66	MHz

Table 64. Operating Frequencies for TEPBGAII

Note:

- The SYS_CLK_IN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen such that the resulting csb_clk, MCK, LCLK[0:1], and core_clk frequencies do not exceed their respective maximum or minimum operating frequencies. The value of SCCR[ENCCM] and SCCR[USBDRCM] must be programmed such that the maximum internal operating frequency of the security core and USB modules do not exceed their respective value listed in this table.
- 2. The DDR data rate is 2x the DDR memory bus frequency.
- 3. The local bus frequency is 1/2, 1/4, or 1/8 of the *lbc_clk* frequency (depending on LCRR[CLKDIV]), which is in turn, 1x or 2x the *csb_clk* frequency (depending on RCWL[LBCM]).

20.1 System PLL Configuration

The system PLL is controlled by the RCWL[SPMF] parameter. This table shows the multiplication factor encodings for the system PLL.

RCWL[SPMF]	System PLL Multiplication Factor
0000	Reserved
0001	Reserved
0010	× 2
0011	× 3

Table 65. System PLL Multiplication Factors

20.2 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). This table shows the encodings for RCWL[COREPLL]. COREPLL values that are not listed in this table should be considered as reserved.

NOTE

Core VCO frequency = core frequency \times VCO divider. The VCO divider, which is determined by RCWLR[COREPLL], must be set properly so that the core VCO frequency is in the range of 400–800 MHz.

RCWL[COREPLL]		'LL]	core_clk : csb_clk Ratio ¹	VCO Divider (VCOD) ³
0–1	2–5	6	core_cik : csb_cik Ratio	
nn	0000	0	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)
11	nnnn	n	n/a	n/a
00	0001	0	1:1	2
01	0001	0	1:1	4
10	0001	0	1:1	8
00	0001	1	1.5:1	2
01	0001	1	1.5:1	4
10	0001	1	1.5:1	8
00	0010	0	2:1	2
01	0010	0	2:1	4
10	0010	0	2:1	8
00	0010	1	2.5:1	2
01	0010	1	2.5:1	4
10	0010	1	2.5:1	8
00	0011	0	3:1	2
01	0011	0	3:1	4
10	0011	0	3:1	8

Table 67. e300 Core PLL Configuration

Note:

1. For core_clk:csb_clk ratios of 2.5:1 and 3:1, the core_clk must not exceed its maximum operating frequency of 333 MHz.

2. Core VCO frequency = core frequency × VCO divider. Note that VCO divider has to be set properly so that the core VCO frequency is in the range of 400–800 MHz.

Heat sink Vendors include the following list:	
Aavid Thermalloy 80 Commercial St. Concord, NH 03301 Internet: www.aavidthermalloy.com	603-224-9988
Alpha Novatech 473 Sapena Ct. #12 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-749-7601
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	818-842-7277
Millennium Electronics (MEI) Loroco Sites 671 East Brokaw Road San Jose, CA 95112 Internet: www.mei-thermal.com	408-436-8770
Tyco Electronics Chip Coolers TM P.O. Box 3668 Harrisburg, PA 17105 Internet: www.chipcoolers.com	800-522-6752
Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com	603-635-2800
Interface material vendors include the following:	
Chomerics, Inc. 77 Dragon Ct. Woburn, MA 01801 Internet: www.chomerics.com	781-935-4850
Dow-Corning Corporation Corporate Center PO BOX 994	800-248-2481
Midland, MI 48686-0994 Internet: www.dowcorning.com	
Shin-Etsu MicroSi, Inc. 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com	888-642-7674
The Bergquist Company 18930 West 78th St. Chanhassen, MN 55317 Internet: www.bergquistcompany.com	800-347-4572

- Output signals on the SerDes interface are fed from the XPADV_{DD} power plane. Input signals and sensitive transceiver analog circuits are on the XCOREV_{DD} supply.
- Power: XPADV_{DD} consumes less than 300 mW; XCOREV_{DD} + SDAV_{DD} consumes less than 750 mW.

22.3 Decoupling Recommendations

Due to large address and data buses, and high operating frequencies, the device can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8313E system, and the MPC8313E itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer place at least one decoupling capacitor at each V_{DD} , NV_{DD} , GV_{DD} , LV_{DD} , LV_{DDA} , and LV_{DDB} pin of the device. These decoupling capacitors should receive their power from separate V_{DD} , NV_{DD} , GV_{DD} , LV_{DDA} , LV_{DDB} , and VSS power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V_{DD} , NV_{DD} , GV_{DD} , LV_{DD} , LV_{DDA} , and LV_{DDB} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100 to 330 μ F (AVX TPS tantalum or Sanyo OSCON). However, customers should work directly with their power regulator vendor for best values and types of bulk capacitors.

22.4 SerDes Block Power Supply Decoupling Recommendations

The SerDes block requires a clean, tightly regulated source of power (XCOREV_{DD} and XPADV_{DD}) to ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling scheme is outlined below.

Only SMT capacitors should be used to minimize inductance. Connections from all capacitors to power and ground should be done with multiple vias to further reduce inductance.

- First, the board should have at least 10 × 10-nF SMT ceramic chip capacitors as close as possible to the supply balls of the device. Where the board has blind vias, these capacitors should be placed directly below the chip supply and ground connections. Where the board does not have blind vias, these capacitors should be placed in a ring around the device as close to the supply and ground connections as possible.
- Second, there should be a 1-µF ceramic chip capacitor from each SerDes supply (XCOREV_{DD} and XPADV_{DD}) to the board ground plane on each side of the device. This should be done for all SerDes supplies.

This table summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal NV_{DD}, 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI Signals (Not Including PCI Output Clocks)	PCI Output Clocks (Including PCI_SYNC_OUT)	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	42 Target	20 Target	Z ₀	Ω
R _P	42 Target	25 Target	42 Target	20 Target	Z ₀	Ω
Differential	NA	NA	NA	NA	Z _{DIFF}	Ω

 Table 71. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, T_J = 105 °C.

22.7 Configuration Pin Muxing

The MPC8313E provides the user with power-on configuration options which can be set through the use of external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see customer visible configuration pins). These pins are generally used as output only pins in normal operation.

While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins while HRESET is asserted, is latched when PORESET deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for output pins thus configured.

22.8 Pull-Up Resistor Requirements

The MPC8313E requires high resistance pull-up resistors (10 k Ω is recommended) on open drain type pins including I²C, and IPIC (integrated programmable interrupt controller).

Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 61. Care must be taken to ensure that these pins are maintained at a valid deasserted state under normal operating conditions because most have asynchronous behavior and spurious assertion, which give unpredictable results.

Refer to the PCI 2.2 Specification, for all pull-ups required for PCI.

22.9 JTAG Configuration Signals

Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in IEEE 1149.1, but is provided on any Freescale devices that are built on Power Architecture technology. The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state using only the TCK and TMS signals, systems generally assert TRST during power-on reset. Because the JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying TRST to PORESET is not practical.

Rev. Number	Date	Substantive Change(s)
2	10/2008	 Added Note "The information in this document is accurate for revision 1.0, and 2.x and later. See Section 24.1, "Part Numbers Fully Addressed by this Document," before Section 1, "Overview." Added part numbering details for all the silicon revisions in Table 74. Changed V_{IH} from 2.7 V to 2.4 V in Table 7. Added a column for maximum power dissipation in low power mode for Rev 2.x or later silicon in Table 6. Added a column for Power Nos for Rev 2.x or later silicon and added a row for 400 MHz in Table 4. Added a column for Power Nos for Rev 2.x or later silicon and added a row for 400 MHz in Table 4. Added Table 21 for DDR AC Specs on Rev 2.x or later silicon. Added EfWE, LFCLE, LFALE, LOE, LFRE, LFWP, LGTA, LUPWAIT, and LFRB in Table 63. In Table 39, added note 2: "This parameter is dependent on the csb_clk speed. (The MIIMCFG[Mgmt Clock Select] field determines the clock frequency of the Mgmt Clock EC_MDC.)" Removed mentions of SGMII (SGMII has separate specs) from Section 8.1, "Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/STBI Electrical Characteristics." Corrected Section 8.1, "Enhanced Three-Speed Ethernet Controller (eTSEC) (10/100/1000 Mbps)—MII/RGMII/SGMII/RTBI Electrical Characteristics," to state that RGMII/RTBI Interfaces only operate at 2.5 V, not 3.3 V. Added ZQ package to ordering information In Table 74 and Section 19.1, "Package Parameters for the MPC8313E TEPBGAII" (applicable to both silicon rev. 1.0 and 2.1) Removed footnotes 5 and 6 from Table 1 (left over when the PCI undershoot/overshoot voltages and maximum AC waveforms were removed from Section 2.1.2, "Power Supply Voltage Specification"). Removed SD_PLL_TPD (T2) and SD_PLL_TPA_ANA (R4) from Table 63. Added Section 8.3, "SGMII Interface Electrical Characteristics." Removed Section 8.5.3 SGMII DC Electrical Characteristics. Removed "HRESET negation to S

Table 73. Document Revision History (continued)

-

Rev. Number	Date	Substantive Change(s)
1	3/2008	 In Table 63, added LBC_PM_REF_10 & LSRCID3 as muxed with USBDR_PCTL1 In Table 63, added LSRCID2 as muxed with USBDR_PCTL0 In Table 63, added LSRCID0 as muxed with USBDR_PCTL0 In Table 63, added LSRCID0 as muxed with USBDR_PCTL2 VBUS In Table 63, moved 71, U2,& V2 from V_{DD} to XCOREVDD. In Table 63, moved P5, & U4 from V_{DD} to XPADVDD. In Table 63, moved P5, & U4 from V_{DD} to XPADVDD. In Table 63, moved P5, & U4 from V_{DD} to XPADVDD. In Table 63, moved P5, & V4 from V_{SS} to XCOREVDS. In Table 63, added impedance control requirements for SD_IMP_CAL_TX (100 ohms to GND) and SD_IMP_CAL_RX (200 ohms to GND). In Table 63, updated muxing in pinout to show new options for selecting IEEE 1588 functionality. Added footnote 8 In Table 63, updated muxing in pinout to show new LBC ECC boot enable control muxed with eTSEC1_MDC Added pin type information for power supplies. Removed N1 and N3 from Vss section of Table 63. Added Therm0 and Therm1 (N1 and N3, respectively). Added note 7 to state: "Internal thermally sensitive resistor, resistor value varies linearly with temperature." In Table 65 corrected maximum frequency of Local Bus Frequency from "33–66" to 66 MHz In Table 65 corrected maximum frequency of PCI from "24–66" to 66 MHz Added "which is determined by RCWLR[COREPLL]" to the note in Section 20.2, "Core PLL Configuration" about the VCO divider. Added "Walues. In Table 69, notes were confusing. Added note 3 for VCO column, note 4 for CSB (<i>csb_c.lk</i>) column, note 5 for USB ref column, and note 6 to replace "Note 1". Clarified note 4 to explain errature of Section 20.2, "Core PLL Configuration" about the VCO divider column in Table 68. Added footnote stating that core_clk frequency must not exceed its maximum, so 2.5:1 and 3:1 <i>core_clk:csb_c.lk</i> ratios are invalid for certain <i>csb_c.lk</i> values. In Table 69, updated note 6 to specify U
0	6/2007	Initial release.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com

Document Number: MPC8313EEC Rev. 4 11/2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QorlQ is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. RapidIO is a registered trademark of the RapidIO Trade Association. IEEE 1588 and 1149.1 are registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE.

© 2007–2011 Freescale Semiconductor, Inc.

